
Chapter 1.3, 1.4 & 2.2 OAF-2 
Numerical Recipes Chapter 13.3

Today’s course

Topics:

Aliasing & Nyquist frequency
(Optimal) Filtering
measuring moments of a 
stochastic process

Fourier transformations



detection of astronomical signals (s.p.) 
plus noise is convoluted by instrument 
transfer function and data sampling

statistical moments characterise the 
signal (plus noise) 

Recap lecture 1

Assume WSS s.p. (mean does not depend on 
time, or much slower than measuring 
process, auto-correlation depends on 
offset only)

Noise can be due to the detector, 
background, and/or intrinsic to the signal

Convolutions and cross-correlations



Continuous Fourier Transformations

Figure from Wikipedia

Euler′s relation : eix = cosx + isinx

F (t)⇔ f(x)

F (t) =
∫ ∞

−∞
f(x)e−2πixtdx

f(x) =
∫ ∞

−∞
F (t)e2πixtdt

Used in restoration and/or spectral 
analysis of the signal



Convolution using FTs in practice

Convolution always 
broaden the input 

function

figure from Gray

f(x) ∗ g(x) =
∫ ∞

−∞
f(x)g(x1 − x)dx

Convolution



Central limit theorem
many convolutions ➞smoothing until Gaussian PDF

lim
n→∞

pX(x) =
1√

(2π)σ
exp− (x− η)2

2σ2

many physical processes/measurements yield  a 
Gaussian probability density function

pX(x) = pX1(x) ∗ pX2(x) ∗ pX3(x) ∗ · · ·pXn(x)



Convolution using Fourier 
transformations 

figure from Gray

Convolution theorem M(λ) = S(λ) ∗ R(λ)
F (M(λ)) = F (S(λ)) · F (R(λ))



Reconstruction of the 
input=source spectrum

M(λ) = S(λ) ∗R(λ)
Convolution theorem

F (M(λ)) = F (S(λ)) · F (R(λ))
F (M(λ)) ≡ M(s) (etc)

M(s) = S(s) · R(s)

S(s) =
M(s)
R(s)

S(λ) = F−1

(
M(s)
R(s)

)



Some special functions:
Shah’s function/Dirac comb

III(t) =
∞∑

n=−∞
δ(t− nT )

Box/window function

B(t) = 0 for − W

2
> t >

W

2

B(t) = 1 for − W

2
< t <

W

2t



Fourier transformations of these 
special functions

Sinc function
sin(πx)

πx

∞∑

n=−∞
δ(t− nT )⇔ 1

T

∞∑

k=−∞
δ(f − k

T
)



Optical spectra: bandwidth set by 
the width of the spectral lines

 A sharp narrow signal needs more/
higher frequencies to be described 

in the Fourier Transform than broad 
shallow signal 

cf. the number of sin+cos necessary to describe the signal

Sampling: no loss of information 
if the input process has no 

frequencies > 1
2∆tcrit

Continuous signal h(t) fully described 
by the samples

Sampling theorem



Optical spectra: bandwidth set by 
the width of the spectral lines

Bassa et al. 2006

Low-mass White Dwarf spectrum



Optical spectra: bandwidth set by 
the width of the spectral lines

Bassa et al. 2006

Low-mass White Dwarf spectrum



Optical spectra: bandwidth set by 
the width of the spectral lines

Bassa et al. 2006

Low-mass White Dwarf spectrum
F8 Iab



Another math tool 
Power Spectral Density

 (∝ amplitude of individual sinusoids) 

(will return in more depth in Chapter 6)

P (f) = ˜F (f) ˜F (f)∗

Continuous FT:

P (f) =
∫ ∞

−∞
R(τ)e−2πifτdτ

F (f) =
∫ ∞

−∞
f(t) e−2πiftdt

for wss signals:

Continuous PSD:

hence:

˜F (f)F (f) = |F (f)|2 =
∫ ∞

−∞
R(τ)e−2πifτdτ

∼∼



Windowing & noise, Brault & White 1971, A&A
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Important concept in PSD=Nyquist theorem



in time domain multiply s.p. with shah function

Data sampling

Discrete PSD: power ∝ amplitude squared:Pj =
2
a0

|aj |2

ms(x) = m(x)
1
τ

ΠI(
x

τ
) =

∑

n

m(nτ)δ(x− nτ)msamp,n =

Discrete FT:

a0 = Msamp,k=0 =
N−1∑

n=0

msamp,n ≡ N0

ak = Msamp,k =
N−1∑

n=0

msamp,n e2πink/N

Msamp,k =
N−1∑

n=0

msamp,n e2πink/N

Data is discrete not continuous



Nyquist theorem: cont’d

Sampling;  Brault & White 1971, A&A, 13, 169 (in list of 
presentation papers!)



Nyquist theorem: cont’d

Sampling;  Brault & White 1971, A&A, 13, 169 (in list of 
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Nyquist Freq



Nyquist theorem: cont’d

Sampling;  Brault & White 1971, A&A, 13, 169 (in list of 
presentation papers!)

Nyquist Freq

Sampling causes replication of signal



Aliasing

Aliasing Page 496 Num Res

FT[continuous signal]

signal: continuous drawn

FT[sampled signal]

signal: samples dots



Aliasing: cont’d

Convolution with shah function in freq space: 
replication

Fourier    Transformations



Filtering
Frequency Filtering

y(t) =
∫ ∞

−∞
x(t− θ)h(θ)dθ

y(t) = x(t) ∗ h(t)

Filtering of process x with filter h

Y (f) = X(f)H(f)

Sampling: high frequencies are filtered out

leads to band limited data

Window: low frequencies are filtered out



Filtering
Frequency Filtering

y(t) =
∫ ∞

−∞
x(t− θ)h(θ)dθ

y(t) = x(t) ∗ h(t)

Filtering of process x with filter h

Y (f) = X(f)H(f)

Sampling: high frequencies are filtered out

leads to band limited data

Window: low frequencies are filtered out

Remember inserting filter in optical imaging



Gaussian response function

R(λ)
1√

(2π)σ
exp− (

λ2

2σ2
)

σ

frequency



Gaussian response function

Full resolution spectrum



Gaussian response function

Full resolution spectrum

Gaussian smoothed 
spectrum



Filtering

Time Filtering
measure a process x(t) over interval T assumed 

zero outside T

≡ y(t) = Π(
t

T
)x(t)

Y (f) = X(f) ∗ Tsinc(Tf)
all information about frequencies <1/T is lost!

Sampling: high frequencies are filtered out

leads to band limited data

Window: low frequencies are filtered out


