TODAY:

CHAPTER 1.5, 1.6 & 1.7 STOCHASTIC NATURE OF RADIATION

Num Res chapter 6.1 & 6.2 Relation of 'special' functions to Gaussian and Poissonian distributions OAF2 chapter 5.1 &

Error propagation OAF2 CHAPTER 5.2

Bose-Einstein statistics FOR EACH ENERGY BIN I THERE ARE N_i particles, Z_i boxes $\equiv Z_i + 1$ boundaries OF WHICH Z₁-1 ARE "MOVABLE" WHAT IS THE SIZE OF THE FLUCTUATIONS in the radiation field? Particles are distributed in h^3 momentum space boxes there are $Z \propto 4\pi p^2 dp$ boxes

$$
W(n_i) = \frac{(n_i + Z_i - 1)!}{n_i!(Z_i - 1)!}
$$

this is also in chapter 6.2 of lena

when considering all energies *i* $N = \sum$ ∞ $i=1$ n_i total number of particles

 $W = \Pi_{i=1}^{\infty} W(n_i)$ TOTAL NUMBER OF POSSIBLE **DISTRIBUTIONS**

> maximise entropy s **HENCE** $S \equiv k \ln(W)$ *d* ln *W* dn_i $= 0$

REMEMBER TAYLOR EXPANSION:
\n
$$
W(x + \Delta x) = W(x) + \frac{dW(x)}{dx} \Delta x + \frac{1}{2} \frac{d^2 W(x)}{d^2 x} \Delta x^2
$$

cf. equation 1.28 & 1.37 Lecture notes

DERIVATION OF EQ. 1.41 ON BLACK BOARD

DEFINITIONS number of photons with energy *i* n_i

 n_{ν_k} occupation fraction

volume photon density (photons per second per Hertz PER UNIT VOLUME) $N(\nu)$

 $n(\nu)$ specific photon flux (photons per second PER HERTZ)

RADIATION POWER $P(\nu) = h\nu \overline{n}(\nu)$

DEFINITIONS number of photons with energy *i* n_i

 n_{ν_k} occupation fraction

 $\bar{n_i}$ Z_i

volume photon density (photons per second per Hertz PER UNIT VOLUME) $N(\nu)$

 $n(\nu)$ specific photon flux (photons per second PER HERTZ)

RADIATION POWER $P(\nu) = h\nu \overline{n}(\nu)$

DEFINITIONS n_{ν_k} occupation fraction number of photons with energy *i* n_i

volume photon density (photons per SECOND PER HERTZ PER UNIT VOLUME) $N(\nu)$ $\bar{N}(\nu)d\nu = g_{\nu}n_{\nu}^{-}d\nu$

 $n(\nu)$ specific photon flux (photons per second PER HERTZ)

RADIATION POWER $P(\nu) = h\nu \overline{n}(\nu)$

 $\bar{n_i}$

 Z_i

DEFINITIONS n_{ν_k} occupation fraction number of photons with energy *i* n_i volume photon $N(\nu)$

$$
\bar{N}(\nu)d\nu=g_{\nu}n_{\nu_k}^-d\nu
$$

 $\bar{n_i}$

 Z_i

density (photons per SECOND PER HERTZ PER UNIT VOLUME)

 $n(\nu)$ specific photon flux (photons per second per Hertz) $\bar{n}(\nu)=0.5$ *c* 4π $\bar{N}(\nu)A_e\Omega$

RADIATION POWER $P(\nu) = h\nu \overline{n}(\nu)$

PLANCK DISTRIBUTION FOR PHOTONS $\epsilon_i = h\nu$

Fluctuations in the number of photons per s per Hz

$$
\Delta n^2(\nu) = n_{\nu} \left(1 + \frac{1}{exp(\frac{h\nu}{kT}) - 1} \right)
$$

$$
\text{Power: } P(\nu) = h\nu \ n(\nu)
$$

TWO LIMITS: $h\nu >> kT$ QUANTUM LIMIT $h\nu << kT$ THERMAL LIMIT $\overline{\Delta P^2}(\nu) = \bar{P}^2(\nu)$ 1 e^{ϵ} – 1 $\rightarrow 0 \text{ for } \epsilon >> 1 \qquad \Delta n^2(\nu) = \bar{n}(\nu)$ $\frac{1}{\sqrt{P(\nu)}} \to \epsilon$ for $\epsilon \ll 1$ $\qquad \qquad \overline{P(\nu)} = kT$ e^{ϵ} – 1 $\rightarrow \epsilon$ for $\epsilon \ll 1$

