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Abstract. This article provides a description of the high resolution X-ray spec-
trometers for astrophysics that will become operational in the near future. The
emphasis is on the physical principles of operation.

1 Introduction

The title of this chapter refers to Future Missions for astrophysical X-ray
spectroscopy. At the time of this writing (Spring 1998), the future is es-
pecially close, and we expect it to be bright. Within the next two years,
high resolution X-ray spectrometers will be placed in orbit on AXAF, XMM,
Spectrum X/γ, and Astro-E. For the first time, we will have the sensitivity to
spectroscopically detect a wide variety of diagnostic physical effects, from es-
sentially all types of cosmic X-ray source. This article therefore concentrates
on this immediate future, although at the end I will briefly discuss what is
under study for the 21st century.

In selecting topics for this chapter, I have tried to emphasize the physics of
the instruments, especially of the grating spectrometers on AXAF and XMM,
rather than enumerating their properties and giving examples of simulated
spectroscopy for various types of X-ray source (which might suggest that
this field is intellectually already pretty much covered). A brief description of
some X-ray spectroscopic diagnostics provides an estimate for astrophysically
interesting ranges of resolving power, and I largely leave the astrophysical
applications to your imagination.

Careful quantitative spectroscopy requires an understanding of the op-
eration of the spectrometers at various levels of detail. A description of the
physical principles may help to appreciate the properties of the instruments,
the reasons for various design choices, and the physical and practical lim-
its to their resolving power and efficiency (which will be pushed in future
generations of instruments). As such, this chapter aims to provide an intro-
duction to what is sometimes referred to as ’the theory of the experiment’ in
experimental physics.
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2 Resolving Powers of Interest in Astrophysical X-ray

Spectroscopy

In this section, I will collect spectroscopic diagnostics of interest in the X-ray
band, and the spectral resolving power required to use the diagnostic. You
have seen a lot of this material before. I have added some more, and I will
put it in the definite context of the spectroscopic capabilities of the X-ray
spectrometers to be put in orbit in the near future, in the next section.

2.1 Ionization Stage Spectroscopy

At the lowest level of spectrosopic analysis is the ability to distinguish the
emission spectra of the various elements and their ionization stages. The
most basic parameters to be measured with this ’diagnostic’ are of course the
elemental abundances themselves, but an accurate abundance measurement
must rely on an accurate measurement of the ionization balance as well. The
ionization balance itself is an important diagnostic for the physical conditions
in the emitting gas. It contains information on the excitation mechanism
(collisional or recombination), the temperature and density, and the thermal
history of the gas. You can find a nice set of scaling relations in George
Fraser’s contribution, one of which gives the relative energy splittings between
the strongest transitions in the Hydrogenic and Helium-like ions as a function
of nuclear charge Z, but I’ll repeat the numbers here for a few astrophysically
important elements. Table 1 lists the energies of the principal n = 2 − 1
transitions in the Hydrogenic and Helium-like ions of O, Si, and Fe, which
span the 0.8−7 keV band. I also list the resolving power R ≡ E/∆E required
to distinguish the H- and He-like transitions (which scales like Z).

Table 1. Energies of the principal n = 2 − 1 lines in H- and He-like ions

H-like He-like

element 1s − 2p 1s2 − 1s2p R

O 654 eV 574 eV 8

Si 2005 1865 14

Fe 6960 6701 27

2.2 Excitation Mechanism

Another very basic diagnostic is the dominant line excitation mechanism. As
discussed extensively in Duane Liedahl’s contribution, there are very clear
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spectroscopic differences between the emission spectra arising from collision-
ally or photoionized media. In the first case, line emission results primarily
from radiative decays following collisional excitation, in the second case, ra-
diative decays following recombination dominate. For a gas of cosmic compo-
sition in photoionization equilibrium, this leads to enhanced emission from
the low- and mid-Z Hydrogenic and He-like ions with respect to the Fe L
ions, as compared to emission from a collisional plasma of comparable mean
ionization.

In addition, for low enough electron temperatures the radiative recombi-
nation continua appear as narrow, line-like features at the series limits. To
detect these features clearly separated from (at least) Lyβ in Hydrogenic ions
(to take the simplest case) requires resolving power R = 9.

Another, subtler diagnostic is based solely on the spectroscopy of the Fe
L ions, and it therefore also works in cases where the electron temperature
is too high to make the narrow recombination continua detectable. As first
described by Liedahl et al. 1990, the recombination spectra of the Fe L ions
are markedly different from the collisionally excited spectra. This is shown
in Fig.1, which shows the spectra of Fe XVI-XIX under conditions of coronal
and photoionization equilibrium. The differences between these two different
spectra should be evident even at resolving powers of order R >∼ 10 − 20.

Fig. 1. Line spectra emitted by Fe XVI-XIX under conditions of coronal and pho-
toionization equilibrium. From Liedahl et al. 1990.

2.3 Density Diagnostics

He-like Ions The intensities in the n = 2− 1 transitions in the Helium-like
ions are sensitive to the density of the plasma. The physical principle un-
derlying this diagnostic is treated in the Chapters by Rolf Mewe and Duane
Liedahl, but I include a brief description for completeness. The standard ref-
erence is Gabriel and Jordan (1969). The diagnostic rests on the competition
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between spontaneous and collisional transition rates out of the various n = 2
levels. The first are determined purely by atomic structure, the second scale
with the electron density, and a measurement of the excitation balance in
the n = 2 sublevels must therefore be sensitive to density. Four transitions
are used in this diagnostic: 1s2 1S0 to 1s2p 1P1, 1s2p 3P1,2 and 1s2s 3S1.
The first is an allowed transition, the second two involve a change in the
total spin-angular momentum of the two electrons (’spin-flip’), the fourth is
dipole-forbidden. The transitions are therefore commonly referred to as the
resonance line (’R’), the ’intercombination’ (between the triplet and singlet
systems) lines (’I’ – the two lines are too closely spaced to be resolved in
practical cases), and the forbidden line (’F ’).

At low densities, the intensities in the lines are purely determined by
the collisional excitation rates into the various upper levels: every collisional
excitation is followed by a spontaneous radiative decay (in the case of a
photoionized plasma, the intensities would be determined by the rate at which
the upper levels are populated by recombination and cascades, instead). But
at high densities, the collisional rate from the upper level of the F line to
the upper level of the I lines becomes comparable to or exceeds the slow
spontaneous radiative decay rate out of the upper level of the F line, and
the ratio between the I and the F lines changes. The dividing line occurs
when the two rates out of 1s2s 3S1 are equal, and the density for which this
happens is referred to as the critical density for the ion. Critical densities
span the range 109 to 1017 cm−3 for the Helium-like ions from O to Fe.

In order to apply this diagnostic, the I and F lines need to be resolved.
Line energies and resolving powers for three important Helium-like ions are
listed in Table 2.

Table 2. Energies of the n = 2 − 1 R, I , and F lines in He-like ions

element R I F R

O 574 eV 569 eV 561 eV 72

Si 1865 1853 1840 155

Fe 6701 6673 6634 240

Fe L Ions Again, the Fe L ions provide an alternative diagnostic in a pho-
toionized plasma (Liedahl et al. 1992). At sufficiently high density, low-lying
metastable excited states of the ions develop a significant population through
collisional excitation. These excited ions have recombination spectra that are
different from those in the ground state, as illustrated in Fig.2 for Fe XX. To
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separate the strongest of the many lines that appear with increasing density
from the lines present at low density requires R >∼ 150− 200 (for the specific
but representative case of Fe XX).

Fig. 2. Line spectra of Fe XX, under conditions of photoionization [(a),(b)] and
coronal equilibrium [(c),(d)]. Panel (a) shows the recombination spectrum at low
density, panel (b) the spectrum above the critical density of n ∼ 1013.5 cm−3. From
Liedahl et al. 1992.

2.4 Satellite Line Spectroscopy

A powerful electron temperature diagnostic, proven in terrestrial plasma ex-
periments and solar spectroscopy, is spectroscopy of dielectronic satellite lines
(Rolf Mewe, Duane Liedahl, this volume). Dielectronic recombination onto a
target ion of (net) charge z + 1 leaves an ion in charge state z in a doubly
excited state, with one electron, the ’spectator’, in a high Rydberg level. This
spectator provides some shielding of the nuclear field, and so the stabilizing
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downward radiative transition involving the other electron has an energy that
is slightly lower than the corresponding transition in an ion of charge z + 1
(with no spectator); there will be a satellite for each possible value of the
principal quantum number of the spectator. The ratio of the intensities in
the satellite line to that of the ’parent’ transition (in charge state z + 1) is
sensitive to the electron temperature, because the satellite intensity is pro-
portional to the dielectronic recombination rate onto charge state z+1, while
the parent intensity is equal to its collisional excitation rate, and both rates
have different temperature dependence. The strength of the method is that
it does not depend on knowing the ionization balance: the target charge state
for both the parent transition and the dielectronic satellites is charge state
z + 1.

For definiteness, we examine the difference in the energies of the dielec-
tronic satellites in the Lithium-like ions of Fe and O, and the resonance tran-
sitions in the corresponding Helium-like ions. A direct measurement of the
satellites to the Helium-like Fe resonance line at 6701 eV (1.850 Å) by Beiers-
dorfer et al. (1992) finds the n = 3 satellite at a distance of ∆λ = 1.82×10−3

Å towards longer wavelengths, so to unambiguously resolve at least this res-
onance requires high resolving power, R ∼ 1000. For the n = 3 satellite to
the He-like O resonance line at 574 eV (21.60 Å), Mewe, Gronenschild, and
van den Oord (1985) list a wavelength difference of 0.034 Å, so a resolving
power of R = 640 is required to apply the diagnostic.

2.5 Radiative Recombination Continuum Spectroscopy

As explained in detail in Duane Liedahl’s contribution, the characteristic that
most distinguishes a plasma in photoionization equilibrium from one in colli-
sional ionization equilibrium is the comparatively low electron temperature.
As a consequence, the radiative recombination continuum photons will all
be ’piled up’ just above the ionization limit, because the free electrons all
have kinetic energies much smaller than the ionization energy. The result-
ing narrow, quasi-discrete recombination continuum is a strong spectroscopic
signature of photoionization. It can be used to straightforwardly measure
the electron temperature in the zone where the radiative recombination rate
onto a given ion species peaks: the emissivity depends on photon energy E
as exp(−∆E/kTe), with ∆E = E − χ, χ the ionization potential, Te the
electron temperature. The recombination continuum therefore has a charac-
teristic width of order kTe, and to resolve it requires roughly R >∼ χ/kTe. As
a practical example, you need R ∼ 140 to resolve the continuum in Hydro-
genic Neon, at a (representative) electron temperature of ∼ 10 eV. Higher
temperatures are easier to resolve, but the contrast at the ionization edge
goes down proportionally as well (which is why this diagnostic doesn’t work
for the hot plasmas in collisional equilibrium).
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2.6 Thermal Doppler Broadening

A straightforward ion temperature diagnostic is the thermal Doppler width of
emission lines. The radial velocity distribution in a thermal plasma is Gaus-
sian, with a variance1 σ2 = kTi/mi, with Ti and mi the ion temperature and
mass, respectively. For the resolving power corresponding to this width, we

find R = λ/∆λ = c/σ = (mic
2/kTi)

1/2 = 1000A1/2T
−1/2
7 , with A the atomic

weight of the ions, T7 the ion temperature in units 107 K. This indicates that
this is not a trivial diagnostic—for all ions of interest, A > 12, so a high
spectral resolving power is required.

2.7 Compton Scattering Effects

Monochromatic photons of wavelength λ0 scattering off of stationary elec-
trons suffer an energy loss due to the Compton recoil effect. The maximum
corresponding wavelength shift ∆λmax in a single scattering interaction is
equal to twice the Compton wavelength of the electron, λC = h/mec, so
∆λmax/λ0 = −2h/mecλ0 = −2E0/mec

2 (for complete backscattering). To
resolve the Compton-downscattered photons, you therefore need a resolving
power of order R ∼ 511/EkeV, with EkeV the photon energy in keV.

A measurement of the intensity of downscattered photons yields an esti-
mate of the electron column density through which the photons passed. In
order for the scattering probability to be non-negligible, you need to have
the Thomson depth τT ∼ 1, or NH ∼ σ−1

T = 1.5 × 1024 cm−2 (with NH the
total ionized Hydrogen column density, and σT the Thomson cross section).
At such large column densities, the photoelectric opacity at lower energies
is large, so that the usefulness of this spectroscopic diagnostic is probably
limited to the Fe K lines.

Photons passing through a large column density τT will suffer on aver-
age n = τ2

T/2 collisions, so a line at energy E0 will appear downshifted by
∆E/E0 ∼ nE0/mec

2. The line will also appear broadened, due to statis-
tical fluctuations both on the number of scattering interactions, as well as
on the energy shift per scattering. After passing through a column equiv-
alent to an average number of n scatterings, the rms width of the line is
∆E/E0 = n1/2(7/5)1/2E0/mec

2 (the fundamental papers on Comptoniza-
tion in cold gas are Ross et al. 1978 and Illarionov et al. 1979; one factor
n1/2 comes from the variance in the number of scattering interactions, the
distribution of energy shifts per scattering supplies the other factor (2

5n)1/2).
If the scattering electrons have a finite temperature, the Doppler shifts

due to the velocities of the electrons has to be taken into account. For a
Maxwellian velocity distribution of temperature Te, the characteristic width
of the scattered line radiation, expressed as a variance or rms width, is

1 not to be confused with the usual, ’official’ definition of the frequency ’Doppler
width’, ∆νD ≡

√
2ν0σ/c (Rybicki and Lightman 1979, p.288)
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∆E/E0 ≈ (2kTe/mec
2)1/2 (Illarionov et al. 1979; compare this with the rms

width of ionic emission lines given above—the additional factor two arises
from two successive Lorentz transformations, into the electron rest frame
and back to the observer’s frame). The net line shift due to scattering from
a finite temperature medium can be both positive and negative, depending
on whether the average electron energy is larger or smaller than one-fourth
of the line photon energy.

The characteristics of the Compton scattering effects can conveniently
be summarized as follows (cf. McCray 1984, and correcting a typo): passing
through a column density of free electrons of temperature Te, equivalent to
an average number of scatterings n = τ2

T/2, line photons of energy E0 will
experience a net shift

∆Eshift/E0 ≈ n(4kTe − E0)/mec
2, (1)

and an rms broadening of the scattered radiation

∆Ebroadening/E0 ≈ n1/2(7E2
0/5 + 2kTemec

2)1/2/mec
2, (2)

and so the relevant resolving power is still set by R >∼ 511/EkeV, except for
warm to hot plasmas (kTe >∼ 10 eV).

