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POWER SPECTRAL DENSITY
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THE NYQUIST THEOREM

Basic Aperiodic Signal of Infinite Length
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The Noise Contaminated Signal
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ENTIRE

Se= cutoff frequency of
measurement

LOG(PSD)

THE TRANSFORM DOMAIN
] J

—.)}\,

——> FREQUENCY (S)

WINDOWING & NOISE, BRAULT & WHITE 1971, A&A



NYQUIST THEOREM: CONT’D

DATA SAMPLING
DATA IS DISCRETE NOT CONTINUOUS

TIME DOMAIN MULTIPLY sSs.P. WITH SHAH FUNCTION
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NYQUIST THEOREM: CONT’D

Discrete Measurements of The Noisy Signal
(undersampled)
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The Aliased Fourier Transform of The Noisy Signal

Discrete Measurements of The Noisy Signal
(oversampled) \
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A Segment of The Noisy Signal
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The Unaliased Fourier Transform

The Smeared ond Aliased Fourier Tranform
of The Data Segment

L
THE MEASUREMENT DOMAIN

l
THE TRANSFORM DOMAIN

SAMPLING; BRAULT & WHITE 1971, A&A, 13, 169 (IN LIST OF
PRESENTATION PAPERS!)




NYQUIST THEOREM: CONT’D

Discrete Measurements of The Noisy Signal
(undersampled)
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The Aliased Fourier Transform of The Noisy Signal
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NYQUIST THEOREM: CONT’D

SAMPLING CAUSES REPLICATION OE SIGNAL

Discrete Measurements of The Noisy Signal The Aliased Fourier Transform of The Noigy”Signal
(undersampled) .
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ALIASING
LINE=CONTINUOUS SIGNAL |
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aliased Fourier transform
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ALIASING PAGE 496 NUM RES



DATA SAMPLING: IF THE NYQUIST CRIT]

—

FULFILLED (I.E. SAMPLE AT A RATE HIGH

SIGNAL) THEN SAMPLING DOES NOT LEAD
LOSS OF INFORMATION

CONDITIONS:

=»>BAND-LIMITED RESPONS]
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Vsampling > Vmax,detector > Vmax,signal



DECONVOLVE MEASU
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(OPTIMAL) FILTERING

NUM REs CHAPTER 13.0-13.3

D SIGNAL AND

RESPONSE FUNCTION OF SAMPLED DATA

R CONVOLUTION




(OPTIMAL) FILTERING

NUM REs CHAPTER 13.0-13.3

DECONVOLVE MEASURED SIGNAL AND
RESPONSE FUNCTION OF SAMPLED DATA
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NUM RESs CHAPTER 13.1



(OPTIMAL) FILTERING

NUM REs CHAPTER 13.0-13.3

DECONVOLVE MEASURED SIGNAL AND
RESPONSE FUNCTION OF SAMPLED DATA
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(OPTIMAL) FILTERING

NUM REs CHAPTER 13.0-13.3

DECONVOLVE MEASURED SIGNAL AND
RESPONSE FUNCTION OF SAMPLED DATA
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DISCRETE CONVOLUTION THEO
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DISCRETE CONVOLUTION THEO

L response function \}/I
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DISCRETE CONVOLUTION THEO

M
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DISCRETE CONVOLUTION THEO

RETE DECONVOLUTION

~S

F(rxs);
Ry,

Sn

HOWEVER NOISE AND UNCERTAINTIES IN
RESPONSE CAN MAKE THIS PROCESS
UNRELIABLE




DISCRETE CONVOLUTION THEO

RETE DECONVOLUTION

~S

F(rxs);
Ry,

Sn

HOWEVER NOISE AND UNCERTAINTIES IN
RESPONSE CAN MAKE THIS PROCESS
UNRELIABLE

SIMILAR TO THE CONTINUOUS CASE!




