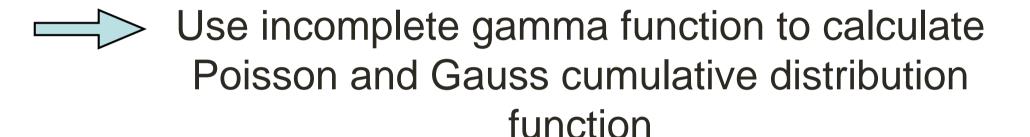
Recap lecture 4

thermal limit of stochastic radiation processes $h\nu << kT$ Thermal limit $\Delta P^2(\nu) = \bar{P}^2(\nu)$



Propagation of errors under the assumption of independent variables

$$\bar{f} = f(\bar{u}, \bar{v}, ..)$$

$$\sigma_f^2 = \sigma_u^2 (\frac{\partial f}{\partial u})^2 + \sigma_v^2 (\frac{\partial f}{\partial v})^2 + ...$$

Today:

Comparing data with a model: Leastsquares fitting, maximum likelihood method: Gaussian data

Monte Carlo simulations

"real" maximum likelihood method:

Poissonian data

OAF2 chapter 5.3+5.4 see also Num Res Chapter 15

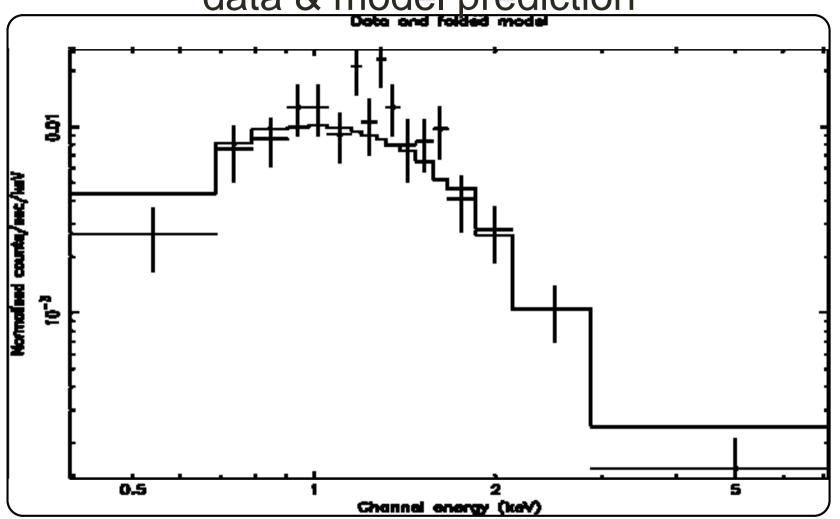
Compare data with a model

Describe data in terms of a continuous function

Compare observations (data) with theoretical model prediction

Describe the data in a few parameters

Example: continuous model through discrete data & model prediction



X-ray binary in quiescence neutron star atmosphere model

Maximum likelihood: most likely outcome is assumed to be the 'correct' one Method of least squares

$$P(y_i)\Delta y = \frac{1}{\sqrt{2\pi}\sigma_i} exp(-\frac{1}{2} \frac{(y_i - y_m)^2}{\sigma_i^2}) \Delta y$$

note: y_m = model value not mean here!

Method of least squares

$$P \propto \prod_{i=1}^{N} \{exp[-rac{1}{2}(rac{y_i-y_m}{\sigma_i})^2]\}$$

$$\propto exp[-rac{1}{2}\sum_{i=1}^{N}(rac{y_i-y_m}{\sigma_i})^2]\}$$

minimise:
$$\chi^2 \equiv \sum_{i=1}^{N} (\frac{y_i - y_m}{\sigma_i})^2$$

minimisation: root finding problem

1D:
$$\frac{\partial}{\partial y_i} \sum_{i=1}^{N} (\frac{y_i - y_m}{\sigma_i})^2 = 0$$

more about χ^2

drawn from normal distribution distribution of x_i^2 is a x^2 distribution for N measurements described by M variables, there are N-M Degrees of Freedom (d.o.f.)

Probability of obtaining a certain χ^2 or higher by chance $P(\chi^2_{obs}) = \operatorname{gammq}(\frac{N-M}{2}, \frac{\chi^2_{obs}}{2})$

x² fitting provides:

