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NUMERICAL RECIPES CHAPTER 13.3

TOPICS:
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B ALIASI

=R TRANSFORMATIONS

NG & NYQUIST FREQU|

Bl (OPTIMAL) FILTERING

E MEASURING MOMENTS OF A
STOCHASTIC PROCESS




RECAP LECTURE 1

BDETECTION OF ASTRONOMICAL SIGNALS (S.P.)
PLUS NOISE IS CONVOLUTED BY INSTRUMENT
TRANSFER FUNCTION AND DATA SAMPLING

ESTATISTICAL MOMENTS CHARACTERISE TH
SIGNAL (PLUS NOISE)

E NOISE CAN BE DUE TO THE DETECTOR,
BACKGROUND, AND/OR INTRINSIC TO THE SIGNAL

B AssUME WSS s.P. (MEAN DOES NOT DEPEND ON
TIME, OR MUCH SLOWER THAN MEASURING
PROCESS, AUTO-CORRELATION DEPENDS ON
OFFSET ONLY)

E CONVOLUTIONS AND CROSS-CORRELATIONS




CONTINUOUS FoOU R TRANSFORMATIONS

FIGURE FROM WIKIPEDIA
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Euler's relation : et = cosx + 1sinx

USED IN RESTORATION AND/OR SPECTRAL
ANALYSIS OF THE SIGNAL




CONVOLUTION USING FTS IN PRACTICE

CONVOLUTION

@) gta) = [ " f@)glar — 2)da

CONVOLUTION ALWAYS
BROADEN THE INPUT
FUNCTION

g

FIGURE FROM GRAY



CENTRAL LIMIT THEOREM

MANY CONVOLUTIONS _}SMOOTHING UNTIL GAUSSIAN PDF

px () = px,(T) * px, () * px,(x) * - - -px, (7)
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MANY PHYSICAL PROCESSES/MEASUREMENTS YIELD A
GAUSSIAN PROBABILITY DENSITY FUNCTION




CONVOLUTION USING Fou
TRANSFORMATIONS
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FIGURE FROM GRAY



RECONSTRUCTION OF THE
INPUT=SOURCE SPECTRUM

M (X)) = S(\) x« R(\)
Convolution theorem

F(M(A)) = F(S(A)) - F(R(A)

F(M (M) = M(s) (etc




SOME SPECIAL FUNCTIONS:

SHA

[II(t) = f: 5(t — nT)

nN=—oo
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BOX/WINDOW FUNCTION
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B(t) =0 for

B(t) =1 for

44




FOURIER TRANSFORMATIONS OF THESE
SPECIAL FUNCTIONS
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A SHARP NARROW SIGNAL NEEDS MORE/
HIGHER FREQUENCIES TO BE DESCRIE
IN THE FOURIER TRANSFORM THAN E

SHALLOW SIGNAL

CF. THE NUMBER OF SIN+COS NECESSARY TO DESCRIBE THE SIGNAL

OPTICAL SPECTRA: BANDWIDTH SET E
THE WIDTH OF THE SPECTRAL LINES

SAMPLING THEOREM
SAMPLING: NO LOSS OF INFORMATION

IF THE INPUT PROCESS HAS NO

FREQUENCIES > 1
2Atcrz’t

CONTINUOUS SIGNAL H(T) FULLY DESCRIE

BY THE SAMPLES




OPTICAL SPECTRA: BANDWIDTH SET BE

THE WIDTH OF THE SPECTRAL LINES

BASSA ET AL. 2006




OPTICAL SPECTRA: BAN

DWIDTH SET BY

THE WIDTH OF THE SPECTRAL LINES
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OPTICAL SPECTRA: BANDWIDTH SET BY
THE WIDTH OF THE SPECTRAL LINES
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ANOTHER MATH TOOL
POWER SPECTRAL DENSITY

(< AMPLITUDE OF INDIVIDUAL SINUSOIDS)

(WILL RETURN IN MORE DEPTH IN CHAPTER 6)

CONTINUOUS FT: F(f) :/OO f(t) e 2™/t gt
P(f)=F(f)F(j

CONTINUOUS PSD:

FO

(F)ECf)"

R WSS SIGNALS: P(f) :/ R(T)e 2™ dr

— OO

HENCE:



IMPORTANT CONCEPT IN PSD=NYQUIST TH

W T Tl
—-I L— segment of interest

An Expanded Piece of The Basic Signal Fourier Transform of The Basic Signal

ENTIRE
W V W $pT cutoff frequency of signal

I—seqment of interest 1 1

Cc . . 9
The Noise Contaminated Signal Fourier Transform of The Noisy Signal

ENTIRE

Ve

Basic Aperiodic Signal of Infinite Length

S¢= cutoff frequency of
J measurement
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THE MEASUREMENT DOMAIN THE TRANSFORM DOMAIN
I