2.8 Raman Scattering

If X-rays are absorbed in a neutral medium, you may observe, instead of
Compton scattering, the effects of scattering by bound electrons, that is,
Rayleigh scattering and Raman scattering. Since Hydrogen is the most abun-
dant element, you would in practice only expect to see Rayleigh and Raman
scattering off Hydrogen atoms, although very sensitive experiments might
also detect the effects of scattering off Helium atoms.

Rayleigh scattering involves excitation of the bound electron into an in-
termediate state (not a stationary state of the atom), from which it decays
back to the initial state. The scattered photon therefore emerges with un-
changed energy (coherent scattering), only its direction has been changed.
If the photon has an energy larger than the excitation energy of a discrete
transition between stationary states in the atom, however, the excited atom
may deexcite to the excited level, and the outgoing photon has less energy
than the incoming photon, the difference being the excitation energy of the
atomic transition (Raman scattering). Since most Raman scattering events
will involve a transition n = 1−2 in Hydrogen (Lyα), the signature of Raman
scattering of X-ray lines would be the presence of scattered photons at an
energy 10.2 eV (the energy of the Lyα transition) below an emission line.

Again, since the scattering cross section is small (a fraction of the Thom-
son cross section), only absorbers with very large neutral column densities
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will have finite Raman scattering optical depth, and these will be photo-
electrically opaque at low energies. Raman scattering will therefore prob-
ably only be detected in Fe K photons, and it requires a resolving power
R ∼ 6400eV/10eV = 640 to do so.

A careful study of the Raman spectrum (including the angular depen-
dence, and the effects of the distribution of the velocity of the bound scatter-
ing electron—on average of order αc ∼ 2000 km s−1 in the ground state of
Hydrogen! [α is the fine structure constant]) will reveal detailed information
on the geometrical distribution and amount of scattering Hydrogen atoms
with respect to the emission line source and the observer. Sunyaev and Chu-
razov (1996) give a (characteristically) complete calculation of the effect, and
describe an application to the study of the Galactic Center Region. For more
general applications of Raman spectroscopy in astrophysics, see Nussbaumer,
Schmid, and Vogel (1989).

2.9 Fluorescence Spectroscopy

From ions with a filled K-shell, and at least a partially filled L-shell, you
may get fluorescent X-rays. The radiative transitions follow an inner-shell
ionization, either collisional or by photoionization, with a probability y, the
fluorescence yield, which is a strong function of nuclear charge. For instance,
yK ≈ 0.3 for Fe Kα, but only a few percent for O Kα. L-shell fluorescence
is very inefficient. Despite the low yield, fluorescent emission from low-Z
elements may still be detectable, from photoionized plasmas. The fluorescence
emissivity jfl is the product of the yield with the photoionization rate: jfl =
yKni

∫
∞

χ
dE σ(E)S(E) photons cm−3 s−1, with ni the density of element

i, σ(E) the photoionization cross section, S(E) the ionizing radiation field
(photons cm−2 s−1 keV−1), and χ the ionization potential. The low yield yK

for the light elements is offset by higher abundances (as compared to Fe),
by larger photoabsorption cross sections, and by the fact that for a typical
AGN ionizing radiation field (for instance) the integral actually favors low-
Z elements (S(E) a steeply falling powerlaw in E, and lower χ’s for low-Z
elements).

Careful spectroscopy of the fluorescent spectrum may provide information
on the ionization state of the fluorescing gas, its ionization history, and its
physical and chemical state. To date, this has only been attempted at Fe
K, although fluorescent emission from lighter elements has now also been
detected (e.g. the buried active nucleus in NGC 6552, cf. Fukazawa et al.
1994).

Ionization State Precise determination of the (rest frame) energy of fluores-
cent emission lines or absorption edges in principle allows the determination
of the ionization stage in which the transitions arise. This is no different in
principle from the the Ionization Stage Spectroscopy mentioned above, ex-
cept that in ions more neutral than Helium-like, the transition energies vary
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only slowly with charge state, requiring medium to high spectral resolution,
and a very reliable calibration of the spectrometer energy scale to uniquely
separate them. Also note that in any astrophysical source, charge states that
differ little in ionization potential (like the Fe M shell ions) are likely to coex-
ist, so that the emission spectrum shows the superposition of the individual
spectra of the separate charge states. Rather than subtle energy shifts, the
major effect may be to broaden the transitions by superposition.

To get some idea of which distinctions become important or measurable
at what resolving power, let’s look at the Fe K spectrum in particular. The
dependence of the energies of the various Kα transitions on ionization stage
is fairly steep for the Fe L ions. For instance, it takes R ≈ 200 to distinguish
the 1s − 2p3/2 transitions arising in the various L-shell ions (Decaux et al.
1997). Higher resolving power is required to do the same for the more neutral
species. The average separation between the 1s − 2p3/2 transitions arising

in the ions Fe X-XVII is approximately ∆λ = 1.5 × 10−3 Å per ionization
stage (Decaux et al. 1995), so a resolving power R >∼ 1300 is required to
distinguish these stages uniquely (the wavelength of all Fe Kα transitions is
approximately λ ≈ 1.93 Å). At this resolution, a lot of the intrinsic complexity
of the Fe K spectra of individual charge states will also be resolved (e.g. the
fine structure split between Kα1 and Kα2).

Finally, at high resolving power, other peculiar effects become important.
For the ionization stages below Fe XI, accidents of atomic structure make the
energies of the Kα transitions actually go slightly below those for neutral Fe,
with decreasing ionization stage, before going up again (Decaux et al. 1995).
This underlines the importance of having an accurate and stable wavelength
scale calibration for the spectrometer, as well as accurate and reliable rest
frame energies for the transitions under study, or else the small effect I just
mentioned might easily masquerade as a spurious velocity field in the source
with an amplitude of several hundred km s−1!

Physical State of the Fluorescing Material This issue is actually al-
most completely unexplored in astrophysics: astrophysical X-ray spectrome-
ters never had the required resolving power. The following remarks are there-
fore somewhat sketchy—time will tell how important these issues really are.
Because this field is only now becoming of interest to general astrophysics,
accurate calculations and laboratory data that would be of peculiar interest
to astrophysics are not always available (this applies to the requirements of
pure astrophysical spectroscopy, as well as to laboratory calibration of X-ray
astrophysical spectrometers!). The situation is changing with the advent of
new experiments expressly designed to meet this need, though.

Precise measurement of the wavelengths of the fluorescent emission lines
provides information on the physical state of the fluorescing atoms. In prin-
ciple, there is a difference in the energy of a given transition depending on
whether it occurs in a free atom, or in an atom bound to other atoms, as
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in a molecule or a solid. There are small shifts and broadenings caused by
the interaction of atomic electrons with the other charges in the molecule or
solid. Moreover, the shifts and broadenings depend on the chemical constitu-
tion as well. These issues are already important for the ground calibration of
the grating spectrometers on AXAF and XMM. These have resolving powers
ranging from several hundred to several thousand, at which point the finite
(but poorly characterized) width of the popular (for calibration purposes)
Al and Mg Kα characteristic X-ray lines excited in a solid (approximately 1
eV, at 1.49 and 1.25 keV, respectively) is already resolved. Information on
transition shifts has been tabulated by Sevier (1979), from which I take the
data listed in Table 3.

Table 3. Energy Levels and Line Energies in Oxygen and Iron:
Physical and Chemical Shifts

Oxygen Iron

energy gas oxide R gas oxide R

1s 545.4 eV 532.0 eV 40 7124 eV 7113 eV 650

2p1/2 16.40 7.1 733 721.2

2p3/2 — — — 720 708.1

Kα1 529.0 524.9 130 6391 6392 6400

Kα2 — — — 6404 6405 6400

First note that in situations where near-neutral gas is viewed against a
sufficiently strong background X-ray continuum source, a precise measure-
ment of the energy of absorption edges already provides information on the
physical state of the absorbing atoms. At least for the low-Z elements, only
modest resolving power is required (e.g. R = 40 to distinguish absorption
by monatomic gaseous Oxygen, from Oxygen bound in oxide). For this tech-
nique to work, however, you require a bright ’backlighter’, and the column
density of the absorbing element should be such that the optical depth at
the absorption edge is of order unity, to have good contrast. By contrast, a
measurement of the energy of fluorescent line emission may be more widely
applicable, but requires higher resolving power, and will only be practicable
for low Z elements.

Fluorescence spectroscopy is relevant for all elements for which there is
evidence that they are easily bound in dust grains in free space (see for
instance Snow and Witt (1996), and references therein). Just to be able to
show that material is indeed locked in dust, and how much of it is locked in
dust as opposed to being in the gas phase, is already important information
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when studying certain environments (e.g. the cold gas near the nuclei of
AGN).

2.10 EXAFS Spectroscopy

Continuum photoelectric absorption by atoms bound in a solid or in molecules
may show the curious EXAFS effect (’Extended X-ray Absorption Fine Struc-
ture’), which appears as a slow, wavelike modulation of the atomic photoelec-
tric absorption cross section just above an ionization threshold. This modula-
tion is the result of quantum interference, and the physical mechanism works
as follows. A photon of energy E ionizes an atom, and produces a photoelec-
tron of momentum p = [2me(E−χ)]1/2, with χ the ionization potential. If E
is only slightly larger than χ, the de Broglie wavelength of the photoelectron
is large, and may be as large as the lattice period of the absorbing solid (or
the interatomic distance, in molecules). The outgoing photoelectron probabil-
ity wave is scattered by neighboring atoms, and if the de Broglie wavelength
matches the lattice period, strong interference may result between the out-
going wave and the scattered waves. If the resulting interference is such that
the photoelectron wavefunction amplitude is suppressed near the origin, the
photoabsorption transition probability is reduced with respect to that for a
free atom, and the opposite for constructive interference.

To estimate the characteristic energy scale involved in the effect, consider
the following simplified argument (for a complete quantitative description, see
Lee et al. (1981); astrophysical implications are discussed by Martin (1970),
Evans (1986), and Woo (1995)). The photon energies corresponding to succes-
sive interference resonances are given roughly by the condition 2ka = 2nπ,
with k = p/h̄ the photoelectron wavevector, a the lattice period or inter-
atomic distance of the absorbing material, and n a positive integer. This
neglects any phase shifts in the photoelectron wave function associated with
the Coulomb interaction of the photoelectron with the ion, as well as with
the scattering atoms. Using h̄2k2/2me = E − χ, we have for the resonance
energies

En ∼ χ +
h2

8mea2
n2 (3)

so the spacing between the first two peaks in the ionization cross section is,
very roughly,

∆E ∼ h2

8mea2
= 38(a/1 Å)−2 eV. (4)

To see the effect at the Oxygen K edge, assuming a characteristic lattice
spacing a = 1 Å, therefore requires resolving power R = χO K/∆E = 14.
Similarly, at the Silicon edge, you need R = 50.

The precise shape and amplitude of the modulation is sensitive to the ex-
act structure and composition of the absorbing crystals or molecules, through
the phase shifts incurred by Coulomb scattering of the photoelectron waves
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by the atoms neighboring the absorbing atom. That is, the effect can tell,
for instance, whether photoelectrically absorbing Si atoms are all surrounded
by other Si atoms, or by O atoms. The exact crystalline properties of inter-
stellar dust is an unsolved problem, and EXAFS spectroscopy is a possible
technique to address the issue. Again, just to be able to detect the presence
of dust or molecular material, and its abundance relative to material in the
gas phase, may in itself provide important information.

Given the fact that photoelectric absorption is the physical effect em-
ployed in many types of X-ray detector, it is not surprising that EXAFS is
a major concern for instrument calibration. In fact, many detectors contain
two elements likely to show the astrophysical effect: Silicon and Oxygen—
and the instrumental effect may mask the astrophysical effect (for examples
of the instrumental effects, see Owens et al. 1997).

2.11 Radial Velocity Spectroscopy

Radial velocity spectroscopy is one of the oldest applications of spectroscopy
in astronomy, and is obviously also of great interest to X-ray astronomy. With
sufficiently high sensitivity, one could for instance detect binary motion (both
in binaries containing coronal X-ray sources, as well as in classical X-ray
binaries), motion in accretion flows, shock velocities in Supernova remnants,
bulk relative motion in merging clusters, etc.

Despite the conceptual simplicity of the measurement, accurate radial ve-
locity measurements are actually not trivial in practice. As a rough criterion,
you need resolving power R ∼ c/v to detect a velocity field of amplitude v,
and this criterion says that velocity spectroscopy is hard: to detect v ∼ few
hundred km s−1, characteristic of many astrophysical dynamical situations,
would require R >∼ 1000.

To beat this limit, the following argument is often invoked: if an emis-
sion line has been detected with N photons, one can determine its centroid
wavelength with an accuracy of order ∆λ = ∆λsp/

√
N , with ∆λsp the wave-

length resolution of the spectrometer. Translated into velocity, this gives
v = c∆λ/λ = c/(Rsp

√
N), so in principle you can do better in v/c than

the spectrometer resolution by a factor
√

N . From the previous discussions,
it will be clear that you have to be careful with this argument. For it to work,
you need to know the laboratory wavelengths to high precision, and you need
an accurate and stable wavelength calibration of the spectrometer.

In Figure 3, I have plotted representative values of the resolving powers
we just discussed, as a function of X-ray photon energy. As you can see, the
diagnostics are literally all over the diagram. Unfortunately, as we’ll see in the
next section, there is no physical effect that will allow you to construct a spec-
trometer with a nearly energy-independent (and high) resolving power across
the entire wavelength band. No single spectrometer will probably ever cover
all of these diagnostics simultaneously, and so either compromises are made,
or observatories are designed to carry multiple, complementary instruments.
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This was only a very rough overview, which will mainly serve as an aid
to appreciate the capabilities of the spectrometers to be put into orbit over
the next few years. Several important classes of diagnostic have not been
discussed, mainly in order for the scope of the article not to blow up out of
all proportion. For instance, nothing has been said about spectroscopy of hot,
high density plasmas (atmospheres of neutron stars and white dwarfs). It is
also reasonable to expect that there will be surprises: unsuspected physical
effects with clear spectroscopic signatures, waiting to be discovered.

Fig. 3. Resolving power required for some spectroscopic diagnostics, as a function
of the photon energy of the diagnostic feature. ’fl, Fe M’ indicates the location of
the resolving power required to distinguish between the Kα lines in the different Fe
M-shell ions, and ’L’ indicates the same for the Fe L-shell ions. ’RRC’ stands for
’radiative recombination continuum’.

