
Chapter 1.5-1.7, 2.2.2 OAF-2 

Today’s course

Topics:

Stochastic nature of radiation processes

measuring moments of a s.p.

(Optimal) Filtering

recap: aliasing & nyquist theorem



Signal detection involves:
limited time interval ➞  windowing

not continuous ➞ sampling

samples not instantaneous ➞ averaging

dealing with noise ➞ filtering

thus the detected signal will only 
approximate the source signal

response of the detection system



Power Spectral Density
 (∝ amplitude of individual sinusoids) 

(will return in more depth in Chapter 6)

P (f) = ˜F (f) ˜F (f)∗

Continuous FT:

P (f) =
∫ ∞

−∞
R(τ)e−2πifτdτ

F (f) =
∫ ∞

−∞
f(t) e−2πiftdt

for wss signals:

Continuous PSD:

hence:

˜F (f)F (f) = |F (f)|2 =
∫ ∞

−∞
R(τ)e−2πifτdτ

∼∼



Wiener-Khinchine Theorem

Fourier transform of the 
autocorrelation of f(x) is equal to the 
power density spectrum |f(s)| 

2

S(s) =
∫ ∞

−∞
R(τ)e−2πisτdτ

R(t) =
∫ ∞

−∞
S(s)e2πitsds



Windowing & noise, Brault & White 1971, A&A
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in time domain multiply s.p. with shah function

Data sampling

Discrete PSD: power ∝ amplitude squared:Pj =
2
a0

|aj |2

ms(x) = m(x)
1
τ

ΠI(
x

τ
) =

∑

n

m(nτ)δ(x− nτ)msamp,n =

Discrete FT:

a0 = Msamp,k=0 =
N−1∑

n=0

msamp,n ≡ N0

ak = Msamp,k =
N−1∑

n=0

msamp,n e2πink/N

Msamp,k =
N−1∑

n=0

msamp,n e2πink/N

Data is discrete not continuous

Nyquist theorem: cont’d

j=k label



Nyquist theorem: cont’d

Sampling;  Brault & White 1971, A&A, 13, 169 (in list of 
presentation papers!)



Nyquist theorem: cont’d
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Nyquist Freq



Nyquist theorem: cont’d

Sampling;  Brault & White 1971, A&A, 13, 169 (in list of 
presentation papers!)

Nyquist Freq

Sampling causes replication of signal



Aliasing

Aliasing Page 496 Num Res

FT[continuous signal]

Line=continuous signal

FT[sampled signal]

dots=sampled signal



data sampling: if the nyquist criterium is 
fulfilled (i.e. sample at a rate higher than 
two times the highest frequency in the 
signal) then sampling does not lead to 
loss of information     

Recap Nyquist & aliasing

Conditions: 

band-limited response of the detector 
removes highest noise powers and the 
sampling is fast enough to cover the band 
limit of the detector

Signal is band-limited also and
νsampling > νmax,detector > νmax,signal



(Optimal) Filtering
Num Res Chapter 13.0-13.3

deconvolve measured signal and 
response function of sampled data

reminder convolution
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(Optimal) Filtering
Num Res Chapter 13.0-13.3

deconvolve measured signal and 
response function of sampled data

Num Res Chapter 13.1



Discrete convolution theorem

(r ∗ s)j ≡
M/2∑

k=−M/2+1

sj−krk ⇔ SnRn

M only non-zero values of rk



Discrete convolution theorem



Discrete convolution theorem



Discrete convolution theorem

Discrete deconvolution
F̃ (r ∗ s)j

Rn
= Sn

However noise and uncertainties in 
response can make this process 

unreliable 



Discrete convolution theorem

Discrete deconvolution
F̃ (r ∗ s)j

Rn
= Sn

However noise and uncertainties in 
response can make this process 

unreliable 

Similar to the continuous case!



Noise removal by optimal 
filtering
cs(t) = s(t) + n(t)

Design an optimal filter φ(t) that 
produces a signal u(T) as close as 

possible to u(t)

Ũ(f) =
C(f)φ(f)

R(f)
Close in least square sense

is minimised
∫ ∞

−∞
|Ũ(f)− U(f)|2df

s(t) is the smeared signal i.e. true× response

∼



Noise removal by optimal 
filtering

∫ ∞

−∞
| [S(f) + N(f)]φ(f)

R(f)
− S(f)

R(f)
|2df

∫ ∞

−∞
|R(f)|−2{|S(f)|2|1− φ(f)|2 + |N(f)|2|φ(f)|2}df

∫
S(f)N(f)df terms are zero since noise 

and signal are uncorrelated

︸ ︷︷ ︸

ϴ minimised with respect to φ
ϴ



Noise removal by optimal 
filtering

dθ

dφ
= 0

−2S2(1− φ) + 2N2φ = 0

φ =
S2

S2 + N2Optimal filter

|S(f)|2 + |N(f)|2 = PDS(f) = |CS(f)|2

Does not contain true signal directly!



Noise removal by optimal 
filtering

Page 542 Num Res

PSD



Some Applications of filtering

An optimal filter for the detection of galaxy 
clusters through weak lensing

Maturi, et al. 2005, A&A, 442, 851

On optimal detection of point sources in CMB maps
Vio et al, 2002, A&A, 391, 789

The largest scale perturbations: A window on the 
physics of the beginning

Wandelt, New Astronomy Review, 2006, 11, 900



Low-mass X-ray binaries



C.f. X-ray Timing experiments

GX 340+0



X-ray Timing experiments
GX 5-1 Poisson 
noise removed



X-ray Timing experiments



Recap Filtering: 

one can design an optimal filter such that 
the filtered measured data-set is as close 
as possible (in least-square sense) to the 
uncorrupted signal 



estimating the moments of 
a stochastic process

Chapter 2.2.2
See also Appendix B3.2, Lena ea.

How representative is a measurement 
of a S.P.?



How representative is a measurement?
SGR 1900+14



How representative is a measurement?
SGR 1900+14

zoom



the case of type I X-ray bursts 

Galloway private communication

1 Measurement of x(t) in a time T => windowing and 
averaging over time ΔT

y(t) = Π(
t

T
)x(t)windowing:

averaging:

z(t) ≡ y∆T (t) =
1

∆T

∫ t+∆T/2

t−∆T/2
y(t′)dt′ =

1
∆T

∫ ∞

−∞
Π(

t− t′

∆T
)y(t′)dt′

= low-pass filter, remember Nyquist theorem



Time domain, 
multiplication with box

time -> convolving, hence 
smoothing, with sinc in 
freq domain

remove high frequencies 
due to finite response of 
instrument and detector

response

Finite duration

1 Sample ➞averaging



Derivation on black board page 25,26,27 
lecture notes OAF2

σ2
xT

= σ2/N for T >> τ0

   depends on transfer 
function

which in order to avoid aliasing 
should be suited for the 

system under study

τ0



bootstrap method

Estimating   if the probability density 
function of the s.p. is known

σ

Jackknife method

e.g.

Propagation of Errors chapter 5.2

Estimating   if the probability density 
function of the s.p. is not known

σ

More on this later



Stochastic description of 
radiation fields

What is the size of the fluctuations 
in the radiation field?


