TODAY'S COURSE CHAPTER 1.5-1.7, 2.2.2 OAF-2

TOPICS:

RECAP: ALIASING & NYQUIST THEOREM

(Optimal) Filtering

MEASURING MOMENTS OF A S.P.

STOCHASTIC NATURE OF RADIATION PROCESSES

SIGNAL DETECTION INVOLVES:

LIMITED TIME INTERVAL -> WINDOWING

NOT CONTINUOUS -> SAMPLING

SAMPLES NOT INSTANTANEOUS - AVERAGING

DEALING WITH NOISE \rightarrow FILTERING

RESPONSE OF THE DETECTION SYSTEM

THUS THE DETECTED SIGNAL WILL ONLY APPROXIMATE THE SOURCE SIGNAL

POWER SPECTRAL DENSITY

(AMPLITUDE OF INDIVIDUAL SINUSOIDS)

(WILL RETURN IN MORE DEPTH IN CHAPTER 6)

CONTINUOUS FT:
$$F(f) = \int_{-\infty}^{\infty} f(t) \ e^{-2\pi i f t} dt$$

CONTINUOUS PSD: $P(f) = F(f)F(f)^*$
FOR WSS SIGNALS: $P(f) = \int_{-\infty}^{\infty} R(\tau)e^{-2\pi i f \tau} d\tau$
HENCE:
 $F(f)F(f) = |F(f)|^2 = \int_{-\infty}^{\infty} R(\tau)e^{-2\pi i f \tau} d\tau$

WIENER-KHINCHINE THEOREM

Fourier transform of the autocorrelation of f(x) is equal to the power density spectrum $|F(s)|^2$

THE NYQUIST THEOREM

NYQUIST THEOREM: CONT'D DATA SAMPLING DATA IS DISCRETE NOT CONTINUOUS

TIME DOMAIN MULTIPLY S.P. WITH SHAH FUNCTION

$$m_{samp,n} = m_s(x) = m(x) \frac{1}{\tau} \prod (\frac{x}{\tau}) = \sum_n m(n\tau) \delta(x - n\tau)$$

Discrete FT: $M_{samp,k} = \sum_{n=0}^n m_{samp,n} e^{2\pi i nk/N}$

DISCRETE PSD:

 $P_j = \frac{2}{a_0} |a_j|^2$ power \propto amplitude squared:

J=K LABEL
$$a_0 = M_{samp,k=0} = \sum_{n=0}^{N-1} m_{samp,n} \equiv N_0$$
$$a_k = M_{samp,k} = \sum_{n=0}^{N-1} m_{samp,n} \ e^{2\pi i n k/N}$$

NYQUIST THEOREM: CONT'D

SAMPLING; BRAULT & WHITE 1971, A&A, 13, 169 (IN LIST OF PRESENTATION PAPERS!)

NYQUIST THEOREM: CONT'D

SAMPLING; BRAULT & WHITE 1971, A&A, 13, 169 (IN LIST OF PRESENTATION PAPERS!)

NYQUIST THEOREM: CONT'D SAMPLING CAUSES REPLICATION OF SIGNAL

SAMPLING; BRAULT & WHITE 1971, A&A, 13, 169 (IN LIST OF PRESENTATION PAPERS!)

ALIASING

ALIASING PAGE 496 NUM RES

RECAP NYQUIST & ALIASING DATA SAMPLING: IF THE NYQUIST CRITERIUM IS FULFILLED (I.E. SAMPLE AT A RATE HIGHER THAN TWO TIMES THE HIGHEST FREQUENCY IN THE SIGNAL) THEN SAMPLING DOES NOT LEAD TO LOSS OF INFORMATION

CONDITIONS:

BAND-LIMITED RESPONSE OF THE DETECTOR REMOVES HIGHEST NOISE POWERS AND THE SAMPLING IS FAST ENOUGH TO COVER THE BAND LIMIT OF THE DETECTOR

→SIGNAL IS BAND-LIMITED ALSO AND

 $\nu_{\text{sampling}} > \nu_{\text{max,detector}} > \nu_{\text{max,signal}}$

DECONVOLVE MEASURED SIGNAL AND RESPONSE FUNCTION OF SAMPLED DATA

REMINDER CONVOLUTION

DECONVOLVE MEASURED SIGNAL AND RESPONSE FUNCTION OF SAMPLED DATA

NUM RES CHAPTER 13.1

DECONVOLVE MEASURED SIGNAL AND RESPONSE FUNCTION OF SAMPLED DATA

NUM RES CHAPTER 13.1

DECONVOLVE MEASURED SIGNAL AND RESPONSE FUNCTION OF SAMPLED DATA

NUM RES CHAPTER 13.1

M only non-zero values of $R_{\rm K}$

DISCRETE DECONVOLUTION

$$\frac{\tilde{F}(r*s)_j}{R_n} = S_n$$

HOWEVER NOISE AND UNCERTAINTIES IN RESPONSE CAN MAKE THIS PROCESS UNRELIABLE

DISCRETE DECONVOLUTION

$$\frac{\tilde{F}(r*s)_j}{R_n} = S_n$$

HOWEVER NOISE AND UNCERTAINTIES IN RESPONSE CAN MAKE THIS PROCESS UNRELIABLE

SIMILAR TO THE CONTINUOUS CASE!