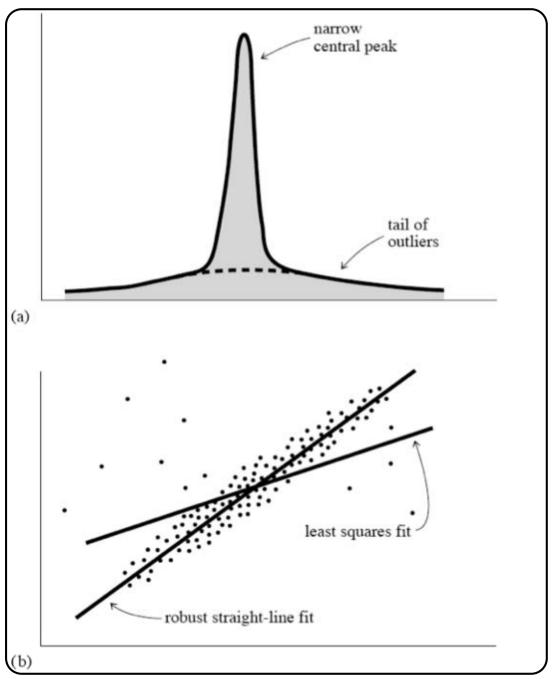
Best-fitting parameters

An error estimate of the uncertainty of the fitted parameters

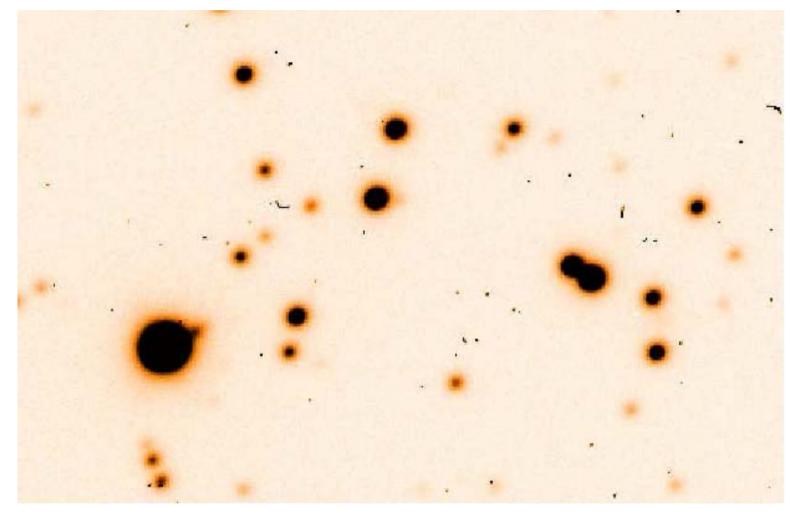
A probability that the data is drawn from a parent population described by the model parameters