Difference between thermal and quantum LIMIT EXPLAINS THE DIFFERENCE between the principles behind/limitations of radio and optical/X-ray observations

Stochastic description of radiation in THE THERMAL LIMIT quasi-monochromatic radiation

from a thermal source

 $\text{DescRISE ELECTRIC}\xspace$ field by $\tilde{E(t)} = \tilde{E_0(t)}\;e^{2\pi i \bar{\nu} t}$ WHERE $\tilde{E_0(t)}$ is the phasor THE PHASOR IS DESCRIBED BY AMPLITUDE $|\tilde{E}_0(t)|$ AND PHASE $\phi(t)$

random variations on time scales >> the coherence TIME ASSOCIATED WITH (atomic) transitions

$$
P(|E_0|(t), \phi(t))d|E_0|d\phi = \frac{E_0}{2\pi\sigma^2}e^{-\frac{E_0^2}{2\sigma^2}}d|E_0|d\phi
$$

Probability density for:

 $\overline{\Delta I^2} = \overline{I}^2$ AGAIN ONE FINDS THAT THE FLUCTUATIONS IN THE POWER FLUX DENSITY ARE:

random variations on time scales >> the coherence TIME ASSOCIATED WITH (atomic) transitions

PROBABILITY DENSITY FOR: $P(|E_0|(t), \phi(t))d|E_0|d\phi =$ $\frac{E_0}{2\pi\sigma^2}e^{-\frac{E_0^2}{2\sigma^2}}$ $\overline{0}$ $\frac{2}{2\sigma^2}d|E_0|d\phi$

 $\left(\left(\widetilde{\epsilon}_{0}(t)\right)\right)$ exponential pdf P ^{(*t*})^{\sim} P (*t*)) $P(|E_0(t)|)$ σ $\mathbf b$ $\left| \tilde{\mathcal{E}}_{_{\boldsymbol{o}}}\left(t\right) \right|$

 $\overline{\Delta I^2} = \overline{I}^2$ AGAIN ONE FINDS THAT THE FLUCTUATIONS IN THE POWER FLUX DENSITY ARE:

ALTERNATIVE, THERMODYNAMIC VIEW
\n**CONNETION** VIA
$$
S \equiv k \ln(W)
$$

\n
$$
DEFINE: a(t) = (\epsilon_0 c \lambda^2)^{1/2} E(t)
$$
\n
$$
R(\tau) = \frac{1}{T} \int_0^T a(t) a^*(t + \tau) d\tau \quad [power] = \text{Watts}]
$$
\n
$$
P(\nu) = R(\tau) \times time \quad [\text{Joule} = \text{Watts Hz}^{-1}]
$$
\n
$$
P(\nu) = \frac{1}{2} u(\nu) \frac{\lambda^2}{4\pi} c = h\nu [\exp \frac{h\nu}{kT} - 1]^{-1}
$$
\nwhere $u(\nu) = \frac{8\pi h\nu^3}{c^3} [\exp(\frac{h\nu}{kT}) - 1]^{-1} = \text{ENERGY DENSITY}$

THERMODYNAMICS (W HERE MEAN ENERGY):

$$
\langle \Delta W^2 \rangle = kT^2 \frac{d\langle W \rangle}{dT}
$$

$$
\langle \Delta P(\nu)^2 \rangle = kT^2 \frac{d\langle P(\nu) \rangle}{dT} = P(\nu)h\nu\{1 + [exp(\frac{h\nu}{kT}) - 1]^{-1}\}
$$

Two limits again: quantum noise & thermal noise

QUANTUM NOISE LIMIT
\n
$$
h\nu \gg kT \rightarrow \langle [\Delta P(\nu)]^2 \rangle \approx P(\nu)h\nu
$$