— )\ ——> FREQUENCY (S)

WINDOWING & NOISE, BRAULT & WHITE 1971, A&A



DATA SAMPLING

DATA IS DISCRETE NOT CONTINUOUS
DOMAIN MULTIPLY S.P. WITH SHAH FUNCTION

m(x)%ﬂl(%) — Z m(nt)oé(x — n7)
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NYQUIST THEOREM: CONT’D

Discrete Measurements of The Noisy Signal

(undersampled)

The Aliaosed Fourier Transform of The Noisy Signal

™ I o ¥ .
Discrete Measurements of The Noisy Signal

(oversampled)
‘Imm

r““._ s e e e
Segment
A Segment of The Noisy Signal
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i 2 3
The Unaliased Fourier Transform

[P T g B o oy Wl

The Smeared and Aliased Fourier Tranform
of The Data Segment

L
THE MEASUREMENT DOMAIN

|
THE TRANSFORM DOMAIN

SAMPLING; BRAULT & WHITE 1971, A&A, 13, 169 (IN LIST OF
PRESENTATION PAPERS!)




NYQUIST THEOREM: CONT’D

Discrete Measurements of The Noisy Signal

(undersampled)

The Aliaosed Fourier Transform of The Noisy Signal
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Discrete Measurements of The Noisy Signal

(oversampled)
‘Imm

r““._ s e e e
Segment
A Segment of The Noisy Signal
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The Unaliased Fourier Transform

NYQUISTlFREQ

[P T g B o oy Wl

The Smeared and Aliased Fourier Tranform
of The Data Segment

|

L
THE MEASUREMENT DOMAIN

I
THE TRANSFORM DOMAIN

SAMPLING; BRAULT & WHITE 1971, A&A, 13, 169 (IN LIST OF
PRESENTATION PAPERS!)




NYQUIST THEOREM: CONT’D

SAMPLING CAUSES REPLICATION OE SIGNAL

Discrete Measurements of The Noisy Signal The Aliased Fourier Transform of The Noisy” Signal
(undersompled)
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The Unaliased Fourier Transform

NYQUISTlFREQ

Discrete Measurements of The Noisy Signal
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THE MEASUREMENT DOMAIN THE TRANSFORM DOMAIN

SAMPLING; BRAULT & WHITE 1971, A&A, 13, 169 (IN LIST OF
PRESENTATION PAPERS!)




ALIASING
SIGNAL: CONTINUOUS DRAWN

A ). \f I)

< T >
@ SIGNAL: SAMPLES DOTS

A
H(f)
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FT[CONTINUOUS SIGNAL]

>
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aliased Fourier transform

—true Fourier transform

|
FT[SAMPLED SIGNAL ]

ALIASING PAGE 496 NUM RES



ALIASING: CONT’D

N R |
|

FOURIER | TRANSFORMATIONS
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CONVOLUTION WITH SHAH FUNCTION IN FREQ SPACE:

REPLICATION



SAMPLING: HIGH FREQUENCIES ARE FILTER|
WINDOW: LOW FREQUENCIES ARE FILTER

—>
EADS TO BAND LIMITED DATA

FILTERING
REQUENCY FILTERING Y(f)=X(f)H(f)

y(t) = / Lt — 0)h(0)d6

y(8) = 2(t) * h(t

FILTERING OF PROCESS X WITH FILTER H




SAMPLING: HIGH FREQUENCIES ARE FILTER|
WINDOW: LOW FREQUENCIES ARE FILTER

—>
EADS TO BAND LIMITED DATA

FILTERING
REQUENCY FILTERING Y(f)=X(f)H(f)

y(t) = / Lt — 0)h(0)d6

y(8) = 2(t) * h(t

FILTERING OF PROCESS X WITH FILTER H

REMEMBER INSERTING FILTER IN OPTICAL IMAGING




GAUSSIAN RESPONSE FUNCTION

\




GAUSSIAN RESPONSE FUNCTION
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GAUSSIAN RESPONSE FUNCTION

4 250921-650 , slot 101 )

GAUSSIAN SMOOTHED
SPECTRUM
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SAMPLING: HIGH FREQUENCIES ARE FILTER|
WINDOW: LOW FREQUENCIES ARE FILTER

—>
EADS TO BAND LIMITED DATA

FILTERING

=—» TIME FILTERING

MEASURE A PROCESS X(T) OVER INTERVAL T ASSUMED
ZERO OUTSIDE T

Y (f) = X(f) % Tsinc(T f)

ALL INFORMATION ABOUT FREQUENCIES <1/T Is LOsSsT!