Note that outliers make this probability generally low

Be aware of non-gaussian distributions

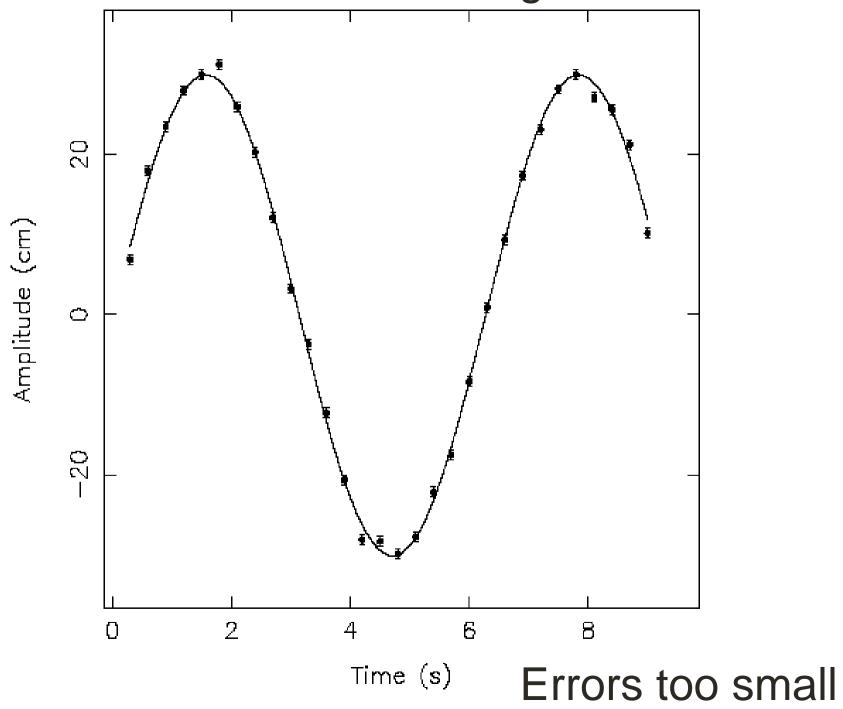


Part of U-band image VLT

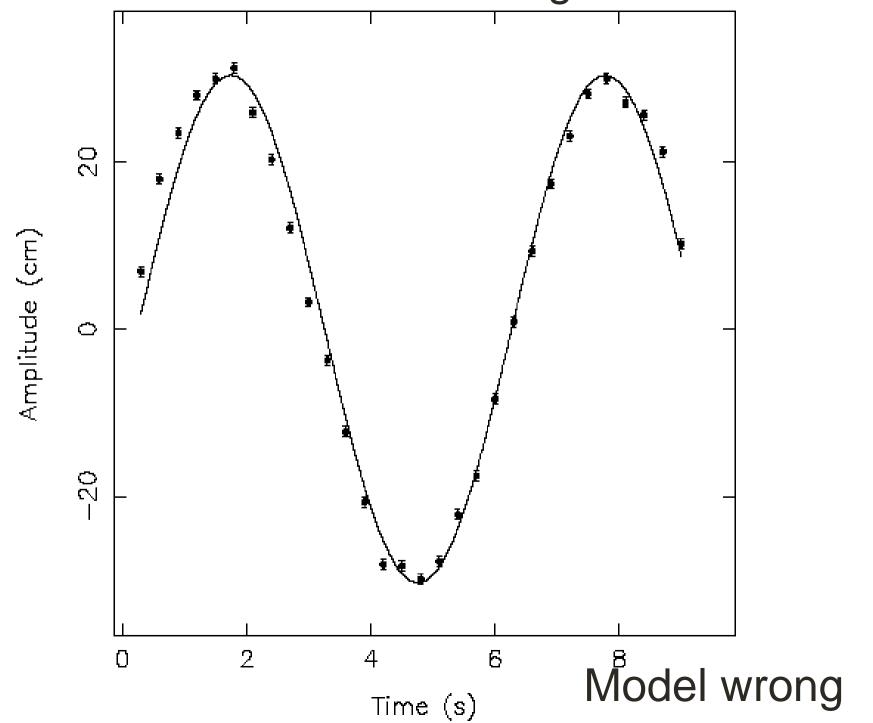


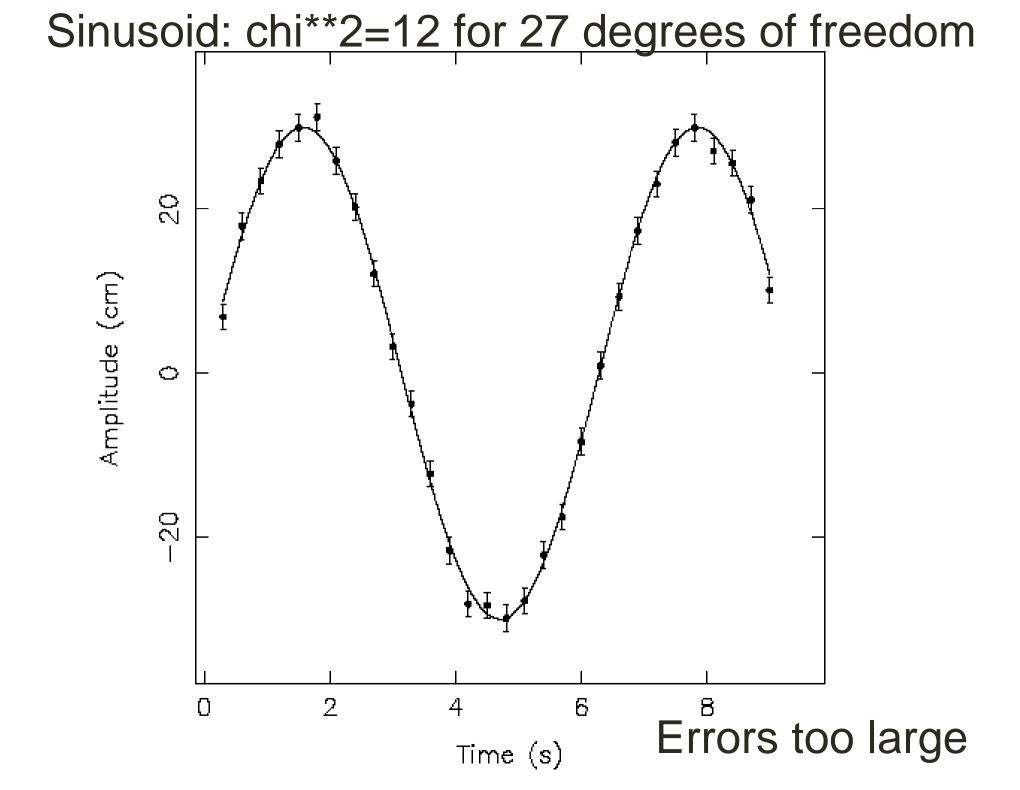
Remove outliers via (sigma) clipping

Sinusoid: chi**2=81.2 for 26 degrees of freedom

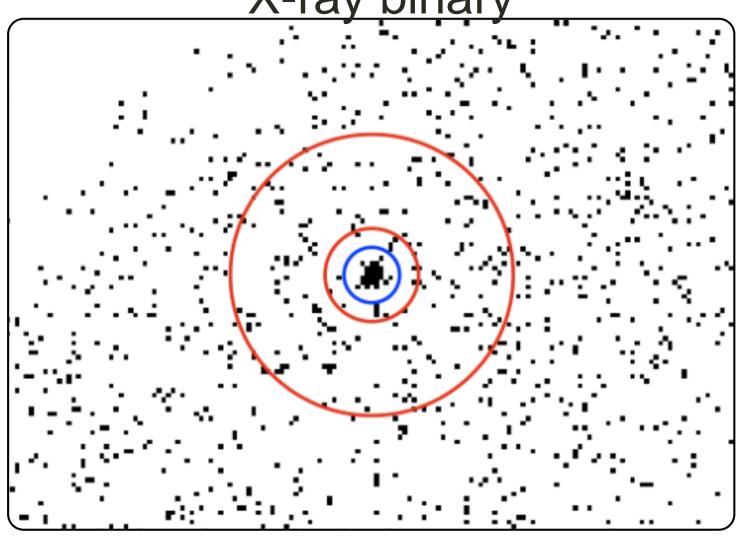


Sinusoid: chi**2=580 for 28 degrees of freedom

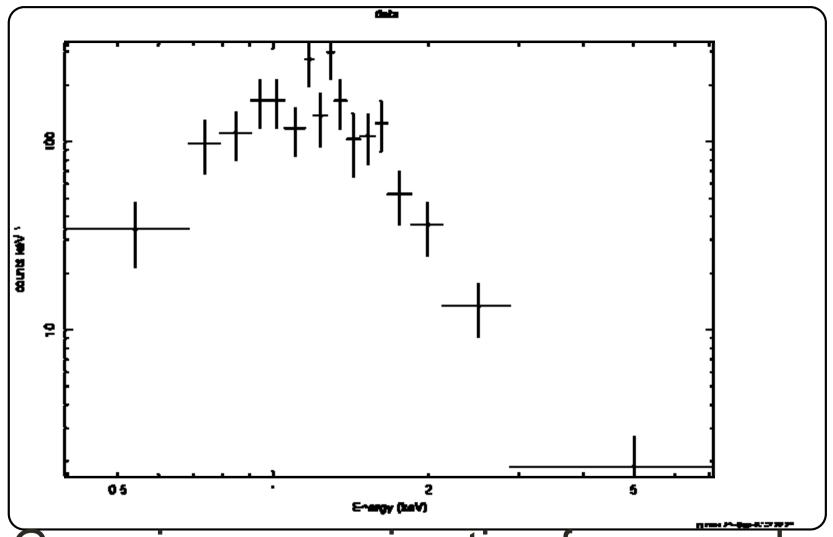




Chandra CCD (ACIS) observation of an X-ray binary

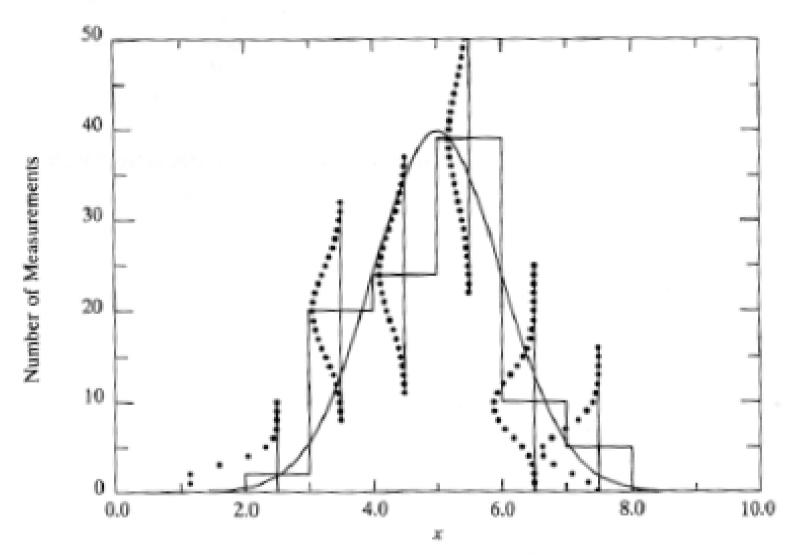


Same data as before



Gaussian approximation for errors but at low counts Gauss and Poisson errors differ

VALUE AND POISSON ERRORS



EXAMPLE FROM BEVINGTON & ROBERTSON 1992

Fitting a straight line to the data

$$y_m(x_i, a, b) = a + bx_i$$

minimise χ_i^2 to find best-fitting parameters

$$\frac{\partial \sum_{i=1}^{N} (\frac{y_i - a - bx_i}{\sigma_i})^2}{\partial a} = 0$$

$$\sum \frac{y_i}{\sigma_i^2} - a \sum \frac{1}{\sigma_i^2} - b \sum \frac{x_i}{\sigma_i^2} = 0$$