3 X-ray Astrophysical Spectrometers

To set the stage for the discussion of the real instruments on future observa-
tories, we very briefly review the principles of the main types of spectrometer
in use in X-ray astronomy.

X-ray spectrometers are usually divided into diffractive and non-diffractive
instruments; the terms ’dispersive’ and ’non-dispersive’ are also used, as
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well as ’wavelength-dispersive’ and ’energy-dispersive’, or, less appropriately,
’constant-∆λ’ and ’constant-∆E’ spectrometers. The first rely on diffrac-
tion of X-rays, and comprise grating and crystal spectrometers. The second
comprise ionization detectors, calorimeters, and superconducting tunneling
junctions, and as yet to be invented other devices that rely on conversion of
photon energy into some other measurable quantity.

3.1 Diffractive Spectrometers

Grating Spectrometers Grating spectrometers are in many ways the sim-
plest of all possible X-ray spectrometers. In a standard application, a grating
or set of gratings, either transmission or reflection, is placed behind a focusing
telescope. This is usually referred to as an ’objective grating spectrometer’,
although that term is actually, strictly speaking, reserved for configurations
with the dispersing element located in front of the telescope. Figure 4 shows
a schematic of the arrangement. First, let’s look at transmission gratings.
From the condition for constructive interference for a grating of period d,
illuminated by light of wavelength λ incident at an angle χ, you derive the
dispersion equation

mλ = d(sin θ − sin χ) (5)

where θ is the dispersion angle, and m the spectral order (Fig. 4). If the
incident beam has an intrinsic angular spread ∆χ, the diffracted beam will
have a corresponding angular spread, ∆θ = ∆χ, at fixed wavelength and or-
der. That ∆θ corresponds to a wavelength width, according to the dispersion
equation:

∆λ =
d

m
cos θ∆θ, (6)

and, for small θ, this is independent of λ for a fixed telescope angular resolu-
tion ∆θ—hence the name ’constant-∆λ spectrometer’. The resolving power
is R = λ/∆λ = tan θ/∆θ ≈ θ/∆θ. You can increase the resolving power
by either increasing θ (increasing the line density of the grating, or going to
higher order m), or by decreasing ∆θ (better telescope). We will return to
this issue when we discuss the relative merits of transmission and reflection
gratings.

Transmission gratings were flown on the Einstein and EXOSAT observa-
tories (Brinkman et al., 1980; Seward et al., 1982). Spectra of a variety of
cosmic X-ray sources were obtained, of which the results on stellar coronal
emission deserve special mention (see Mewe 1991 for a review). Transmission
gratings are also at the heart of the high resolution spectrometers on AXAF,
to be discussed later.

The corresponding geometry for a reflection grating is shown in Figure 5.
Defining α as the angle of incidence with respect to the grating plane, and β
as the dispersion angle, you derive the dispersion equation

mλ = d(cos β − cosα). (7)
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Fig. 4. Schematic arrangement for an X-ray transmission grating spectrometer. A
grazing incidence telescope focuses radiation, which is diffracted by a transmission
grating placed in the focused beam (the grating bars are oriented perpendicular to
the plane of the page). Focused X-rays are dispersed in the plane of the page, and
detected by a position-sensitive detector in the focal plane.

For m = 0 (zero order) you obviously have α = β, i.e. the grating acts
as a mirror. For m < 0, the dispersed ray is inside the triangle defined by
the incoming ray and the zero order ray; these orders are referred to as the
’inside orders’. Outside orders (m > 0) don’t always exist; for certain ranges
of λ and given d, m and α, the dispersion equation may not have a solution
(cosβ > 1).

When illuminated by a beam of finite angular resolution ∆α, the diffracted
beams have an angular spread as well, which according to the dispersion
relation corresponds to a wavelength resolution

∆λ =
d

m
sin α∆α. (8)

This shows that a reflection grating instrument is also a ’constant-∆λ’ spec-
trometer. The resolving power is

R = λ/∆λ =
cosα − cosβ

sin α∆α
(9)
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Fig. 5. Diffraction geometry for a reflection grating spectrometer.

and this shows that you can increase the resolving power by using a good
telescope (small ∆α), or by lowering the angle of incidence. What counts is
the ’projected grating period’, d/ sinα. At grazing incidence, you can reach
fantastically high effective ruling densities this way; for example, at α =
1 degree, and a moderate line density of 500 lines/mm, the effective line
density is ∼ 29, 000 lines/mm! Reflection gratings therefore have the potential
advantage over transmission gratings of delivering high resolving power at
moderate, easy to fabricate ruling density.

But note that there is a price to pay: the grating must be extremely flat.
A piece of the grating with the wrong slope, off by ∆α from the nominal
incidence angle α, will produce diffracted light in the wrong direction for a
fixed λ, thereby broadening the outgoing diffracted beam, which implies a
decrease in resolving power. A change in α, to α + ∆α, produces a different
dispersion angle, β′, with cosβ′ = cos(α + ∆α) + mλ/d, but β′ refers to the
rotated plane, not the nominal plane of the grating (Figure 6). To get the
change in β with respect to the nominal dispersion direction, you have to
add ∆α: ∆β = β′ + ∆α − β. Using the dispersion relation, you find ∆β =
(1 + sin α/ sin β)∆α, and the apparent wavelength shift is ∆λ = d(sin α +
sin β)∆α/m. To get an idea, use λ = 15Å, d = 15, 000 Å (666 lines/mm),
α = 1 degree. To keep ∆λ < 0.03 Å(or resolving power 500), you need ∆α <∼ 6
arcsec. Similarly, when using an array of gratings to cover the telescope beam,
you need to align the gratings with respect to each other to similar precision.
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Fig. 6. A small piece of a reflection grating has the wrong orientation, and the
incoming beam makes an angle α + ∆α with the local grating plane. The ray
is dispersed to β′ according to the dispersion equation, but with respect to the
tilted plane. The change in angle with respect to the nominal dispersion angle β is
∆β = β′ + ∆α − β.

The other obvious disadvantage of having to use very small angles of
incidence on the grating is that its area projected to the incoming beam is
very small: you either have low throughput, or else you have to make many
gratings to cover the telescope beam.

X-ray reflection gratings will be flown for the first time on XMM, and
we’ll describe the Reflection Grating Spectrometer in more detail later. The
Extreme Ultraviolet Explorer (EUVE ) carried three reflection gratings, which
provided spectra longward of λ70Å (Bowyer and Malina 1996). A reflection
grating spectrometer is also currently being considered for NASA’s fleet of
spectroscopic X-ray observatories Constellation-X (most recent information:
http://constellation.gsfc.nasa.gov), to provide high resolving power in
the soft X-ray band.

Crystal Spectrometers The most venerable of all X-ray spectrometers: the
crystal spectrometer, which was used by Friedrich, Knipping, and von Laue
in 1912 to demonstrate the diffraction of X-rays by periodic structures, which
proved conclusively that X-rays are electromagnetic waves (for a historical
account, read Compton and Allison (1935), pp.20-38). The reason this works
is the coincidence that typical crystal lattice spacings are of order 1 Å, of the
same order of magnitude as X-ray wavelengths.

Referring to Figure 7, it is straightforward to show that constructive in-
terference between rays reflected off two planes spaced by the crystal lattice
spacing d will occur if

2d sin θ = mλ, (10)

the Bragg condition. Note that this is not true dispersion: for a chosen Bragg
angle θ, only certain wavelengths are reflected: λ, λ/2 (in second order),
etc. The crystal acts more like a narrow-bandpass interference filter, whereas
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a grating will simultaneously diffract all wavelengths, so you can record a
complete spectrum all at once. To obtain a spectrum in a finite-width band,
a crystal spectrometer has to scan through a range of Bragg angles.

The resolution of a crystal spectrometer is

m∆λ = 2d cos θ∆θ, (11)

with ∆θ the combined angular spread in the Bragg angle due to the finite
angular resolution of the incoming beam, convolved with misorientations of
different pieces of the crystal, and the effects on the diffraction pattern of ab-
sorption and dispersion within the crystal. The combined contributions from
the crystal are referred to as the ’rocking curve’. If you illuminate the crystal
with monochromatic light, and slowly rotate (’rock’) the crystal through the
Bragg condition, you will see the intensity sharply peak around the Bragg
angle. The finite width of the intensity vs. angle curve is partly due to the
fact that the crystal isn’t perfect, and the narrower this ’rocking curve’, the
higher the resolution of the crystal. With good crystals, very high resolving
powers can be achieved (R >∼ several thousand). Crystal spectrometers are
also ’constant ∆λ’ spectrometers, for a small range in θ.

θ

d

Fig. 7. Geometry for constructive interference between waves diffracted by succes-
sive crystal planes, with distance d.

There have been a small number of crystal spectrometers on rockets, and
the Focal Plane Crystal Spectrometer (FPCS) on Einstein provided the high-
est resolution X-ray spectra of cosmic sources to date. The first astrophysical
detection of an emission line (O VIII Lyα from hot gas in the supernova
remnant Puppis A) was in a crystal experiment performed by Zarnecki and
Culhane (1978). For a review of the beautiful FPCS results, see Canizares
(1990). A crystal spectrometer has been flown on the Shuttle to investigate
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the emission from the hot ISM in the 44-85 Å range (Diffuse X-ray Spectrome-
ter; Sanders, Edgar, and Liedahl 1996). A crystal specrometer of novel design
(OXS) will be flown on the Spectrum X/gamma observatory (see below).

3.2 Non-diffractive Spectrometers

Ionization Detectors Ionization detectors rely on conversion of the energy
of a photon into free electrons, through photoelectric absorption. They in-
clude various kinds of proportional counters and solid state devices. We will
briefly recall the properties of CCD detectors only, because the other detec-
tors have too low resolving power to be of interest in the present context. A
review of semiconductor detectors can be found in George Fraser’s chapter,
and in Fraser (1989).

A photon produces a primary photoelectron, which produces more elec-
trons by collisional processes. There is no amplification in a CCD, so that,
very roughly, the number of electrons is

N = E/w (12)

with E the photon energy, and w the average energy needed to produce one
secondary electron (more appropriately, N is the number of electron-hole
pairs in the semiconductor). For Silicon, w = 3.62 eV. The charge due to a
single absorbed photon is collected and measured, and the (apparent) photon
energy can be calculated. The energy resolution is set by the statistical fluc-
tuation on N , for a given photon energy. The ionization event also produces
other excitations, with their own expectation values and fluctuations. The
fluctuation on the number of electron-hole pairs and on the other excitations
are correlated, because energy must be conserved in the conversion process,
and this implies that the fluctuation on N is smaller than that given by Pois-
son statistics, σ = N1/2. This reduction can be described by a ’Fano factor’
F , such that the variance in the number of electrons is

σ2 = FN (F < 1). (13)

For Si, F ≈ 0.1, and the maximum (’Fano-limited’) energy resolution is
∆E(FWHM) = 2.35w(FE/w)1/2 ≈ 45(E/1 keV)1/2 eV (for a Gaussian dis-
tribution, FWHM = 2.35σ). This goes like E1/2, so a CCD is an ’almost-
constant-∆E’ detector—E1/2 varies by a factor ∼ 3 between 1 and 10 keV,
and other, small sources of noise tend to weaken the dependence of resolution
on energy even further.

The first CCD’s to be used extensively for X-ray astrophysics are the
detectors in the Solid-state Imaging Spectrometers on ASCA (Tanaka, Inoue,
and Holt 1994). Jelle Kaastra’s chapter provides a comprehensive overview
of results obtained with these instruments.
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Superconducting Tunneling Junctions The fundamental idea behind
STJ’s is to use a physical process with a very small w, in order to create a
large number N of ’countable objects’, with correspondingly small statistical
fluctuations. Instead of photoionization, the STJ relies on the breaking of
Cooper pairs in a superconductor, which have a binding energy of order 10−3

eV, instead of the ∼ 1 eV atomic binding energies that are characteristic of
photoionization.

The general mood among experimenters, however, seems to be one of pes-
simism that the early promises of these detectors will be realized in practical
high-resolution devices, at least in the near future, for a variety of technical
reasons. STJ’s still have great potential as superb photon-counting detectors
for IR/optical/UV applications (Rando et al. 1996).

Microcalorimeters Very loosely speaking, a microcalorimeter counts not
photoelectrons or broken Cooper pairs, but phonons—heat. X-rays are ab-
sorbed by a tiny cooled sensor with very low heat capacity, and the result-
ing rise in temperature is sensed with a thermometer. The limiting energy
resolution corresponds to the fundamental statistical fluctuations in the to-
tal energy of the sensor volume, and can be made almost arbitrarily small
by reducing the heat capacity. The expectation is that with high-sensitivity
thermometers and clever electronic readout schemes, microcalorimeters can
be made to deliver ∆E ∼ 2 eV (approximately constant), within the next
few years.

The microcalorimeter to be flown on Astro-E will have ∆E ≈ 12 eV. We
will come back to this instrument in a later section.

One astrophysical spectrum has already been obtained with a microcalori-
meter. A detector flown on a rocket by the Wisconsin/NASA Goddard col-
laboration has recently detected (expected) emission lines in the spectrum
of the hot (∼ 106 K) phase of the interstellar medium (Deiker et al. 1997).
Microcalorimeters are also planned for NASA’s future Constellation-X obser-
vatories, and for the European observatory XEUS (Turner et al. 1996).

3.3 Comparison with Astrophysically Significant Resolving

Powers

Let’s choose some representative parameters for each type of spectrometer,
and overlay the resulting resolving power on the resolving powers required for
the diagnostics discussed in the previous section. This is a crude procedure,
in the sense that sensitivity to a particular effect is not just a function of
resolving power, but also of signal-to-noise, crowdedness of the spectral region
of interest (confusion), etc., but it will at least allow us to establish a broad
overview.

For a Fano-limited CCD we had ∆E ≈ 45(E/1 keV)1/2 eV, so R ≈
22(E/1 keV)1/2 (see Figure 8). The microcalorimeter on Astro-E has ∆E ≈
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12 eV, so R ≈ 83(E/1 keV). The ’microcalorimeter of the future’ (Con-
stellation X and XEUS ) may have ∆E ≈ 2 eV, so R ≈ 500(E/1 keV).
With a telescope response of ∆θ ≈ 1 arcsec, and a line density of 5000
lines/mm, a transmission grating spectrometer has ∆λ = d∆θ ≈ 0.01 Å, so
R = 1240(E/1 keV)−1. With a line density of 1000 lines/mm, the resolving
power is R = 250(E/1 keV)−1. These numbers are roughly representative of
the two grating spectrometers on AXAF. We will discuss the performance
of these instruments, and of the Reflection Grating Spectrometer on XMM
in more detail later. Finally, a crystal spectrometer could reach R ∼ several
thousand, but given the fact that each crystal can only scan a fairly narrow
band (the arrangements on a satellite don’t allow large, variable ranges of
Bragg angles), an extensive array of crystals with different d-spacings would
be needed to cover a wide energy band. In practice, crystals are therefore
targeted for a certain narrow band of interest.