\nTHERMAL NOISE LIMIT
\n $h\nu \ll kT \rightarrow \langle [\Delta P(\nu)]^2 \rangle \approx P(\nu)h\nu[exp(\frac{h\nu}{kT}) - 1]^{-1}$
\n $\approx (kT)^2 \text{ since } e^{\epsilon} - 1 = 1 + \epsilon - 1$

and $P(\nu) \approx kT$

THREE DIFFERENT WAYS TO DERIVE THE SIZE of the fluctuation in the thermal limit

STOCHASTIC DESCRIPTION E-M WAVE

A THERMODYNAMIC

$$
\overline{\Delta P^2}(\nu) = (kT)^2
$$

SOME (COMPUTATIONAL) MATH

stirling's approximation in code use Gamma Function $\Gamma(z + 1) = z!$ $\Gamma(z+1) = z\Gamma(z)$ $\Gamma(z) =$ \int_0^∞ 0 *t ^z*−¹*e*−*^t dt* $\ln x! = x \ln x - x$

Numerical Recipes Chap 6.1-6.2 Gamma function has a computationally simple accurate approximation

Chapt 5.1 & Numerical Recipes Chap 6.1-6.2

Incomplete Gamma Functions:

$$
P(a, x) \equiv \frac{\gamma(a, x)}{\Gamma(a)} \equiv \frac{1}{\Gamma(a)} \int_0^x t^{a-1} e^{-t} dt
$$

$$
Q(a,x) \equiv 1 - P(a,x) = \frac{\gamma(a,x)}{\Gamma(a)} \equiv \frac{1}{\Gamma(a)} \int_x^{\infty} t^{a-1} e^{-t} dt
$$

ERROR FUNCTIONS:

$$
erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt = P(\frac{1}{2}, x^2)
$$

$$
erfc(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt = Q(\frac{1}{2}, x^2)
$$

CUMULATIVE DISTRIBUTION
\nFUNCTION
\nPROBABILITY DENSITY FUNCTION
$$
\frac{dF(x)}{dx} = f(x)
$$

\n \longleftrightarrow GAUSS, POISSON, χ^2 ETC

Gaussian or normal distribution and probability density function

$$
F(x, \eta, \sigma) = 0.5 + erf \frac{x - \eta}{\sigma^2}
$$

$$
f(x) = \frac{1}{\sigma\sqrt{(2\pi)}}exp(-\frac{1}{2}\frac{(x-\eta)^2}{\sigma^2})
$$

Poisson cumulative distribution and probability density function

$$
F(x) = 1 - P(a, x) \equiv \frac{1}{\Gamma(a)} \int_x^{\infty} e^{-t} t^{a-1} dt
$$

$$
f(x) = \frac{a^k}{k!} e^{-a} \rightarrow (discrete) e^{-a} \sum_{k=0}^{\infty} \frac{a^k}{k!} \delta(x - k)
$$

Poisson cumulative distribution and probability density function

Incomplete Gamma Function

In computer codes dealing with Poisson and Gaussian distributions incomplete GAMMA FUNCTIONS ARE USED

ERROR PROPAGATION PAGE 99 OAF-2 Besides noise intrinsic to the s.p. noise is added due to the detector, background etc.

 \rightarrow HOW TO DETERMINE THE RESULTANT VARIANCE

Main assumption is that the average OF THE FUNCTION F IS WELL represented by the value for f at THE AVERAGES FOR THE VARIABLES
 $\bar{f} = f(\bar{u}, \bar{v}, ..)$

Taylor expansion to first order around the average for each variable

$$
f_i - \bar{f} \approx (u_i - \bar{u})\frac{\partial f}{\partial u} + (v_i - \bar{v})\frac{\partial f}{\partial v} + \dots
$$

REMEMBER THAT THE VARIANCE

$$
\sigma^2 = \frac{1}{N-1} \sum_{i=1}^N (f_i - \bar{f})^2
$$

Fill-in the Taylor expansion here

Assume that the variables are independent SUCH THAT THEIR CROSS PRODUCT CANCEL

$$
\sigma_f^2 = \sigma_u^2 (\frac{\partial f}{\partial u})^2 + \sigma_v^2 (\frac{\partial f}{\partial v})^2 + \dots
$$