$$\sum \frac{x_i y_i}{\sigma_i^2} - a \sum \frac{x_i}{\sigma_i^2} - b \sum \frac{x_i^2}{\sigma_i^2} = 0$$

$$a = \frac{\sum_{i} \frac{x_i^2}{\sigma_i^2} \sum_{i} \frac{y_i}{\sigma_i^2} - \sum_{i} \frac{x_i}{\sigma_i^2} \sum_{i} \frac{x_i y_i}{\sigma_i^2}}{\sum_{i} \frac{1}{\sigma_i^2} \sum_{i} \frac{x_i^2}{\sigma_i^2} - (\sum_{i} \frac{x_i}{\sigma_i^2})^2}$$

determine errors on the best-fitting parameters

remember
$$\sigma_f^2 = \sigma_u^2 (\frac{\partial f}{\partial u})^2 + \sigma_v^2 (\frac{\partial f}{\partial v})^2 + \dots$$

$$\sigma_a^2 = \sum_{i=1}^N [\sigma_i^2 \frac{\partial a}{\partial y_i}]^2$$

 $\partial u \& \partial v$ etc are the different measurement values y_i

$$\sigma_a^2 = \frac{\sum_i \frac{x_i^2}{\sigma_i^2}}{\sum_i \frac{1}{\sigma_i^2} \sum_i \frac{x_i^2}{\sigma_i^2} - (\sum_i \frac{x_i}{\sigma_i^2})^2}$$
similarly
$$\sigma_b^2 = \frac{\sum_i \frac{1}{\sigma_i^2}}{\sum_i \frac{1}{\sigma_i^2} \sum_i \frac{x_i^2}{\sigma_i^2} - (\sum_i \frac{x_i}{\sigma_i^2})^2}$$