Fig. 8. Same as Figure 3, but with roughly representative instrumental resolving
powers overlaid (gray bands). The lowest band corresponds to the performance of a
Fano-limited CCD, the two curves rising with energy correspond to a ∆E = 12 eV
and a 2 eV microcalorimeter, and the two curves falling with energy correspond to
a low and high dispersion transmission grating. All spectroscopic diagnostics below
a given gray band are accessible in principle to the corresponding instrument.
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As you can see, there is not a single type of instrument that covers the
entire 0.1 − 10 keV band with uniformly high resolving power. Diffractive
and non-diffractive spectrometers ’cross over’ in R in the range around 1
keV, and the crossover is likely to remain around those energies to within
a factor ∼ 2, for a variety of practical reasons. On a fundamental level, the
competition is between microcalorimeters and diffractive spectrometers, be-
cause the concept underlying either type of instrument does not contain a
fundamental energy scale (like the ionization energy of the absorbing mate-
rial). Decisions on what type of instrument to use will therefore be based
on practical considerations (need for large numbers of diffracting elements
vs. need for cryogenic equipment, etc.). But note that microcalorimeters, by
their nature, in principle also allow for imaging spectrometers, a concept that
does not come natural to diffractive spectrometers.

As a final remark, note that for any finite redshift z of the sources of
interest, the loci of the spectroscopic diagnostics in Fig. 8 shift to the left by
a factor 1 + z, and at significant redshifts z >∼ 1, this would emphasize the
low-energy performance of any given spectrometer as its crucial characteris-
tic. The result would be a complicated set of tradeoffs. At lower energies, it is
easier to manufacture high resolving power diffractive spectrometers. On the
other hand, some of the most interesting objects to study at such redshifts are
clusters of galaxies, whose finite angular extent would complicate the problem
(requires either large dispersion angles with diffractive spectrometers to pre-
serve spectral resolution, or imaging arrays of non-diffractive spectrometers,
coupled with good low-energy response).

3.4 The Rowland Circle

In this section, I want to briefly discuss the concept of the Rowland circle.
It is integral to the design of modern diffractive spectrometers (though not
fundamental to the concept underlying their operation), so we’ll save time
when we discuss the grating spectrometers on AXAF and XMM. The reason
I’m putting it in here at all is that you won’t usually find the idea explained
in modern texts (but see Michette [1986] for an algebraic derivation), and it
is tricky enough to cause confusion.

Nineteenth century spectroscopists were faced with the problem that you
can not get the full resolving power from a flat grating (usually a reflec-
tion grating in this case) if it is not illuminated with collimated light (plane
parallel waves). In order to collimate the light from a source at a finite dis-
tance away, you either need lenses or mirrors, or a system of narrow slits.
The first cause large losses of light, especially at short wavelengths, while
the latter are also an obvious waste of precious light in the instrument. After
being diffracted by the grating, the beam has to be refocused onto a detector,
again at the expense of light. The problem is how to design a spectrometer
that will work with a diverging beam of light. The idea is to use a curved
grating that automatically corrects for the aberrations associated with the
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diverging beam, and also ’refocuses’ the dispersed light onto the detector. Of
the various possible solutions proposed, the one devised by Rowland is the
best known.

The idea is the following (see Figure 9). A source at S illuminates a
grating, placed at a distance L. A ray of wavelength λ strikes the grating at
A and is dispersed into an angle θ. Place a detector at F , on a circle of radius
R = L/2 (the Rowland circle). You can show that a different ray of the same
wavelength and spectral order, which strikes the grating at a different place
(A′) will intersect with the first ray almost at F , provided (1) the grating
has a radius of curvature L = 2R, (2) the grating period is constant along a
plane tangent to the grating at the apex A. The residual aberrations are of
order l2/R2 (l the length of the grating), and are to first order independent
of the wavelength. The proof of these statements is messy; you can find it, for
instance, in the massive classical review of grating spectrometers by Stroke
(1967). You can appreciate that the aberrations are small as long as l/R is
small, if you mentally tilt triangle SAF around S. Point A describes a circle
of radius 2R centered on S, which should be the grating surface, and triangle
SA′F is almost congruent with triangle SAF as long as the tilt angle remains
small.

You could reduce or eliminate the residual aberrations further, by choos-
ing a clever line space variation along the grating face, or a more complicated
geometry than the circles in Figure 9. But such improvements will turn out
to only work for one particular wavelength and spectral order. The impor-
tance of the compromise Rowland circle geometry is that it is independent of
wavelength, so that a focused spectrum at all wavelengths is obtained simul-
tanously. The focus is not perfect, but since the aberrations scale like l2/R2,
you can limit the resulting blurring by scaling up R for given l (at the obvious
expense of loss of light—the larger R, the smaller the fraction of light from
S that will strike the grating).

It is now clear how to incorporate these ideas into the design of X-ray
spectrometers. Figure 10 gives the equivalent Rowland geometries for both
transmission and reflection grating spectrometers, with the gratings placed
behind a grazing incidence focusing X-ray telescope —by reversing the direc-
tion of the rays SA and SA′ in Fig. 9.

Figure 10(a) displays the transmission grating case. Rays from the tele-
scope converge on the telescope focus F (the equivalent of the source in the
classical Rowland geometry), the grating bars are perpendicular to the plane
of the page, and dispersion is in the plane of the page. Again, the grating
and the focus are placed on a circle of radius R, and the grating has radius
of curvature 2R; the optimum spectroscopic focus Fs appears on the circle,
for arbitrary wavelength and spectral order.

Figure 10(b) shows the equivalent geometry for the reflection grating case.
The grating grooves are perpendicular to the plane of the page. Ray a strikes
the grating a A, and is dispersed towards the spectroscopic focus Fs. Ray
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Fig. 9. Schematic of the Rowland circle geometry. A source is placed at S, rays of
arbitrary wavelength strike the grating at A and A′, and come to a common focus
at F , if the grating has radius of curvature L = 2R, and the source, grating, and
focus are placed on a circle of radius R.
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Fig. 10. Relation of the Rowland circle geometries for X-ray transmission grating
spectrometers (a) and reflection grating spectrometers (b), to the classical Rowland
geometry of Figure 9.
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a′ strikes at A′, and, just like in the classical geometry, the grating has to
be curved in order to make both rays converge on a common spectroscopic
focus. Instead of using a physically curved grating, it is easier to introduce
a variation in the grating period along its face, which has the same effect
(Hettrick and Bowyer 1983). The telescope and spectroscopic foci, F and Fs,
and the center of the grating, A, are again placed on a Rowland circle, but
the radius of the circle now depends on the chosen line density gradient—the
smaller the line density gradient, the further away Fs will be from A, and
the larger the radius of the Rowland circle. The optimum-focus spectrum
again appears along the circle. In order to cover the focused telescope beam,
other gratings have to be placed with their centers on the same circle, like
the grating at B, at the same angle of incidence α for the focused ray passing
through their centers. In principle, each grating should have its own unique
line density gradient (because each grating has its own unique distance to
Fs), but in practice the aberrations resulting from having identical gratings
are small (as long as typical distances AB are small compared to AFs), and
are typically less important than the effect of the finite angular resolution
of the telescope, and the finite accuracy of alignment of the gratings with
respect to each other.

Finally, note that all Rowland-circle grating spectrometers are intrinsi-
cally astigmatic (i.e. rays from a monochromatic point source do not pass
through a single point in the focal plane, but instead have different foci in
the dispersion, and in the cross-dispersion directions). The telescope has a
finite extent out of the plane of the paper, and the telescope beam is ’filled’
with grating elements by ’rocking’ the Rowland circle back and forth around
an axis passing through the telescope focus, lying in the plane of the paper,
perpendicular to the optical axis. According to Fermat’s principle, the tele-
scope focuses on a cirle centered at A, of radius equal to the length of AF .
Focused rays traveling in different planes rotated around F out of the plane
of the paper will therefore converge in the cross-dispersion direction on that
circle. As you can see from Fig. 10(a), that circle is always outside the Row-
land circle for a transmission grating spectrometer (the two circles intersect
at the telescope focus), which implies that light will focus in the dispersion
direction on the Rowland circle, but is defocused in the cross-dispersion direc-
tion. The monochromatic image of a point source appears at Fs as a ’stripe’
perpendicular to the dispersion direction. Similarly, a circle of radius |AF |
centered on A will not coincide with the Rowland circle for the reflection
grating case either (Fig 10(b)), so the reflection grating spectrometer is also
astigmatic.

This astigmatism does not affect the resolving power of the spectrometer,
but the actual two-dimensional size of the image does determine the detector
and diffuse sky background level in a resolution element, so you want to keep
the astigmatism to a minimum, if possible.
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4 The High Resolution X-ray Spectrometers on AXAF

4.1 Introduction

NASA’s Advanced X-ray Astrophysics Facility (AXAF ) is currently scheduled
for launch on December 3, 1998. It is built around a high-resolution grazing
incidence telescope. The overal angular resolution of the telescope, across
the X-ray band up to 10 keV (<∼ 1 arcsec FWHM, driven by the desire to
explicitly resolve the point source contribution to the 2-10 keV diffuse X-ray
background), implies superb high resolution imaging and, with transmission
gratings placed in the focused X-ray beam, high resolution spectroscopy. In
the following, we will briefly look at the various instruments on AXAF, and
then discuss the grating spectrometers in detail.

Scientific operation of the observatory is the responsibility of the AXAF
Science Center in Cambridge, MA (http://asc.harvard.edu).A good source
of information on the observatory and instruments is the AXAF Obser-
vatory Guide (http://asc.harvard.edu/USG/docs/docs.html). An older
standard reference is Weisskopf et al. (1987).

The heart of the observatory is the High Resolution Mirror Assembly
(HRMA; Telescope Scientist: Leon van Speybroeck, Smithsonian Astrophys-
ical Observatory). It consists of 4 pairs of Iridium-coated paraboloid- hyper-
boloid shells in a Wolter-I configuration. The focal length of the telescope is
10.066 m. The figure and the surface smoothness of the mirror shells (glass)
were very accurately controlled to ensure the very high angular resolution
and high-quality focus.

There are four separate detectors in the focal plane, two designed for imag-
ing observations, and two designed for reading out the spectra obtained with
the gratings. One imaging and one spectroscopic detector consist of CCD’s
(the AXAF CCD Imaging Spectrometer detectors, ACIS-I (imaging), and
ACIS-S (Spectroscopy), Instrument PI Gordon Garmire, Pennsylvania State
University), and the other imaging and spectroscopic detector are microchan-
nel plate detectors (the High Resolution Camera detectors HRC-I (imaging)
and HRC-S (spectroscopy), Instrument PI Stephen Murray (SAO)). All four
instruments can be moved into the telescope focus by means of a mechanism
for lateral motion. In addition, the detectors can be moved along the optical
axis of the telescope to optimize the focusing (the focal depth of the telescope
is only 200 micron! and a small change in the length of the 10 m telescope
tube, if uncorrected, would easily defocus the system). A schematic of the fo-
cal plane is shown in Figure 11. The full field of view of ACIS-I is 16.9× 16.9
arcmin, of HRC-I is 31 × 31 arcmin.

The ACIS-I and HRC-I cameras were designed with different goals in
mind. ACIS obviously offers spatially resolved CCD spectroscopy, whereas
the HRC-I offers higher spatial resolution (ACIS slightly undersamples the
telescope response), large field of view, high time resolution, and an extended
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Fig. 11. Schematic of the AXAF focal plane, looking down on the focal plane from
the position of the mirrors. The SIM (Scientific Instrument Module) can be moved
along the vertical line; the focus can be moved in the perpendicular direction by
offset-pointing the entire telescope. The dispersion direction for the two gratings is
the ±Y direction (source: AXAF Observatory Guide, Ch. 1).

sensitivity to soft photons (down to ∼ 100 eV), but no intrinsic energy reso-
lution.

The ACIS-S camera was specifically designed to read out the spectra ob-
tained with the High Energy Transmission Grating (HETG) in the beam,
while the HRC-S was designed specifically for use with the Low Energy
Transmission Grating (LETG), although either detector can be used with
either grating for specific non-standard applications. For extensive informa-
tion on the detectors and their predicted performance in combination with
the HRMA, I refer you to the AXAF Observatory Guide.

Either one of two sets of transmission gratings can be rotated into the
focused X-ray beam, behind the HRMA, and together with the HRMA and
the focal plane detectors, these make up the High Energy Transmission Grat-
ing Spectrometer (HETGS, Instrument PI Claude Canizares (MIT)), and the
Low Energy Transmission Grating Spectrometer (LETGS, Instrument PI Al-
bert Brinkman (SRON/Utrecht)). These will be the first astrophysical truly
high resolution X-ray spectrometers, and from even just a cursory glance at
Figure 8, you can see what a tremendous increase in sensitivity to diagnostic
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physical effects they represent. Both grating spectrometers take advantage
of the very high angular resolution of the mirrors to attain high spectral
resolution, even at moderate dispersion angles.

In the following we’ll discuss both spectrometers, work out the efficiency
of a transmission grating and how it can be optimized for a chosen range of
photon energies, and calculate the effect of random fluctuations in the grating
properties on the performance.

4.2 The High Energy Transmission Grating Spectrometer

The HETGS (Canizares et al. 1987; Markert et al. 1994; and http://space.

mit.edu/HETG) consists of two different sets of gratings, with different peri-
ods. These form the High and the Medium Energy Transmission Gratings
(HETG and METG). Due to the finite size of the ACIS-S detector, the
HETG’s first order bandpass is limited to photon energies E > 800 eV.
The METG has lower dispersion and complements the HETG down to 400
eV. The gratings actually consist of small rectangular flat elements arranged
on four separate annuli, covering the four hollow-cone shaped focused beams
emerging from the HRMA’s four mirror shells. The HETG gratings are ar-
ranged behind the inner two shells, the METG gratings behind the outer
two shells, because the inner shells have higher throughput at the highest
photon energies (smaller diameter, hence smaller graze angle [for fixed focal
length], which implies high reflectivity up to higher photon energies). This
arrangement is shown in Figure 12.

