
Today:

Chapter 1.5,1.6 &1.7
Stochastic nature of radiation

Num Res chapter 6.1 & 6.2

Relation of ‘special’ 
functions to Gaussian and 
Poissonian distributions

OAF2 chapter 5.1 & 

Error propagation
OAF2 chapter 5.2



this is also in chapter 6.2 of lena

Bose-Einstein statistics

For each energy bin i there are
ni particles, Zi boxes ≡ Zi+1 boundaries

of which Zi-1 are “movable”

W (ni) =
(ni + Zi − 1)!
ni!(Zi − 1)!

What is the size of the fluctuations 
in the radiation field?

Particles are distributed in
h3 momentum space boxes

there are Z ∝ 4πp2dpboxes



when considering all energies

W = Π∞i=1W (ni)

N =
∞∑

i=1

ni total number of particles

total number of possible 
distributions

maximise entropy s
hence

S ≡ k ln(W )

d lnW

dni
= 0

i



Remember Taylor expansion:

W (x + ∆x) = W (x) +
dW (x)

dx
∆x +

1
2

d2W (x)
d2x

∆x2

cf. equation 1.28 & 1.37 Lecture notes

Derivation of eq. 1.41 on black board



definitions

occupation fractionnνk

number of photons 
with energy 

ni
i

n(ν) specific photon flux 
(photons per second 

per Hertz)

volume photon 
density (photons per 

second per Hertz 
per unit volume)

N(ν)

radiation powerP (ν) P (ν) = hν n(ν)
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definitions

occupation fractionnνk

number of photons 
with energy 

ni
i

n(ν) specific photon flux 
(photons per second 

per Hertz)

volume photon 
density (photons per 

second per Hertz 
per unit volume)

N(ν)

n̄i

Zi

N̄(ν)dν = gν n̄νkdν

n̄(ν) = 0.5
c

4π
N̄(ν)AeΩ

radiation powerP (ν) P (ν) = hν n(ν)



∆n2(ν) = nν(1 +
1

exp( hν
kT )− 1

)

Fluctuations in the number of photons per s per Hz

P (ν) = hν n(ν)Power:

Two limits:
Quantum limit

Thermal limit

Planck distribution for photons

∆P 2(ν) = P̄ 2(ν)

1
eε − 1

→ 0 for ε >> 1

hν >> kT

hν << kT

εi = hν

∆n2(ν) = n̄(ν)

P (ν) = kT
1

eε − 1
→ ε for ε << 1



Difference between thermal and quantum 
limit explains the difference 

between the principles behind/limitations 
of radio and optical/X-ray observations

hν >> kT

hν << kTnote 
error



Stochastic description of radiation in 
the thermal limit

quasi-monochromatic radiation
from a thermal source

Describe electric field by ˜E(t) = ˜E0(t) e2πiν̄t

where ˜E0(t) is the phasor  

 The phasor is described by amplitude 
and phase

| ˜E0(t)|
φ(t)

Gaussian light



Probability density for: 

random variations on time 
scales >> the coherence 

time associated with 
(atomic) transitions

P (φ(t))

P (|E0|(t),φ(t))d|E0|dφ =
E0

2πσ2
e−

E2
0

2σ2 d|E0|dφ

∆I2 = Ī2

again one finds that 
the fluctuations in 

the power flux 
density are:



Probability density for: 

random variations on time 
scales >> the coherence 

time associated with 
(atomic) transitions

P (φ(t))

P (|E0|(t),φ(t))d|E0|dφ =
E0

2πσ2
e−

E2
0

2σ2 d|E0|dφ

P ( ˜|E0(t)|)
exponential pdf

∆I2 = Ī2

again one finds that 
the fluctuations in 

the power flux 
density are:



Alternative, thermodynamic view 
connection via

define: a(t) = (ε0cλ2)1/2E(t)

R(τ) =
1
T

∫ T

0
a(t)a∗(t + τ)dτ [power]

P (ν) = R(τ)× time [Joule = Watts Hz−1]

P (ν) =
1
2

¯u(ν)
λ2

4π
c = hν[exp

hν

kT
− 1]−1

thermodynamics (W here mean energy):