Finally calculate the probability of obtaining the by chance

$$P(\chi_{obs}^2) = \operatorname{gammq}(\frac{N-M}{2}, \frac{\chi_{obs}^2}{2})$$

for the straight line fit m=2

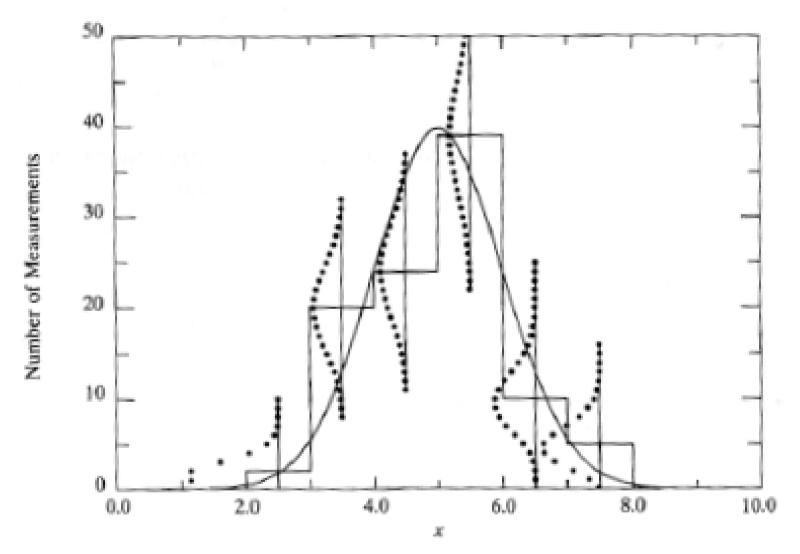
$$\nu = N - M$$
 degrees of freedom reduced χ^2_{ν}

$$\chi^2_
u \equiv rac{\chi^2}{
u}$$

for data fitting:

$$\chi^2_{
u} \sim 1$$
 $\chi^2 \approx
u$ $\sigma_{\chi^2} = \sqrt{2
u}$

VALUE AND POISSON ERRORS



EXAMPLE FROM BEVINGTON & ROBERTSON 1992

Estimating confidence regions via Monte Carlo simulations

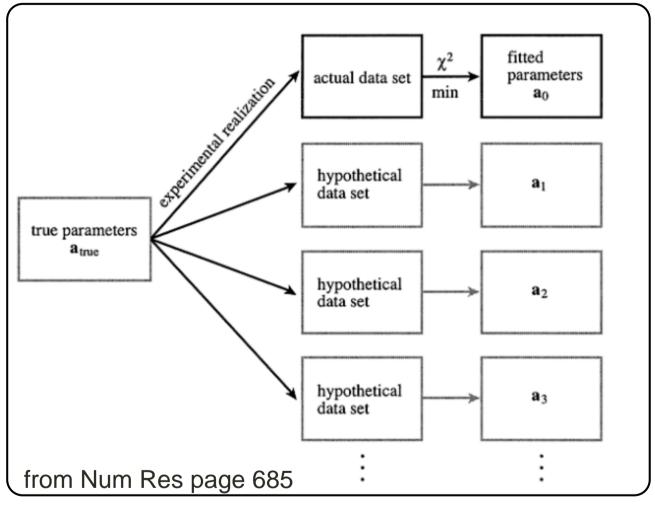
Monte Carlo simulations

1 Replace the observed values by another random selected value from the range y+-sigma

2 Repeat fitting (chi**2 minimisation etc)

3 Repeat 1 & 2 N times to build up a distribution in the determined parameters and from that determine the mean, variance etc

Estimating confidence limits Monte Carlo simulations



Measurement one draw from the distribution of a's

assume that the distribution of a_i-a_0 is close to the probability distribution a_i-a_{true}

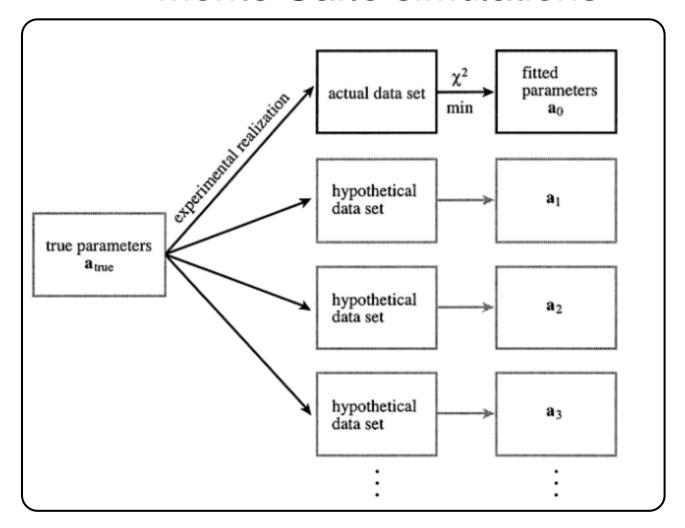
$a_i - a_0$ distribution we can determine via Monte Carlo simulations