The gratings are mounted in a Rowland configuration slightly different
from the one shown in Figure 10(a): all elements are placed on the Rowland
circle itself (diameter 8633.69 mm), perpendicular to the focused rays, instead
of on a surface of radius equal to twice the Rowland circle radius. As long as
the diameter of the Rowland circle is large compared to the diameter of the
grating (approximately 1000 mm), and the grating elements are kept small,
the aberrations arising from the approximation of the toroidal surface by
finite, flat elements of constant period are small (Beuermann, Bräuniger, and
Trümper 1978).

The gratings themselves are made of Gold, have rectangular bars, and
are supported on thin polyimide films. The period is 2000.81 Å (HETG)
and 4001.41 Å (METG). The bar widths are 1200 Å (HETG) and 2080 Å
(METG).

At high photon energies, the photoelectric absorption coefficient of Gold
drops approximately as E−3.5, and eventually any grating becomes trans-
parent to the radiation, and doesn’t diffract at high energies. The opti-
cal depth at wavelength λ ≡ 2π/k through a Gold bar of thickness z0 is
τ = kγz0 ≈ (z0/5000 Å)(E/3 keV)−2.5 for E >∼ 2 keV. Here, γ is the com-
plex part of the complex index of refraction, n ≡ 1 − δ + iγ (tables of op-
tical constants as a function of photon energy for all elements can be found
at http://xray.uu.se/hypertext/henke.html, which contains the tables
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Fig. 12. The High Energy Transmission Grating assembly. The four annuli cover
the beams from the four mirror shells; the high dispersion gratings are on the inner
two annuli, the low dispersion gratings on the outer two shells (source: AXAF
Observatory Guide, Ch. 7).

published by Henke, Gullikson, and Davis (1993) in digital form). The HETG
has a bar thickness z0 = 5100 Å, so it starts to become optically thin above 3
keV. Fortunately, the real part of the index is still non-zero in this regime, so
in addition to small attenuation, the radiation suffers a significant phase shift
on passing through the bars. Interference between this phase-shifted part of
the wavefronts with those parts that passed through the slits is considerable,
leading to significant diffraction efficiency. In this regime, the grating oper-
ates effectively as a phased array. The phase shift through the bars depends
on wavelength as ∆φ = kz0 ·Re(n−1) = kz0δ, so by optimizing the bar thick-
ness you can optimize the diffraction efficiency for a chosen energy band, as
we will explicitly calculate in the next section.
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The requirements of high dispersion (small period), and significant phase
shift at energies up to 10 keV, leads to the extreme aspect ratio of ∼ 4/1 of
the HETG grating bars. The manufacture of these novel gratings by a pho-
tolithographic process is described by Schattenburg et al. (1994). Laboratory
efficiency measurements (which cleverly use the interference properties of the
large aspect ratio of the grating bars, as a function of angle of incidence)
are described by Nelson et al. (1994). Preliminary results on the ground cal-
ibration of the HETGS are given by Dewey et al. (1997) and Marshall et al.
(1997).

As discussed above, the HETGS was designed to take advantage of the
very high angular resolution of the HRMA, so its resolving power in first order
is very nearly given by the expression we used to produce Figure 8. The actual
resolving power, as predicted from the ground calibrations, is shown in Figure
13. At large dispersion angles, the effect of small grating-to-grating variations
∆d in grating period slightly widen the resolution. From the dispersion rela-
tion, we have ∆λ/λ = ∆d/d, so this effect grows linearly with wavelength. At
short wavelengths (small dispersion angles), on the other hand, slight errors
in the telescope attitude reconstruction and focusing contribute to the width
of the spectral image.

Fig. 13. Same as Figure 8, but with the predicted resolving power for the AXAF
HETGS overlaid (gray bands). The upper gray band corresponds to the HETG,
the lower band to the METG (source: AXAF Observatory Guide, Ch. 7).
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The spectrum can be read out by either the ACIS-S or HRC-S detector,
but the HETGS was designed for use with ACIS-S. The six individual chips
that make up ACIS-S are ’folded around’ the Rowland circle. Four chips
are conventional ’front-illuminated’ (FI) devices, two are back-illuminated
(BI), which gives them higher quantum efficiency at low energies (but poorer
energy resolution). One BI chip was placed at the on-axis position of the zero
order, one in the middle of the spectral range on one side. The dispersion
directions of the METG and HETG are offset from each other by a small
angle, so that the two spectra (high dispersion and low dispersion) form a
shallow ’X’ on the detector.

From the dispersion equation you conclude that different spectral orders
will overlap in the spectral image: the first order position for wavelength
λ coincides with the mth order for wavelengths λ/m. These higher orders
’contaminate’ the first order, but they also contain interesting information,
because they have resolving powers m times higher than first order (the higher
orders are faint though). Separation, or at least unique identification, of the
higher orders is therefore desirable, and for this, the intrinsic energy resolu-
tion of ACIS-S can be used. The CCD resolution is good enough to uniquely
assign events in the focal plane to the correct spectral order to which they
belong. This is illustrated in Figure 14, which shows a ground calibration
spectrum obtained at the AXAF X-ray Calibration Facility (XRCF) at Mar-
shall Space Flight Center. The calibration spectrum has been summed over
the cross-dispersion direction, and each event has been plotted in a diagram
of CCD event pulse height vs. position along the dispersion direction. For
any given position along the dispersion direction, photons belonging to mth
order dispersed light of wavelength λ/m are offset vertically with respect to
each other. Conversely, the different spectral orders for a given wavelength
are offset horizontally with respect to each other. The resulting curved spec-
tra are the different spectral orders of the same incident spectrum. The CCD
therefore acts in the same way as the ’cross-disperser’ of an echelle grating.

In addition, the pulse height-dispersion plane nicely visualizes the effects
of ’pileup’ of events in the CCD. If two or more photons arrive in neighboring
pixels during a single CCD frame exposure time, the so-called event recon-
struction algorithm combines them into a single event in the output, with the
sum of the individual charges assigned to this single, ’reconstructed’ event.
The reason the event reconstruction has to be applied to the CCD frames
is that charge from individual photons may physically leak to neighboring
pixels, and if this is not corrected for (each pixel treated as a separate event),
the energy resolution of the CCD is degraded, and a fraction of fake events
with low apparent charges is generated. The unavoidable side effect, though,
is the unwanted ’pileup’ of true single pixel photons referred to above. But
since pileup is likely to occur only in intense parts of the spectrum (emis-
sion lines), the piled-up events will appear distinctively patterned and easily
recognizeable in the pulse height-dispersion plane, as a series of dots offset
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Fig. 14. HETGS spectrum of a Cu target bombarded by electrons, consisting of
a bremsstrahlung continuum and fluorescent Cu L and K lines (0.93 and 8.0 keV,
respectively). The top panel shows the CCD spectrum for all events combined,
the middle panel the HETGS spectral image (you can see the ’X’ shape formed
by the HETG and METG spectra). The dark spots are the emission line photons
(the vertical lines are artefacts from photons arriving at the detector during a
’frame transfer’ of the CCD). The bottom panel shows the location of all events
on the CCD pulse height vs. dispersion angle plane. The different spectral orders
are clearly separated in the pulse height direction. The bright zero order image has
been suppressed (source: AXAF Observatory Guide).
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in the vertical direction, at one, two, three, etc. times the true single photon
charge. In actual flight operation of the HETGS, this effect is expected to be
small, because of the low expected photon rates.

The pulse height- dispersion plot also clearly separates dispersed and non-
dispersed (background) photons. Non-dispersed photons are sky and intrinsic
detector background, and light scattered by the telescope (and possibly by
the gratings). In other words, by using the CCD pulse height information,
you can reduce the background in the spectrum by requiring that the pulse
height and the dispersion angle match, for a given wavelength. Any events
that don’t match are background, and are smoothly distributed in between
the orders in Figure 14.

For accurate quantitative analysis of actual spectra, it will probably be a
good idea to take advantage of these powerful features of the HETGS, and
perform both data analysis and spectral simulation in this 2D pulse height-
dispersion space.

All statements so far regarding the resolving power assume that the source
is pointlike. If the source has a finite extent, like a cluster or supernova rem-
nant, the angular width ∆θ in the expression for the resolving power becomes
the angular size of the source, and the resolving power in principle degrades
more or less linearly by a factor (source extent/telescope response). This is
a severe effect with AXAF, because the telescope resolution is so high. For
moderately extended sources, however, that radiate primarily in a small num-
ber of distinct, well-separated strong emission lines, the spectral image will
look like a discreet set of partially overlapping monochromatic images of the
source. Under these circumstances, it may be possible to perform spectrally
resolved imaging, i.e. imaging in isolated emission lines. Figure 15 shows an
example of this idea, the HETGS spectral image of the supernova remnant
N132D in the Large Magellanic Cloud.

Let’s discuss one more specific example that nicely illustrates the novel
spectroscopy that will become available with the HETGS, the predicted 1-10
keV spectrum of the galactic X-ray binary Cygnus X-3. Cyg X-3 is a highly
unusual X-ray binary, with properties unique among the galactic population.
It is currently suspected to be the only binary we happen to catch in a rapid,
short-lived evolutionary phase of massive X-ray binaries, where the compact
object rapidly ’spirals into’ the extended atmosphere of its massive compan-
ion (van den Heuvel 1994). The ultimate outcome of the binary evolution
may be the formation of a white dwarf/neutron star binary, or a neutron
star/neutron star binary.

Near-infrared spectroscopy of the IR counterpart shows distinctive emis-
sion lines from He I and II, characteristic of Wolf-Rayet stars (van Kerkwijk
et al., 1992). The compact object is therefore likely accreting from a mas-
sive stellar wind, if the primary really is a WR star. Direct evidence for this
conjecture was provided by the 1-10 keV spectrum of Cyg X-3 obtained with
ASCA (Kitamoto et al. 1994). The spectrum shows a rich discrete emission
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Fig. 15. Partial HETGS spectral image of the SNR 132D in the LMC (about 2
arcmin diameter). The dark image at left is the zero order image of the remnant
(a straight image). The dark band is the METG spectrum (the HETG spectrum
below it is very faint because the remnant is very soft). You can see monochromatic
emission line images of the SNR superimposed on the continuum in the MEG
spectrum (courtesy of John Houck and the HETGS group, MIT).

spectrum superimposed on a strong, hard continuum which originates near
the compact object. The discrete spectrum shows strong line emission from
H- and He-like Mg, Si, S, Ar, Ca, and Fe. The spectrum also clearly shows
narrow radiative recombination continua (RRC), of which the H-like Si, and
especially the H-like S RRC can be seen directly in the data (Liedahl and
Paerels 1996). The presence of these narrow features in the spectrum pro-
vides unambiguous evidence for the presence of X-ray photoionized gas in
the system, probably relatively tenuous material in the WR wind, ionized by
the strong central continuum.

With ASCA, the RRC’s were distinguishable, and possibly just barely
resolved, which indicates electron temperatures in the photoionized wind of
order kTe <∼ 80 eV (Liedahl and Paerels 1996; Kawashima and Kitamoto
1996). With the HETGS, these features will be clearly resolved, and a detailed
analysis of the spectrum will provide constraints on the conditions in various
parts of the ionized stellar wind (density, temperature, abundances, possibly
flow velocity). To illustrate this, I show a simulation in Figure 16, obtained
by folding the recombination spectra for the He- and H-like ions of Ne, Mg,
Si, S, Ar, Ca, and Fe, with values for the free parameters that fit the ASCA
spectrum, through the HETGS response. The RRC’s are clearly resolved,
which will give us accurate measurements of the electron temperature in
the various ionization zones. The ’triplets’ (resonance, intercombination, and
forbidden lines) of the He-like ions should also be resolved in principle, up to
He-like Ca, which will provide limits on the electron density in the various
ionization regions in the wind.
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Unfortunately, heavy interstellar and circumsource absorption preclude
the detection of soft photons from Cyg X-3. A measurement of the abun-
dances of the low-Z elements in the wind would have given us an independent
constraint on the low-Z photospheric abundances, and a direct window on
the nucleosynthesis and mass-loss history of at least this WR binary.

4.3 The Diffraction Efficiency of an X-ray Transmission Grating

We will calculate the diffraction efficiency of a transmission grating, show how
it is optimized to yield maximum efficiency in a chosen wavelength band, and
indicate how the efficiency calibration of the spectrometer is established in
terms of a physical model for the instrument.

As long as the wavelength of the radiation is much smaller than the phys-
ical size of the diffracting elements (the grating period, for a grating), and
at large distance away from the grating, Fraunhofer diffraction applies (Born
and Wolf 1959), and the diffraction pattern is simply calculated by Huygens’
principle: you just add up the complex phases of waves originating from the
various parts of the grating, for a given dispersion angle. It is straightforward
to show that the intensity of the angular pattern is

I(p, q) =
1

D2

sin2 ((p − q)D/2)

sin2 ((p − q)d/2)
|f(p, q)|2 (14)

with

f(p, q) = a
sin((p − q)a/2)

(p − q)a/2
exp (−i(p − q)a/2) +

∫ b

0

ds exp i∆(s). (15)

Here, d is the grating period, D is the total width of the grating, b is the
width of the grating bars, and a is the width of the slits between the bars.
The variables p and q are defined as p = k sinχ, q = k sin θ, where χ and θ
are the angle of incidence and the dispersion angle, respectively, and k the
radiation wave number. The first factor in the expression for I(p, q) represents
the rapid modulation due to the large number of periods in the grating. The
two terms in the expression for f(p, q) are the contributions of the slits and the
bars to the amplitude, respectively. The phase shift ∆(s) in the contribution
of the bars is

∆(s) = (p − q)s + k(n − 1)z(s) (16)

with s a coordinate in the plane of the grating, perpendicular to the bars,
and n ≡ 1 − δ + iγ is the complex index again. The function z(s) describes
the cross-sectional shape of the bars: it is the bar thickness, as a function of
s, measured perpendicular to the grating plane.

The efficiency of the grating is defined as the intensity for a given wave-
length and spectral order, integrated over an angular region containing the
sharp interference peak plus the weak, rapidly modulated ’wings’ due to the
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Fig. 16. Simulated spectrum of Cyg X-3, in a 40,000 sec exposure with the HETGS;
the HETG spectrum is shown (positive and negative spectral orders summed). Data
have been binned in approximately 0.005 Å bins (corresponding to one ACIS pixel).
The lower panel shows a blow-up of the 1.8-3.0 keV region.
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finite size of the grating, normalized to the intensity of the incoming radia-
tion.