NOISE REMOVAL BY OPTIMAL
FILTERING

cs(t) = s(t) + n(t)
s(t) is the smeared signal i.e. true X response

DESIGN AN OPTIMAL FILTER (P(T) THAT
PRODUCES A SIGNAL U(T) AS CLOSE AS
POSSIBLE TO U(T)

-

CLOSE IN LEAST SQUARE SENSE
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U(f) —U(f)]?df 1S MINIMISED




NOISE REMOVAL BY OPTIMAL
FILTERING

/OO | S+ Nle(f)  S(
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)
)

de
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/S(f)N(f)df TERMS ARE ZERO SINCE NOISE
AND SIGNAL ARE UNCORRELATED
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NOISE REMOVAL BY OPTIMAL
FILTERING

do
—
o

—25%(1 — ¢) + 2N°¢p = 0

SZ
SQ + N2

DOES NOT CONTAIN TRUE SIGNAL DIRECTLY!

OPTIMAL FILTER () =

S(HIF+ IN(HIF = PDS(f) = |CS(f)I7




NOISE REMOVAL BY OPTIMAL
FILTERING

/ | C |? (measured)

[N |? (extrapolated)

log scale

*— |S1? (deduced)
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SOME APPLICATIONS OF FILTERING

ON OPTIMAL DETECTION OF POINT SOURCES IN CMB MAPS
VIO ET AL, 2002, A&A, 391, 789

AN OPTIMAL FILTER FOR THE DETECTION OF GALAXY
CLUSTERS THROUGH WEAK LENSING
MATURI, ET AL. 2005, A&A, 442, 851

THE LARGEST SCALE PERTURBATIONS: A WINDOW ON THE
PHYSICS OF THE BEGINNING
WANDELT, NEW ASTRONOMY REVIEW, 2006, 11, 900




LOW-MASS X-RAY BINARIES




RAY TIMING EXPERIMENTS
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TIMING EXPE QIMENTS
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RECAP FILTERING:
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ESTIMATING THE MOMENTS OF
A STOCHASTIC PROCESS

CHAPTER 2.2.2
SEE ALSO APPENDIX B3.2, LENA EA.

HOW REPRESENTATIVE IS A MEASUREMENT
OF A S.P.?

-

22 s time series

i

140 ms zoom in on individual pu]seg Taken from "Handbook of Pulsar Astronomy™ by Lorimer & Kramer,




RESENTATIVE IS A MEASUREMENT?
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RESENTATIVE IS A MEASUREMENT?
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THE CASE OF TYPE | X-RAY E
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1 MEASUREMENT OF X(T) IN A TIME T => WINDOWING AND

AVERAGING OVER TIME AT

WINDOWING: ¥(t) = H(%)aﬁ(t)

AVERAGING:

1 t—|—AT/2 1 O t L t/
A1) = yar(t) = 7 / o VO = 17 / 11(- ()t

= LOW-PASS FILTER, REMEMBER NYQUIST THEOREM




RESPONSE =
REMOVE HIGH FREQUENCIES

DUE TO FINITE RESPONSE OF
INSTRUMENT AND DETECTOR
FINITE DURATION ==

TIME DOMAIN,
MULTIPLICATION WITH BOX

| SAMPLE —AVERAGING ==

TIME -> CONVOLVING, HENCE
SMOOTHING, WITH SINC IN
FREQ DOMAIN




ERIVATION ON BLACK BOARD PAG

LECTURE NOTES OAF2

2 __
O'xT—

0?/N for T >> 79

To DEPENDS ON TRANSFER

OuULD
SYST)

FUNCTION

IN ORDER TO AVOID ALIASING

BE SUITED FOR THE

=M UNDER STUDY




ESTIMATING OIF THE PROBABILITY

DENSITY

FUNCTION OF THE S.P. IS KNOWN

—
PROPAGATION OF ERRORS CHAPT!

=R 5.2

ESTIMATING O IF THE PROBABILITY DENSITY
FUNCTION OF THE S.P. IS NOT KNOWN

E.G.

BOOTSTRAP METHOD
JACKKNIFE METHOD

MORE ON THIS LATER




STOCHASTIC DESCRIPTION OF

RADIATION FIELDS

WHAT IS THE SIZE OF THE FLUCTUATIONS
IN THE RADIATION FIELD?