Many Monte Carlo methods

Basis: (pseudo) random draws

Also simulate an experiment! a.o. useful for proposal writing Computer exercise

Monte Carlo simulations



calculate distribution of $a_i - a_0$ by simulating many sets of data and using χ^2 fitting to determine a_i

Special MC: bootstrapping

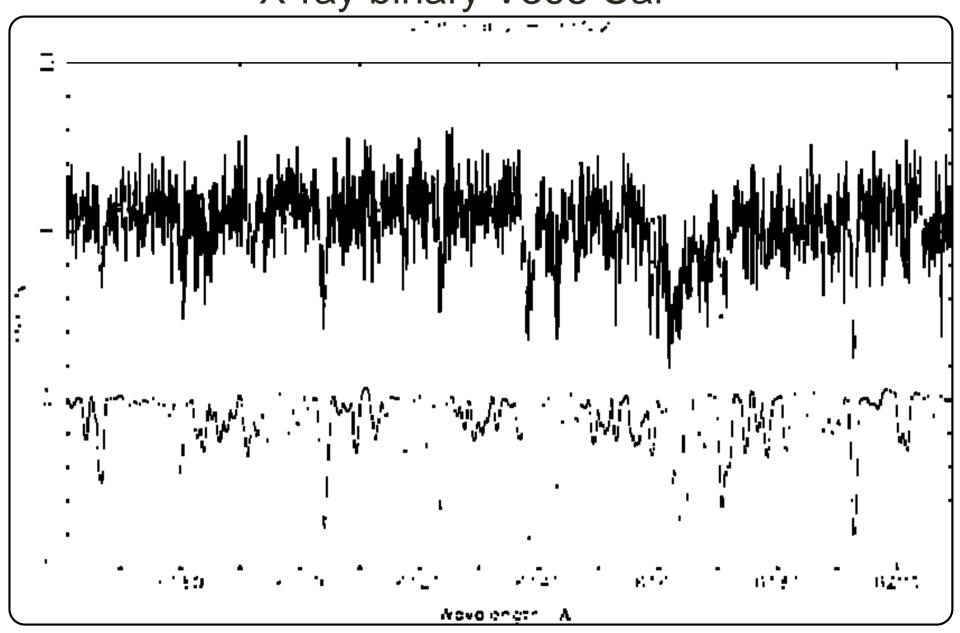
1 Replace a random number of observed values by another random selected observed value

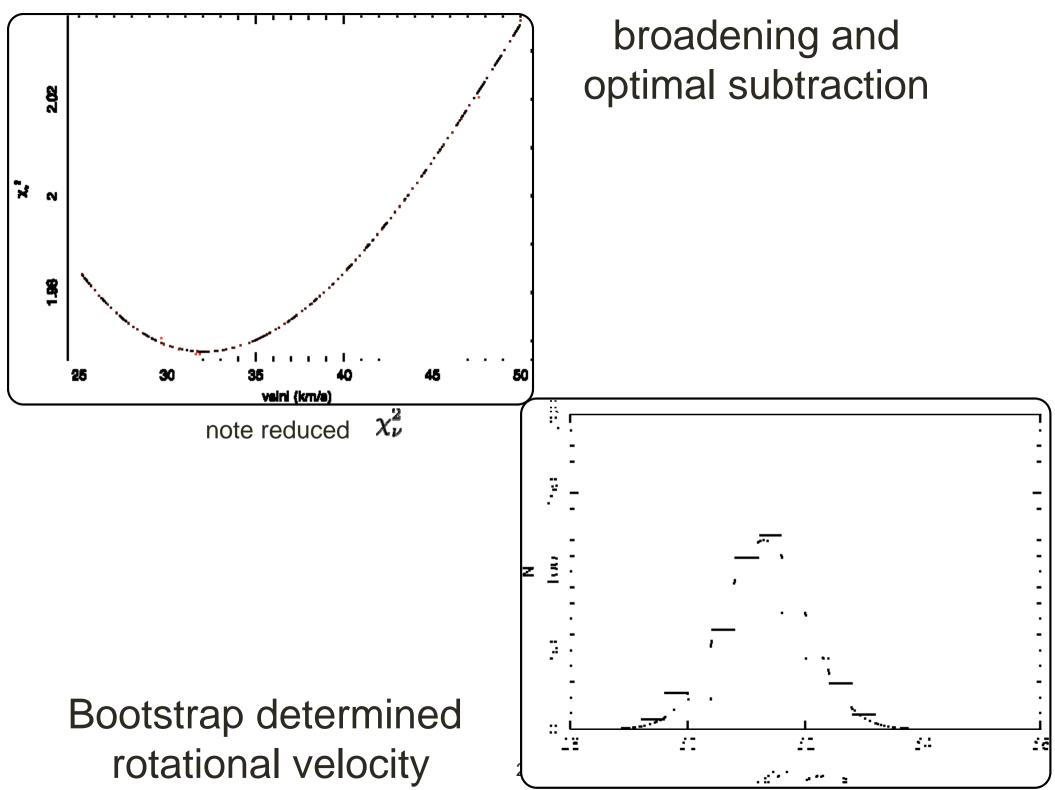
2 Repeat fitting (chi**2 minimisation etc)