Let’s examine the efficiency of the simplest possible grating: square bar
cross sectional shape, bar thickness z0. Inserting the condition for construc-
tive interference, p − q = −2πm/d, it is easy to show that with the proper
normalization, Eq.(14) reduces to

for m = 0: η =
a2

d2

{
1 +

b2

a2
e−2γkz0 + 2

b

a
e−γkz0 cos δkz0

}
, (17)

for m 6= 0: η =
a2

d2

sin2(mπa/d)

(mπa/d)2
{
1 + e−2γkz0 − 2e−γkz0 cos δkz0

}
(18)

These expressions were first given by Schnopper et al. (1977); note that for
m 6= 0 they refer to the diffraction efficiency into one (i.e. positive or negative)
spectral order only.

The efficiency of a grating with rectangular bars has several interesting
properties. First, note that for a particular choice of bar width (a/d = b/d =
1/2, or bar width equal to slit width), diffraction into the even orders dis-
appears. This is usually a desirable feature—more light is diffracted into the
odd (first !) orders, and there is less overlap of orders. Second, the efficiency
is a sensitive function of wavelength (through the wavelength dependence of
the complex index n) at wavelengths short enough that the bars are partially
transparent. This behavior is contained in the factor cos δkz0. By tuning the
thickness z0 of the bars, the efficiency can be enhanced over its value for an
opaque grating, for a chosen range of wavelengths. The grating is said to be
’blazed’ for that particular wavelength range (the origin of the term ’blazing’
will become clearer when we discuss reflection gratings, below). Moreover,
the dependence of the efficiency on wavelength, apart from an overall order-
dependent constant, is identical for all orders. At long wavelengths, the bars
are opaque, and the diffraction efficiency depends only on the bar-to-slit ra-
tio. All these properties are illustrated in Fig.17, where I show the diffraction
efficiency for a grating with Gold bars, of rectangular cross-sectional shape,
slit-to-period ratio 1/2, and two different bar thicknesses (0.35 and 0.60 µm).
Notice how the thinner grating has much higher efficiency in the 1-2 keV
band, while the thicker grating is (of course) superior above 2 keV. The reso-
nance feature at 100 Å is due to a local minimum in the absorption coefficient
of Gold at those wavelengths, causing interference between the bars and the
slits.

The AXAF LETG was optimized to provide enhanced efficiency in the
1-2 keV band, while the thicknesses of the bars of the HETG and METG
were chosen to provide optimum efficiency at energies E >∼ 2 keV.

Things change when the bar cross sectional shape is no longer strictly
rectangular (either by design or because of small imperfections in the manu-
facturing process). Once you realize that the edges of such bars don’t have the
same optical depth as the centers of the bars (usually smaller—the bar cross
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Fig. 17. Diffraction efficiency of a Gold transmission grating, of slit-to-period ratio
1/2, rectangular bar cross sectional shape, for two different bar thicknesses.

section may look like a trapezoid, or even an ellipsoid), it’s obvious that for
instance the exact cancellation of the even-order diffraction no longer works
for wavelengths at which the bars are partially transparent, even for bar-to-
slit ratio equal to unity. In fact, the even order diffraction efficiency becomes
extremely sensitive to bar shape and thickness at short wavelengths. Also,
the ratio of the efficiencies in the various orders becomes a function of wave-
length, even in the odd orders. These properties are illustrated in Fig.18,
where I show efficiencies for two gratings with identical parameters (slit-to-
period ratio 1/2, bar thickness 0.35 µm), but different bar cross-sectional
shape (either rectangular or ellipsoidal). The ’ellipsoidal’ grating shows the
expected diffraction into the even orders (in fact, the even orders become
more efficient than the odd orders at high energies). The higher the order,
the more sensitive the efficiency to the details of the bar properties.

Finally, if there is a distribution in the properties of the bars across the
grating (as will always be the case to some extent), the simple properties of a
strictly uniform grating obviously no longer apply. The simplest example is a
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Fig. 18. Diffraction efficiency of a Gold transmission grating, of slit-to-period ratio
1/2, bar thickness 0.35 µm, and two different bar cross sectional shapes (rectangular
or ellipsoidal). The grating period is 1.0 µm.

grating designed with a/d = 1/2, which exhibits finite even-order diffraction
due to the fact that the bar-to-slit ratio varies slightly around the mean over
the grating.

With these features in mind, you will appreciate the complications asso-
ciated with trying to uniquely establish the efficiency calibration of an X-ray
grating. Calibrating all different parts of the grating, at all wavelengths (and
possibly different angles of incidence) is obviously out of the question for
practical reasons, so one typically relies on a physical model for the grating
efficiency, with a (small) number of free parameters, whose values are con-
strained by comparing calibration data with model calculations. This is a
difficult and not necessarily unique procedure. Past experiments (the grat-
ings on Einstein and EXOSAT) for practical reasons had to rely almost ex-
clusively on a finite set of efficiency measurements, averaged over the entire
grating, at a discrete set of characteristic X-ray wavelengths (Seward et al.,
1982; Paerels, Kahn, and Wolkovitch, 1998), which did not always admit of
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a fully consistent, simple and unique model for the grating and it efficiency.
The AXAF grating spectrometer calibration relies on a much wider range of
data, including optical and IR period measurements and synchrotron X-ray
efficiency measurements for many or all individual grating elements, and is
ultimately expected to produce agreement between data and the best physical
model for the gratings on the order of or better than a few percent.

4.4 The Low Energy Transmission Grating Spectrometer

The Low Energy Transmission Grating Spectrometer (LETGS; Brinkman
et al. 1987) consists of four annular sets of free-standing Gold transmission
grating elements, mounted behind the HRMA mirror shells in a Rowland
configuration identical to that of the HETGS (cf. Section 4.2). It is designed
for use with the HRC-S imaging camera, which consists of three separate mi-
crochannel plate detectors, placed tangent to the Rowland circle. The grating
period is 9912.5 Å, the bar thickness 0.5µ. The low dispersion, as compared to
the HETGS, implies that, given the size of the HRC-S, the LETGS provides
spectroscopy out into the EUV band, out to 170 Å. At the lowest photon
energies, the LETGS reaches resolving powers in excess of R ∼ 2000, the
highest resolving power on AXAF. The resolving power is shown overlaid on
the spectroscopic diagnostics we discussed at the beginning, in Fig.19. The
somewhat wiggly appearance of the resolving power curve at the lowest en-
ergies is due to the fact that the HRC-S camera elements are flat, and do
not precisely follow the Rowland circle, which leads to a small amount of
defocusing at some wavelengths.

The LETGS has unique capabilities for performing high resolution spec-
troscopy of (very) soft sources (either intrinsically soft or sources with low
interstellar absorption). Soft coronal emitters can be studied at high spectral
resolution, which may actually allow the detection of bulk velocity fields, or
binary motion in short-period active binaries (RS CVn stars). Other prime
targets are cataclysmic binaries, white dwarf stars, and thermal emission from
hot neutron stars. The LETGS may also provide unique access to the spectra
of the low-Z elements in sources with a significant redshift.

With these goals in mind, the gratings were again (like their predecessors
on Einstein and EXOSAT) designed to be free-standing (no support film),
and the design of the HRC-S was optimized with the softest photon energies
in mind. Instead, the grating is supported by two Gold support grids, one
(the fine support grid) at right angles to the X-ray grating bars, the other
(the coarse support) actually consists of three grids at 120 degree angles.
These support grids have very large periods, and very large slit-to-period
ratios a/d, so while they do disperse light at an angle to the X-ray dispersion
direction out of the X-ray spectral image, they do so at very low efficiency.

The actual gratings were produced at the Max Planck Institut für Ex-
traterrestrische Physik in Garching, Germany, under the direction of Peter
Predehl. Details on the design, manufacturing, and laboratory calibration,
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Fig. 19. Same as Figures 8 and 13, but with the predicted resolving power of the
LETGS overlaid (gray band) (source: AXAF Observatory Guide, Ch. 8)

as well as a stunning color image of the complete, assembled LETG with all
the facets shining like the rainbow in diffracted optical light, can be found at
http://www.rosat.mpe-garching.mpg.de/axaf/LETG description.html.
A preliminary analysis of the ground calibration can be found in Brinkman
et al. (1997) and Predehl et al. (1997).

Many of the considerations mentioned earlier that apply to the HETGS,
apply equally to the LETGS, with one important exception. Since the HRC-S
has no intrinsic energy resolution, the overlapping spectral orders cannot be
separated by applying the detector energy resolution to the individual pho-
tons, as is the case with the HETGS/ACIS-S combination (imaging detectors
with sufficient energy resolution and high quantum efficiency at low energies
(E <∼ 500 eV) did not yet exist at the time the instrument was designed). This
situation has received considerable attention (somewhat surprising, since the
Einstein and EXOSAT gratings exhibited the same feature, so experience
with this type of data in astrophysics exists), and a separate optical element
was designed, the High Energy Suppression Filter (HESF), that can be in-
serted into the optical path to provide additional data in case spectral-order
ambiguity precludes quantitative interpretation of a given dataset. It must be
emphasized that the relative efficiencies of the various orders of the LETGS
have accurately and extensively been characterized, so that the relative in-
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tensities in the various orders, for an assumed incident spectrum, can always
be predicted with precision, even if the individual photons cannot be sorted
by order using detector energy information. No quantitative information is
ever lost by the overlapping of orders.

It is generally agreed that order confusion may arise in sources with bright
lines at relatively high energies (E >∼ 1 keV). The third orders of these lines
may contribute significantly to the spectrum at energies below 1 keV, es-
pecially if the first order low-energy spectrum is faint (for instance, due to
heavy interstellar absorption). The HESF was designed with this situation
in mind. It cleverly uses the notion of the critical angle for total external re-
flection (cf. Dick Willingale’s chapter), by having the focused and dispersed
light bounce off a special mirror made of low-Z material. This mirror is ori-
ented along the dispersion direction, and is slightly offset from the HRC-S in
the cross-dispersion direction. By tilting the entire telescope slightly in the
cross-dispersion direction, the dispersed light can be made to bounce off the
HESF before reaching the detector in the focal plane. This additional reflec-
tion suppresses photons with energies higher than the critical energy that
corresponds to the angle of incidence on the HESF, and their contaminating
effect in higher order is reduced. The HESF was incorporated in the AXAF
instrument package at a late date, and there has not been much time to carry
out measurements to characterize its performance, so experience with astro-
physical data will probably have to tell how useful it will turn out to be in
practice.

Ironically, the cross-dispersion properties of the fine support grid could
have supplied the additional information required to assign spectral orders
to bright emission line images—the extent of the faint cross-dispersion image
scales linearly with wavelength, and in principle this allows another measure-
ment of the wavelength of the photons in the image (a true cross-disperser).
However, this cross-dispersion image will usually be very faint in astrophysi-
cal spectra.

As an example of the power of spectroscopy with the LETGS, Figure 20
displays a simulated LETGS spectrum of the famous Seyfert 1 galaxy NGC
5548, obtained in 40,000 sec exposure. This object has a complex soft X-
ray/EUV spectrum. Continuum emission originating in the innermost regions
of the AGN is seen through a partially ionized absorber (Fabian et al. 1994;
Mathur, Elvis, and Wilkes 1995), which itself also emits detectable amounts
of X-ray line radiation (Kaastra, Roos, and Mewe 1995). These spectral com-
ponents are present in the simulation as well, at parameter values consistent
with recent observational constraints. The line emission, specifically, has been
represented by a source in collisional equilibrium at a temperature of ∼ 6×105

K, consistent with the discrete emission seen in the EUV spectrum.

All features in the 40− 100 Å band are due to the L-shell ions of the low-
and mid-Z elements, which are formed in a range of ionization conditions that
has not yet extensively been probed spectroscopically. Not much is known
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about the properties of the medium that gives rise to the emission, and it has
been speculated that this is the same medium that gives rise to the highly-
ionized Ne emission lines seen in the UV spectra of high-redshift quasars
(Hamann et al. 1998). Spectroscopy with the LETGS will also allow further
quantitative investigation of the ∼ 3800 km s−1 line broadening seen in the
EUVE spectrum, as well as the ∼ 1200 km s−1 bulk velocity field seen in the
UV absorption spectrum of the absorbing medium.

Fig. 20. Simulated 40,000 sec exposure AXAF LETGS spectrum of NGC 5548,
illustrating the novel spectroscopy that can be expected longward of the interstellar
Carbon edge (44 Å) in very soft objects, such as AGN (courtesy Jelle Kaastra,
SRON).

4.5 In Von Laue and Debye’s Footsteps: Scattering by Random

Fluctuations in the Properties of a Transmission Grating

As a another example of how basic physical principles can be applied directly
to a calculation of the properties of a diffraction grating, I discuss the presence
of small amounts of scattered light in the diffraction patterns of the HETG
and LETG. The calculation also provides yet another illuminating example of
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the physics of scattering mechanisms, which gives rise to very similar concepts
in widely differing physical systems.

During calibration measurements of the AXAF grating spectrometers, it
was found that the HETG and LETG exhibit small amounts of scattering,
visible as a very faint, nearly continuous distribution of light in between the
various diffracted orders of a given emission line. You can see this light in
Figure 21, which shows a LETG calibration spectrum of the Al Kα line, as
recorded with ACIS. From top to bottom, I plot the two-dimensional spectral
image (each photon is represented by a single dot; the zero order position is
at the origin), followed by the ACIS pulse height spectrum of all events. The
third panel shows the position of all photons in the dispersion-pulse height
plane, and here you can clearly see the separation between true continuum
radiation (the curved shapes running away from the lowest spectral orders)
and monochromatic, Al Kα radiation spread out horizontally between the
orders (all photons the same pulse height). Finally, the bottom panel shows a
monochromatic grating spectrum, obtained by integrating the spectral image
over the cross-dispersion coordinate, and including only events in the 1.4−1.8
keV CCD pulse height range.

The Al Kα light detected between the orders is the puzzle: light scattered
by the telescope should be distributed circularly symmetrically around each
spectral order in the two-dimensional spectral image, which is not what is
seen. The dispersion-pulse height diagram shows that the inter-order light
is not continuum radiation, so scattering by the grating is logically the only
possible explanation. What causes the scattering ?

Small random fluctuations in the grating properties (the period, bar thick-
ness, bar cross-sectional shape) cause scattering. The simplest way to under-
stand this is the following; we’ll specialize to scattering by period fluctuations,
because it is the easiest case.

Arguing from Huygens’ principle, you find that the diffraction pattern of
a grating is formally equal to the squared modulus of the Fourier transform of
the grating pattern (the pattern of slits and bars), as you can see as follows.
Adding the complex amplitudes from all parts of the grating (assuming an
opaque grating for simplicity) gives

I =

∣∣∣∣
∫

grating slits

ds exp i(p − q)s

∣∣∣∣
2

=

=

∣∣∣∣
∫

∞

−∞

ds G(s) exp i(p − q)s

∣∣∣∣
2

(19)

where G(s) is the grating pattern (G(s) ≡ 1 for the slits, G(s) = 0 otherwise),
which shows that I is the square of the transform of G.