NOISE REMOVAL BY OPTIMAL FILTERING

cs(t) = s(t) + n(t)s(t) is the smeared signal i.e. true * response

Design an optimal filter $\phi(\tau)$ that produces a signal $\widetilde{u}(T)$ as close as possible to $u(\tau)$

$$\widetilde{U(f)} = \frac{C(f)\phi(f)}{R(f)}$$

Close in least square sense
$$\int_{-\infty}^{\infty} |\widetilde{U(f)} - U(f)|^2 df \text{ is minimised}$$

NOISE REMOVAL BY OPTIMAL FILTERING $\int_{-\infty}^{\infty} |\frac{[S(f) + N(f)]\phi(f)}{R(f)} - \frac{S(f)}{R(f)}|^2 df$

 $\int S(f) N(f) df \text{ terms are zero since noise} \\ \text{And signal are uncorrelated}$

$$\int_{-\infty}^{\infty} |R(f)|^{-2} \{ \underbrace{|S(f)|^2 |1 - \phi(f)|^2 + |N(f)|^2 |\phi(f)|^2 }_{\Theta} \} df$$

$$\Theta$$
MINIMISED WITH RESPECT TO ϕ

Noise removal by optimal Filtering $\frac{d\theta}{d\phi} = 0$ $-2S^{2}(1-\phi) + 2N^{2}\phi = 0$

 $|S(f)|^{2} + |N(f)|^{2} = PDS(f) = |CS(f)|^{2}$

NOISE REMOVAL BY OPTIMAL FILTERING

PAGE 542 NUM RES

SOME APPLICATIONS OF FILTERING

ON OPTIMAL DETECTION OF POINT SOURCES IN CMB MAPS VIO ET AL, 2002, A&A, 391, 789

AN OPTIMAL FILTER FOR THE DETECTION OF GALAXY CLUSTERS THROUGH WEAK LENSING MATURI, ET AL. 2005, A&A, 442, 851

THE LARGEST SCALE PERTURBATIONS: A WINDOW ON THE PHYSICS OF THE BEGINNING WANDELT, NEW ASTRONOMY REVIEW, 2006, 11, 900

LOW-MASS X-RAY BINARIES

C.F. X-RAY TIMING EXPERIMENTS

X-RAY TIMING EXPERIMENTS

RECAP FILTERING:

ONE CAN DESIGN AN OPTIMAL FILTER SUCH THAT THE FILTERED MEASURED DATA-SET IS AS CLOSE AS POSSIBLE (IN LEAST-SQUARE SENSE) TO THE UNCORRUPTED SIGNAL

ESTIMATING THE MOMENTS OF A STOCHASTIC PROCESS CHAPTER 2.2.2

SEE ALSO APPENDIX B3.2, LENA EA.

HOW REPRESENTATIVE IS A MEASUREMENT OF A S.P.?

HOW REPRESENTATIVE IS A MEASUREMENT?

HOW REPRESENTATIVE IS A MEASUREMENT?

THE CASE OF TYPE I X-RAY BURSTS

GALLOWAY PRIVATE COMMUNICATION

1 MEASUREMENT OF X(T) IN A TIME T => WINDOWING AND

AVERAGING OVER TIME $\Delta \mathbf{T}$ windowing: $y(t) = \Pi(\frac{t}{T}) x(t)$

AVERAGING:

$$z(t) \equiv y_{\Delta T}(t) = \frac{1}{\Delta T} \int_{t-\Delta T/2}^{t+\Delta T/2} y(t') dt' = \frac{1}{\Delta T} \int_{-\infty}^{\infty} \Pi(\frac{t-t'}{\Delta T}) y(t') dt'$$

= LOW-PASS FILTER, REMEMBER NYQUIST THEOREM

RESPONSE

REMOVE HIGH FREQUENCIES DUE TO FINITE RESPONSE OF

INSTRUMENT AND DETECTOR

MULTIPLICATION WITH BOX

1 SAMPLE →AVERAGING → TIME -> CONVOLVING, HENCE SMOOTHING, WITH SINC IN FREQ DOMAIN

DERIVATION ON BLACK BOARD PAGE 25,26,27 LECTURE NOTES OAF2

$$\sigma_{x_T}^2 = \sigma^2 / N \text{ for } T >> \tau_0$$

T₀ DEPENDS ON TRANSFER FUNCTION WHICH IN ORDER TO AVOID ALIASING SHOULD BE SUITED FOR THE SYSTEM UNDER STUDY

PROPAGATION OF ERRORS CHAPTER 5.2

Estimating σ if the probability density function of the s.p. is not known

BOOTSTRAP METHOD JACKKNIFE METHOD

MORE ON THIS LATER

STOCHASTIC DESCRIPTION OF RADIATION FIELDS WHAT IS THE SIZE OF THE FLUCTUATIONS IN THE RADIATION FIELD?