3 Repeat 1 & 2 N times to build up a distribution in the determined parameters and from that determine the mean, variance etc

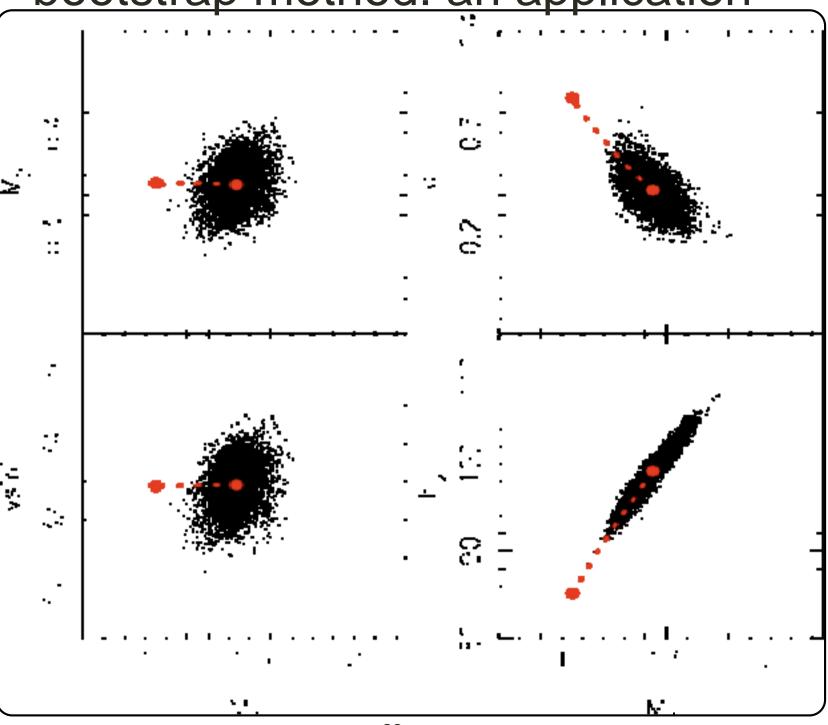
bootstrap method and application

X-ray binary V395 Car

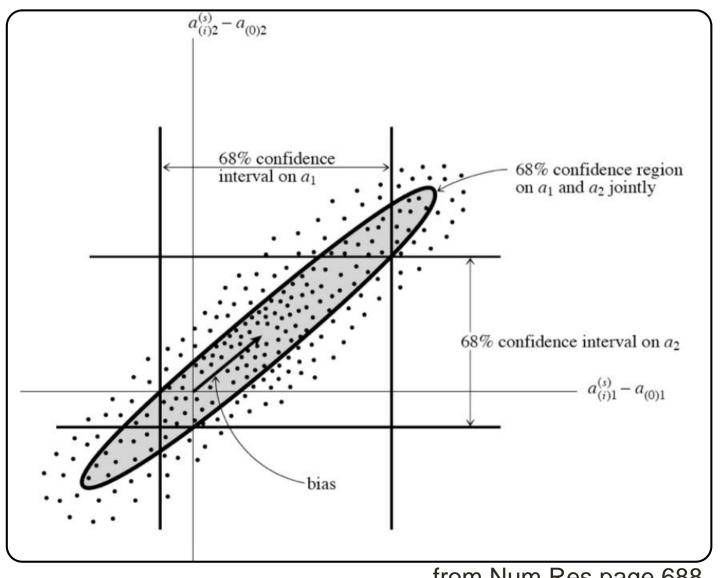




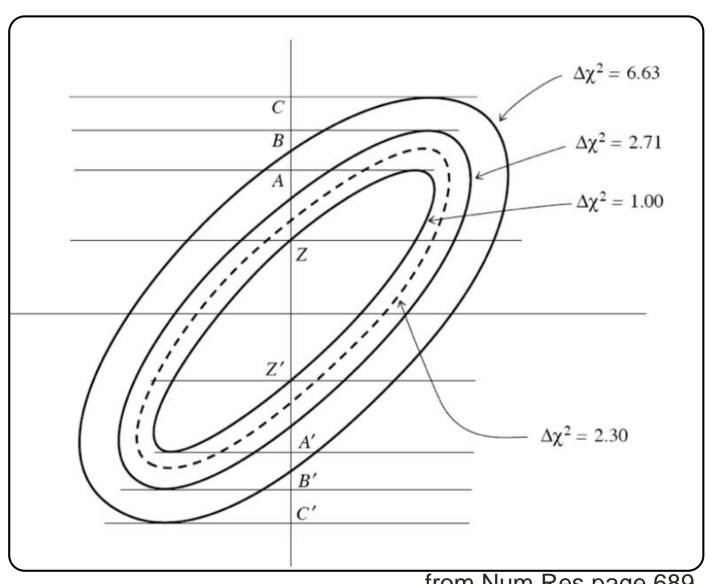
bootstrap method: an application



Confidence limits single vs. multiple parameter confidence region



Projections



Maximum likelihood method (Poisson noise, unbinned data)