Now suppose that the grating period were itself slowly modulated, by a
slow sinusoidal deviation in the period. That means that G(s) contains an-
other period, other than the average grating period, which causes additional
interference in the diffraction pattern. Right next to each bright diffraction
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Fig. 21. LETG Al Kα calibration spectrum, recorded with ACIS-S. Top to bot-
tom: two-dimensional spectral image, CCD pulse height spectrum, position of all
photons in the dispersion-pulse height plane, and grating spectrum with the con-
tinuum suppressed by PHA filtering. The dispersion-pulse height plane shows faint
scattered light in between the spectral orders as a horizontal band.
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peak you will see smaller peaks, corresponding to ’beats’ with the main grat-
ing period. Such subsidiary images are called ’ghost images’, and the ones
due to slow sinusoidal modulation of the grating period are called ’Rowland
ghosts’, after Henry Rowland, who first gave the correct explanation for their
existence, and managed to produce ghost-free gratings.

The general case of small random fluctuations in the grating period can
be represented by a Fourier decomposition, with random phases, for the fluc-
tuations. Each of the Fourier components produces a set of ghosts outside
the main diffraction peak, at an angular separation determined by the spa-
tial wavelength of the Fourier component. The entire superposition of Fourier
components therefore produces a continuous distribution of ghosts, or a scat-
tering ’wing’ on the main diffraction peaks. And as long as the amplitude of
the period fluctuations is small, you intuitively guess that the shape of the
scattering wing will reflect the distribution of power over the various Fourier
components in the grating pattern. This is the basic mechanism behind scat-
tering by diffraction gratings.

It’s easy to estimate the total amount of light thus scattered. For simplic-
ity, assume an opaque grating with bar/slit ratio equal to unity (it’s easy to
relax these conditions). Slit number n contributes a complex amplitude

An =

∫

slit n

ds exp(−iks sin θ)

= (q ≡ k sin θ)

=

∫ (2n+2)d/2

(2n+1)d/2

ds exp(−iqs)

=
1

−iq

(
exp
(
−iq(2n + 2)d/2

)
− exp

(
−iq(2n + 1)d/2

))
, (20)

using the same notation as earlier (d is the grating period). The intensity
is (we’re not worrying about the correct normalization because we will be
interested only in the fraction of light scattered)

I = AA∗ =

N∑

n=−N

N∑

m=−N

AnA∗

m

=
4 sin2(qd/4)

q2

N∑

n=−N

N∑

m=−N

exp
(
−iq(n − m)d

)
(21)

The intensity has its main peaks at the zeros of 1 − eiqd (or d sin θ = mλ,
the dispersion relation). This factor appears in the denominator in the final
expression for I, and arises from the sums over exp(inqd).

Now apply a small random perturbation ∆dn to the location of slit n;
this amounts to applying a small phase shift to An:

An =
1

−iq

(
exp
(
−iq[(2n + 2)d/2 + ∆dn]

)
− exp

(
−iq[(2n + 1)d/2 + ∆dn]

))

(22)



48 Frits Paerels

(Here you see that the result will not depend on period-to-slit ratio; the phase
shift is the same regardless of the slit-to-period ratio). The diffraction pattern
is

I = AA∗ =
4 sin2(qd/4)

q2

N∑

n=−N

N∑

m=−N

exp
(
−iq(∆dn−∆dm)

)
exp
(
−iq(n−m)d

)

(23)
The observable quantity is the statistical average of I, averaged over all pos-
sible realizations of the ∆dn:

〈
I
〉

=
4 sin2(qd/4)

q2

N∑

n=−N

N∑

m=−N

〈
exp
(
−iq(∆dn −∆dm)

)〉
exp
(
−iq(n−m)d

)

(24)
Now assume that the perturbations are small: q∆dn ≪ 1, and expand the
exponential in 〈 〉:

〈
exp
(
−iq(∆dn − ∆dm)

)〉
=

=
〈
1 − iq(∆dn − ∆dm) − 1

2
q2(∆dn − ∆dm)2 + . . .

〉

∼= 1 − q2σ2 (25)

since 〈∆dn〉 = 〈∆dm〉 = 0, 〈∆dn∆dm〉 = 0, and we define the variance of the
perturbations 〈∆d2

n〉 ≡ σ2. Therefore, to first order, the diffraction pattern
is reduced in intensity by a factor 1 − q2σ2, which implies that a fraction
q2σ2 = k2σ2 sin2 θ of the light has been scattered out of the main diffraction
peak. Recalling that sin θ = mλ/d (m the order number), you find that the
total amount of scattered light, as a fraction of the light in a given diffraction
peak, scales like fm = 4π2σ2m2/d2; there is no scattering in zero order.

This calculation closely parallels Debye’s famous calculation for scattering
of X-rays by thermal vibrations of the ions in a crystal lattice in crystal
diffraction experiments (Debye 1914). You can show that if the ∆dn are
normally distributed, then the statistical average of exp

(
−iq(∆dn − ∆dm)

)

(the reduction in the intensity of the diffraction pattern, or the fraction of
unscattered light) is exactly equal to exp(−q2σ2), and this is the so-called
Debye-Waller factor, by which the intensity of the sharp diffraction peaks
decreases, and which occurs in all kinds of scattering calculations. Our factor
1−q2σ2 is of course the first-order approximation to this expression. Anecdote
has it that when von Laue first discussed with Debye his idea of looking for
diffraction of X-rays by crystals, the latter raised the objection that thermal
vibrations of the ions around the lattice sites would destroy the interference
pattern, and that von Laue wouldn’t see anything. Von Laue proposed he’d do
the experiment anyway, if Debye would calculate the effect of the vibrations.
That led to the Debye-Waller factor and the conclusion that scattering would
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not significantly affect the sharp diffraction peaks, while von Laue got the
Nobel prize for the experiment . . .

John Davis (MIT) has given an elegant and mathematically powerful
alternative derivation of the scattering effect, where he also calculates the
angular distribution of the scattered radiation explicitly, to arbitrary order of
approximation, by assuming a normal distribution of completely uncorrelated
(bar-to-bar) period fluctuations (Davis 1997).

How does this compare to the observed scattering properties of the LETG?
In order to measure the intensity of the scattered light in the lowest few or-
ders, I took the Al K spectrum shown in Fig.21(d), and divided the spectral
range into equally sized subranges centered on the spectral orders. I approxi-
mately fitted a copy of the telescope point response function, integrated over
the cross-dispersion direction, to the diffraction peaks, plus a Gaussian to
represent the scattered light. The Gaussian was integrated over the relevant
detector subrange, to obtain the scattered light associated with each order.
These estimated scattered intensities, normalized to the intensities in the
sharp diffraction peaks, are shown in Fig.22, as a function of spectral order.
The dotted line in this figure shows the prediction based on the expression
derived above, fm = 4π2(σ/d)2m2, with the rms fluctuation in the period σ
normalized at m = 4.

As you can see, the qualitative behavior of the scattered light in low
order is roughy consistent with our prediction, but two features stand out.
First, there is some scattering in m = 0, which should not be there, and
second, there seems to be an even/odd asymmetry in m of the measured
fm, with respect to the predicted fm. Both these features have a natural
explanation. Scattering near m = 0 is partially an artefact of my analysis,
beacuse some light scattered through large angles from m = ±1 has leaked
into the analysis region centered on m = 0. I can correct for this effect if
I knew the theoretical angular distribution of the scattered light. To obtain
some idea of how large this correction might work out, I used the explicit
shape of the full diffraction pattern (including scattering) given by Davis
(1997), which was derived under the assumption that the period fluctuations
can be described by completely uncorrelated, Gaussian-distributed shifts of
the bar locations. I integrated the intensity of this pattern over the spatial
regions centered on the spectral orders, and normalized to the theoretical
efficiencies of the orders. The shape of the scattering distribution turns out
to depend on a/d, just like the diffraction efficiencies themselves, and so I
adjusted a/d and σ/d to approximately fit the measured scattering fractions.
The result is displayed in Fig.22 as the solid histogram. The agreement is
improved, and the physical interpretation of the scattering as being due to
random fluctuations in the period appears to be validated. The parameters
a/d and σ/d are not very well constrained, though, and the fact that the
best-fitting a/d does not entirely agree with the value determined from IR
reflectivity measurements of the individual grating elements is therefore not
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Fig. 22. Measured fraction scattered light, as a function of spectral order, for
low-order Al K radiation. The dotted line is the simple first-order estimate of the
scattering fraction (fm = 4π2(σ/d)2m2), normalized at m = 4, while the solid
histogram is based on an explicit shape for the distribution of scattered light.

a serious concern. Also, the exact shape of the scattering distribution I have
used is reasonable, but has not yet been independently verified.

The ’leakage’ correction at m = 0 turns out to be small, and we have to
conclude that there appears to be true scattered light associated with m = 0.
This could be due to fluctuations in the bar thickness, which also cause
scattering, and, in contrast to the period fluctuations, also cause scattering
in zero order. The calculation of the bar thickness fluctuation effect is much
nastier than the period fluctuation effect, because a perturbation to the bar
thickness is not equivalent to a simple phase shift to the complex amplitude
contributed by a given bar+slit. In addition, there is true absorption in the
bars, so you cannot repeat the simple calculation leading up to Eq.(25): the
apparent decrease in the diffraction efficiency can be due both to scattering
as well as true absorption. In order to derive the fraction scattered light, you
therefore have to calculate the diffraction pattern explicitly, to extract the
scattered light. If you’re curious, the details of the lowest order approximate
calculation are given in Paerels (1997).

It turns out that the bar-thickness-fluctuation scattered light depends
strongly on wavelength (as it should—the effect should disappear at long
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wavelengths, where the bars are opaque), occurs in zero order as well as in
orders m 6= 0, and does not depend on order for the orders m 6= 0. Taken at
face value, the measured fraction scattered light in m = 0 at Al K indicates
a relative rms fluctuation in bar thickness of ∼ 0.08, and the theory predicts
that the scattering by this effect should be very small (fm <∼ 0.6%) in the
orders m 6= 0 at Al K.

You may wonder why this scattering is a concern at all, given that it is
measured to be a sub-1% effect in m = 1. The reason is of course, that if the
scattering would turn out to be strongly wavelength- or order-dependent, then
the scattered light could significantly contaminate the true continuum light
(and these components cannot be separated with the HRC-S detector, which
has no intrinsic energy resolution), especially in line-dominated spectra, such
as the cooler coronal plasmas (T <∼ 107 K). Since absolute abundance mea-
surements depend on line intensities relative to the continuum, the scattering
could systematically bias abundance measurements.

And this turns out to be the case. From our calculation we find that fm ∝
m2, whereas Eq.(18) shows that the diffraction efficiencies are approximately
proportional to m−2. So in the lowest orders, each order has the same absolute
amount of scattered light! The higher orders of intense short-wavelength lines
can therefore contaminate the continuum at longer wavelengths. At some high
m, fm must of course saturate to fm = 1 through the Debye-Waller factor,
and all the diffracted light is scattered, at which point the scattered light
must again decrease like ηm itself. The actual degree of contamination and
its effect on abundance measurements is still under investigation.

5 The Reflection Grating Spectrometers on XMM

5.1 Introduction

ESA’s X-ray Multimirror Mission (XMM ; http://astro.estec.esa.nl

/XMM/xmm top.html) was defined to be the high-throughput X-ray spec-
troscopy cornerstone of the Horizon-2000 strategic scientific program. Launch
is currently scheduled for August 1999. The core of the observatory are
three identical high-throughput, medium angular resolution (<∼ 15 arcsec
half-power spot diameter [HPD, or half energy width HEW], and approx-
imately 6 arcsec FWHM) X-ray telescopes, of peak effective area ∼ 1500
cm2 at 1 keV, ∼ 500 cm2 at 5 keV (per telescope), and sensitivity out
to 10 keV (telescope scientist: Bernd Aschenbach, Max Planck Institut für
Extraterrestrische Physik). The focal length is 7500 mm. All three tele-
scopes have CCD focal plane cameras, collectively referred to as the Eu-
ropean Photon Imaging Camera (EPIC; PI M. Turner, Leicester University).
Two CCD cameras are MOS-type devices, the third is a pn-junction de-
vice. The mirror assemblies represent a breakthrough in the fabrication of
lightweight X-ray optics: each assembly consists of 58 separate, densely nested
Gold-coated thin Ni shells of Wolter-I geometry. Details and pictures can be
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found at the site mentioned above; a set of technical references is given on
http://astro.estec.esa.nl/XMM/user/xmmpub top1.html.

Two of the telescopes will be equiped with an array of reflection gratings
each, which, together with two dedicated CCD cameras at the spectroscopic
focus, constitute the Reflection Grating Spectrometer (RGS) experiment (PI:
Albert Brinkman, SRON). The Reflection Grating Arrays (RGA) will be
mounted permanently behind their mirror assemblies, where they intercept
approximately half the light for medium- to high resolution spectroscopy in
the 0.3-2.5 keV band; the other half of the light goes to the EPIC detectors
at the prime focus. Therefore, an RGS spectrum will be obtained for each
target observed with XMM.

Finally, the Optical Monitor (OM) experiment (PI: Keith Mason, Mullard
Space Science Laboratory) will simultaneously cover the X-ray field of view in
the UV/optical band (1700−6000 Å) with a 30 cm aperture Ritchey-Chrétien
telescope.

In order to ensure a uniform, optimum, and timely analysis of the ’Serendip-
itous Survey’ formed by the data content of all of the imaged fields, an XMM
Survey Science Center has been formed (PI: Mike Watson, Leicester Univer-
sity), a collaboration of institutes in the UK, France, and Germany. The SSC
will analyze all fields, and survey the XMM X-ray sky.

5.2 Properties of Reflection Gratings, and Design of a Grazing

Incidence Reflection Grating Spectrometer

As stated above, XMM was designed around high throughput, medium an-
gular resolution optics. The desired instrument package was to include a high
resolution spectrometer for the soft X-ray band, with high throughput and
a resolving power of at least R = 250 (also in the HEW sense, just like the
telescope angular resolution specification) at 1 keV. This resolving power was
chosen with the density diagnostics in the He-like ions in mind, among other
things. At the time these recommendations were formulated (mid-eighties),
the only way to achieve these goals was with diffractive spectrometers.