〈∆W 2〉 = kT 2 d〈W 〉
dT

〈∆P (ν)2〉 = kT 2 d〈P (ν)〉
dT

= P (ν)hν{1 + [exp(
hν

kT
) − 1]−1}

Two limits again: quantum noise & thermal noise

where ¯u(ν) =
8πhν3

c3
[exp(

hν

kT
)− 1]−1 =energy density 

photon field

S ≡ k ln(W )

[= Watts]



thermal noise limit

quantum noise limit
hν >> kT → 〈[∆P (ν)]2〉 ≈ P (ν)hν

hν << kT → 〈[∆P (ν)]2〉 ≈ P (ν)hν[exp(
hν

kT
)− 1]−1

≈ (kT )2 since eε − 1 = 1 + ε− 1
and P (ν) ≈ kT

Filtering associated with a low-pass detector

decreases to zero in 
absence of quantum noise

PDS



Three different ways to derive the size 
of the fluctuation in the thermal limit

∆P 2(ν) = (kT )2

bose-Einstein

Stochastic description E-M wave

Thermodynamic



Some (computational) math

stirling’s approximation

in code use Gamma Function

Γ(z + 1) = z!

Γ(z + 1) = zΓ(z)

Γ(z) =
∫ ∞

0
tz−1e−tdt

Numerical Recipes Chap 6.1-6.2

lnx! = x lnx− x

Gamma function has a computationally 
simple accurate approximation



Chapt 5.1 & Numerical Recipes Chap 6.1-6.2

Incomplete Gamma Functions:

P (a, x) ≡ γ(a, x)
Γ(a)

≡ 1
Γ(a)

∫ x

0
ta−1e−tdt

Q(a, x) ≡ 1− P (a, x) =
γ(a, x)
Γ(a)

≡ 1
Γ(a)

∫ ∞

x
ta−1e−tdt

Error Functions:

erf(x) =
2√
π

∫ x

0
e−t2dt

erfc(x) =
2√
π

∫ ∞

x
e−t2dt

= P (
1
2
, x2)

= Q(
1
2
, x2)



Cumulative Distribution 
function

F (x) = P{x ≤ y}

Probability density function dF (x)
dx

= f(x)

↪→ Gauss, Poisson,    etcχ2

Gaussian or normal distribution and 
probability density function

f(x) =
1

σ
√

(2π)
exp(−1

2
(x− η)2

σ2
)

F (x, η, σ) = 0.5 + erf
x− η

σ2



Poisson cumulative distribution and 
probability density function 

a
a
a

a
a
a

cumulative distributionprobability density

f(x) =
ak

k!
e−a → (discrete) e−a

∞∑

k=0

ak

k!
δ(x− k)

F (x) = 1− P (a, x) ≡ 1
Γ(a)

∫ ∞

x
e−tta−1dt

P (a, x)



Poisson cumulative distribution and 
probability density function 

a
a
a

a
a
a

cumulative distributionprobability density

f(x) =
ak

k!
e−a → (discrete) e−a

∞∑

k=0

ak

k!
δ(x− k)

F (x) = 1− P (a, x) ≡ 1
Γ(a)

∫ ∞

x
e−tta−1dt

Incomplete Gamma Function

P (a, x)



In computer codes dealing with Poisson 
and Gaussian distributions incomplete 

Gamma Functions are used



Error propagation page 99 oaf-2

Main assumption is that the average 
of the function f is well 

represented by the value for f at 
the averages for the variables

f̄ = f(ū, v̄, ..)

Besides noise intrinsic to the s.p. 
noise is added due to the detector, 

background etc.
how to determine the resultant variance

Taylor expansion to first order around the 
average for each variable

fi − f̄ ≈ (ui − ū)
∂f

∂u
+ (vi − v̄)

∂f

∂v
+ ...



remember that the variance

Fill-in the Taylor expansion here

σ2 =
1

N − 1

N∑

i=1

(fi − f̄)2

Assume that the variables are independent
such that their cross product cancel

σ2
f = σ2

u(
∂f

∂u
)2 + σ2

v(
∂f

∂v
)2 + ...