probability to find n_i photons when m_i expected

for each pixel in an image

$$P_i = \frac{m_i^{n_i} e^{-m_i}}{n_i!}$$

total probability $L' \equiv \prod P_i$

$$L' \equiv \prod_i P_i$$

$$\ln L' \equiv \sum_{i} \ln P_{i} = \sum_{i} n_{i} \ln m_{i} - \sum_{i} m_{i} - \sum_{i} \ln n_{i}!$$

minimise
$$\ln L \equiv -2(\sum_i n_i \ln m_i - \sum_i m_i)$$

Detection of a constant background, A, plus a source of strength B of which a fraction f_i falls on pixel i

$$-0.5 \ln L = \sum_{i} n_{i} \ln(A + Bf_{i}) - \sum_{i} (A + Bf_{i})$$

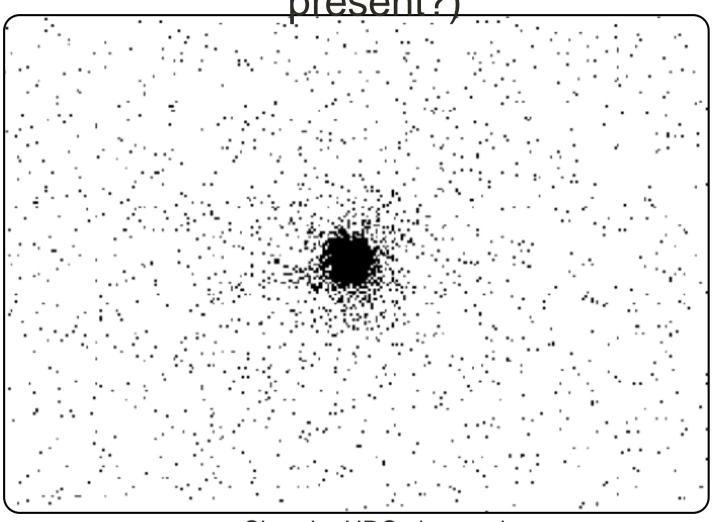
again search for the minimum of L for variations in A and B

determined independently in some cases total pixels Z

$$\frac{\partial \ln L}{\partial A} = 0 \Rightarrow \sum_{i} \frac{n_i}{A + Bf_i} - \sum_{i} (1) = \sum_{i} \frac{n_i}{A + Bf_i} - Z = 0$$

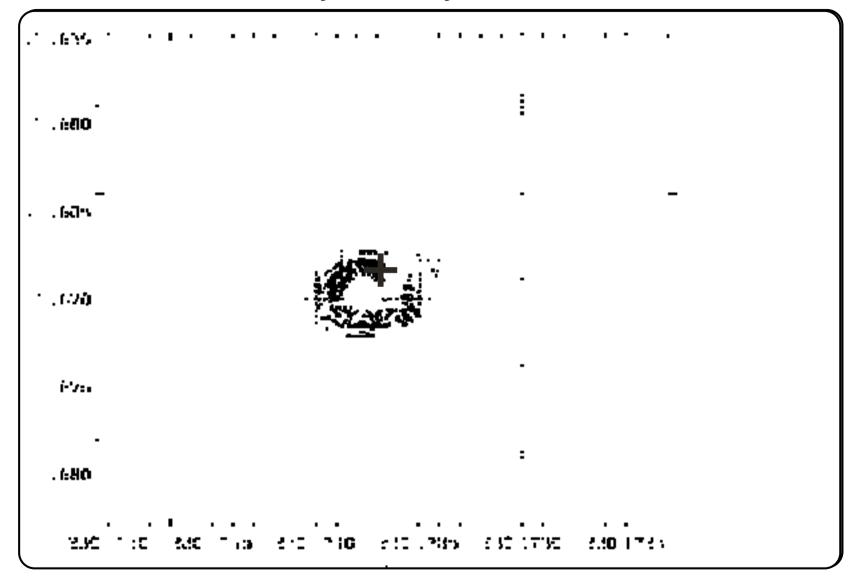
$$\frac{\partial \ln L}{\partial B} = 0 \Rightarrow \sum_{i} \frac{n_i f_i}{A + B f_i} - \sum_{i} (f_i) = \sum_{i} \frac{n_i f_i}{A + B f_i} - 1 = 0$$

Maximum likelihood method (application X-ray binary Cir X-1, a jet present?)



Chandra HRC observation model and subsequently subtract PSF only close to the source the assumption of a constant background is valid

application maximum likelihood method X-ray binary Cir X-1



one source subtracted