But with a moderate telescope angular resolution, the dispersion angles
need to be large in order to achieve R ∼ 250; for instance, with a 20” tele-
scope blur, a transmission grating needs to disperse to 250×20”= 1.4 degrees,
which, for 1 keV photons, implies a line density of ∼ 20, 000 lines mm−1 !
Instead, as we have seen before, it is much easier to achieve these high dis-
persions with grazing incidence reflection gratings, a solution first advocated
for XMM by Kahn and Hettrick (1985).

In addition, the reflectivity properties of reflection gratings have certain
attractive features. First, the efficiency in the soft X-ray band can be high (>
30% in first order), and second, the wavelength at which this maximum occurs
can again be tuned by optimizing the grating groove shape. To understand
these properties, let’s look at how to calculate the reflectivity of a reflection
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grating, an exercise in the application of electrodynamics to the solution of
a real problem (as opposed to a textbook EM problem).

There is a fundamental distinction between the operation of a transmis-
sion grating and a reflection grating, in the regime λ/d ≪ 1 that applies to
the X-ray band for moderate line density structures. All a transmission grat-
ing does in that case is block and possibly phase shift parts of the incoming
wave fronts; Huygens’ principle is sufficient, and you don’t need Maxwell’s
equations to work out the diffraction efficiency. But with a reflection grating,
you have to apply the correct boundary conditions to the fields at the reflec-
tive surface in order to obtain the intensity of the reflected waves in terms of
the intensity of the incident waves. For a flat mirror surface of given material
properties, this is trivial, and the calculation is in every textbook. But there
is no mathematically simple way to impose general boundary conditions at a
periodically modulated (as opposed to a flat) surface. Hence, a general solu-
tion in closed analytical form to the problem of determining the reflectivity
of a reflection grating does not exist.

Only approximate solutions to the problem exist. Let’s look at a well-
known, but as it turns out for our application physically unrealistic choice of
boundary condition. If you ad-hoc impose the condition of perfect reflectivity
at the grating surface, that is, the amplitudes of the fields inside the grating
and at the surface are zero everywhere, each part of the grating surface
radiates in phase with the incident wavefronts, and the efficiency calculation
reduces again to applying Huygens’ principle to the periodic surface. This is
also referred to as ’scalar diffraction theory’, because the actual dynamics of
the electromagnetic field (its tensor character and the interaction with the
atoms of the reflecting material) is entirely ignored.

As a benchmark example, a straightforward application of Huygens’ prin-
ciple to the case of a grating of period d, illuminated at incidence angle α,
with triangular-shaped grooves of tilt angle δ (see Figure 5 for the geome-
try) yields the following expression for the scalar diffraction efficiency as a
function of wavelength and order m:

ǫm = (4 sin2 θ sin α sin βm)−1g2P 2
m(sin Qm/Qm)2 (26)

with

g = sin α/ sin(α + δ) (27)

Pm = sin θ
{
sin(α + δ) + sin(βm − δ)

}
(28)

Qm = (πgd/λ) sin θ
{
cos(α + δ) − cos(βm − δ)

}
(29)

with βm the dispersion angle in order m, and θ the angle of the incident ray
with the groove direction.

By inspecting this expression, you see that it peaks at wavelengths satis-
fying

α + δ = β − δ (30)
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because Qm → 0. When this condition is fulfilled, the incident and dispersed
ray make the same angle with the groove surface, and the grating facets act
kind of like tiny mirrors—the grating literally ’blazes’ in reflected light, and
is said to ’be blazed’ at this wavelength and spectral order. The blaze can be
tuned by varying the facet angle δ.

But we know that mirror reflectivities in the soft X-ray band are definitely
finite, and less than unity. As a stopgap measure, one therefore multiplies ǫm

by the appropriate mirror reflectivity Rλ to ’correct’ for this effect. This is
physically not consistent, because it violates the choice of boundary condi-
tions underlying Eq.(26), and the conceptual crisis is evident once again when
it comes to choosing the incidence angle at which to evaluate the reflectivity
correction factor: except at the blaze, the angle of incidence on the facets
α + δ and the ’reflection’ angle β − δ are not equal. Often, the mean of Rλ

evaluated at both angles is used: Rλ ≡ [Rλ(α + δ)Rλ(βm − δ)]1/2, and the
full grating efficiency is defined as ηm = Rλ · ǫm.

Theories that incorporate solutions to the full Maxwell equations are des-
ignated ’vector theories’, to distinguish them from the scalar theory outlined
above. All vector theories of grating reflectivity (Stroke 1967, Sect. V, and the
references therein) employ the periodicity in the direction along the plane of
the grating, and start with a Fourier expansion, with constant coefficients for
the far fields; the components of the reflected field are the various diffraction
orders. Following Rayleigh, one makes the assumption that this expansion is
valid everywhere (that is, that the coefficients do not depend on the coor-
dinate direction perpendicular to the grating plane), including near and at
the grating surface. Imposing the boundary conditions on the grating surface
leads to an infinite set of coupled linear equations, which, when suitably cut
off at some maximum harmonic, can in principle be solved numerically. A
further traditional simplification arises when one assumes that the grating
material has infinite conductivity (i.e. imaginary part of the complex index
of refraction equal to zero).

But if you have to resort to using a computer to evaluate the reflectivities
in these approximate vector theories, you might as well solve the Maxwell
equations directly and exactly, and apply the correct boundary conditions
with no restrictions on the properties of the grating material. Various schemes
have been worked out to accomplish this (Petit 1980). In the conceptually
simplest of these, a Fourier expansion is again substituted in Maxwell’s equa-
tions, but this time one allows for the general dependence of the expansion
coefficients on the vertical distance to the grating. The resulting set of cou-
pled ordinary differential equations for the Fourier coefficients can again be
solved numerically with a suitable cutoff (see for instance Jark and Nevière,
1987). These numerical procedures also naturally allow for arbitrary grating
groove shapes.

Figure 23 displays an example comparison between the scalar diffraction
and the EM theory efficiencies for a Gold grating of parameters very similar
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to those for the gratings in the RGS. The general features of both calculations
are roughly the same (such as the blazing behavior- the blaze was chosen to
be at 15 Å in m = −1), but for accurate predictions the scalar theory is
clearly inadequate.

Fig. 23. Absolute efficiency of a Gold reflection grating of triangular profile, illumi-
nated at an angle α = 1.58 deg; the line density is 646 lines/mm, the groove facet
tilt angle δ = 0.70 deg. The solid line gives the scalar diffraction result, the data-
points were calculated from a numerical solution to Maxwell’s equations developed
for the RGS project.

Reflection grating spectrometers have a few more free parameters than
transmission grating spectrometers (angle of incidence α, groove shape, spac-
ing between adjacent gratings in the array), so optimizing the design is a little
more complicated. We’ll discuss the optimization of the design for the RGS
as an example.

The primary design drivers are of course the chosen wavelength band of
operation, and the resolving power at some chosen fiducial wavelength. You
require that the design deliver the optimum throughput. For the RGS, the
(minus) first order wavelength band was chosen to be 5 − 35 Å. The short
wavelength cutoff is dictated by the properties of suitable grating materials.
All elements near Z = 80 (Au, Pt, Ir) have deep M-shell absorption edges
near 2.5 keV, which provides a natural boundary. The upper limit was loosely
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chosen with atomic physics, and the absorbing properties of the interstellar
medium in mind; many sources are very faint well beyond the O K edge
at 23 Å. Also, a much wider band sampled at resolving powers of at least
R = 250 would have required a physically much larger focal plane detector.
The 5 − 35 Å band contains the K-shell spectra of the abundant elements C
through Si (for C, only the Hydrogenic species is in the band), as well as the
diagnostic-rich Fe L spectra. The blaze wavelength was chosen in the middle
of the band, λB = 15 Å, roughly where the Fe L n = 3 − 2 emission lines
occur.

The resolving power at blaze, for given telescope angular resolution ∆α,
depends of course on the angle of incidence α and the grating period d. It
will be convenient to rewrite it as (Eq.(9)):

RB = λB/∆λ =
cosα − cosβB

sin α∆α
=

=
(1 − sin2 α)1/2 − (1 − sin2 βB)1/2

sin α∆α
≈

≈ (sin α + sin βB)(sin βB − sinα)

2 sinα∆α
≈

≈ γ

∆α

(1
η
− 1
)

(31)

where we have defined the graze angle γ on the groove facets, γ ≡ α + δ =
βB − δ, used small angle approximations, and defined the ratio

η ≡ sin α/ sinβB (32)

(don’t confuse this η with the efficiency of a grating; the coincidence in
nomenclature is unfortunate, but the use of η for both is common in pa-
pers on the RGS). For a given telescope angular resolution ∆α, the resolving
power at blaze therefore depends on η and γ.

Next, we calculate the throughput at blaze. From Eq.(26), you see that
the diffraction efficiency ǫB at blaze is equal to ǫB = sin α/ sinβB ≡ η, and
to obtain the grating reflectivity we multiply by the mirror reflectivity at the
graze angle γ, at the chosen blaze wavelength, RλB

(γ) (we use scalar theory
for analytical convenience). The gratings cannot be placed infinitely close
together—rays dispersed at large enough angles will be intercepted at the
back of the next grating in the array, so there is a limit to how densely you
should cover the focused beam in order to intercept the optimum amount
of light. Packing the gratings more densely intercepts a larger fraction of
the beam, but also increases the vignetting. For the RGS, the gratings were
spaced such that all rays up to the first order blaze wavelength escape shad-
owing (ray dispersed from the top of one grating barely grazes the bottom of
the back side of the next grating in the array). That implies that the fraction
of the beam that is intercepted is equal to η, and the balance 1 − η passes
unhindered through the grating array and can be used by the detectors at
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the prime focus. So the total throughput at blaze, tB, is the product of the
fraction light intercepted times the reflectivity of the gratings:

tB = η2RλB
(γ). (33)

You can see that there is a tradeoff between resolving power and throughput:
lowering η increases the resolving power, but decreases the throughput, and
vice versa.

The optimization might proceed as follows. Choose the resolving power at
blaze; the telescope resolution ∆α is given. Now examine the throughput at
blaze as a function of η: for every value of η, Eq.(31) gives the corresponding
value of γ, and η and γ together determine the throughput at blaze. For
∆α = 30” (the original optimization for the RGS was based on a figure of
∆α = 30”), a resolving power at blaze of 300, and a 15 Å blaze, I plot this
throughput as a function of η in Figure 24; the grating material is Gold. With
increasing η, the throughput first rises roughly as η2. As η approaches unity,
γ rapidly increases, and therefore the reflectivity RλB

(γ) sharply decreases.
Therefore, there is a maximum in the curve, in this case at η = 0.50. Given
this optimum η, γ follows from Eq.(31); for η = 0.50, we find γ = 2.50 deg.
From α + δ = βB − δ = γ, we find

δ = γ
1 − η

1 + η
(34)

so in our case, the facet tilt angle δ = 0.833 deg. The grating period follows
from the dispersion equation at blaze, λB = 2d sinγ sin δ: d = 11823 Å, or a
density of 846 lines mm−1. Finally, the angle of incidence is α = γ− δ = 1.67
deg.

The actual optimization for the RGS was done slightly differently; there,
the physical length of the detector (nine CCD chips long) was held constant
instead of the resolving power at blaze. This yields an alternative relation
between η and γ. The optimum value for η was chosen as a compromise
between throughput in m = −1 and m = −2, and lies at η = 0.53, consistent
with the overall requirement that approximately half the light should go to
the EPIC detectors. The resulting actual design parameters for the RGS are
listed in Table 4. Note that the zero order does not fall on the detector, so that
the exact wavelength scale will have to be derived from accurate knowledge
of the geometry, and the pointing direction of the satellite.

The design is completed by choosing the arrangement of the gratings in
the focused beam. In the RGS, the gratings are placed on a Rowland circle as
shown in Figure 10(b). As discussed earlier, the actual radius of the Rowland
circle is arbitrary for the grazing incidence reflection grating instrument, as
long as the line density gradient on the gratings matches the Rowland circle
radius. For the RGS, the center of the grating array was placed at 6700
mm from the telescope focus. The distance to the spectroscopic focus at the
blaze wavelength was chosen to be equal to this same distance, which implies
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Fig. 24. Throughput at blaze, for an array of Gold reflection gratings, with blaze
wavelength λB = 15 Å, a resolving power at blaze of 300 with a 30” telescope blur,
as a function of the parameter η = sin α/ sin βB .

that the Rowland circle geometry is nicely symmetric between the focused
telescope and first order blaze beams. The entire set of gratings lies on the
toroidal surface generated by rotating the geometry around an axis passing
through the telescope focus and first order blaze focus; this arrangement
minimizes the astigmatism of the spectrometer. In all, with a grating size of
100× 200 mm, of order 200 gratings per array are needed to cover the beam.

5.3 Implementation of the Design, and Actual Performance of

the RGS

Implementation The gratings were produced by replication in gold on an
epoxy layer from a mechanically ruled master grating. The master grating
was ruled directly into Gold with an interferometrically controlled ruling ma-
chine, which also allowed direct implementation of the required line density
variation (using the same density gradient on all gratings introduces only a
negligible aberration, as it turns out). The groove shape is approximately
triangular, with a tilt angle close to the design value of δ = 0.70 deg. X-ray
performance tests of master gratings are described in Bixler et al. (1991).
Performance of replicated gratings, and a preliminary physical model for the
grating efficiency, is decribed in Kahn et al. (1996). The primary variable
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Table 4. Design Parameters of the Reflection Grating Spectrometer on XMM

Mean Line Density 646 lines mm−1

Blaze Angle δ 0.70 deg

Mean Graze Angle γ 2.28 deg

Angle of Incidence α 1.58 deg

Dispersion Angle at Blaze βB 2.97 deg

Blaze Wavelength λB 15 Å

Fraction of Beam Intercepted η 0.53

Resolving Power at Blaze 290

in this model is the actual average groove shape, loosely characterized by
the mean slope δ of the grating facets. From the measured angular, wave-
length, and order dependence of the efficiency, a more detailed shape has
been derived, with turns out to have small but noticeable departures from
the triangular shape.

As discussed in Sect. 3.1, the gratings need to be very flat, and very
accurately aligned in order to preserve the full resolution implied by the
angular width of the telescope beam. In practice, this amounted to a com-
bined flatness and alignment requirement of ∆φ <∼ 5 arcsec. Flatness was
achieved by replicating gratings onto lightweight, very flat SiC substrates,
which were stiffened in the dispersion direction with thin support ’ribs’ on
the back of the substrates. In practice, the flatness of the substrates is such
that this contribution to the spectrometer resolution is almost negligible. The
grating-to-grating alignment requirement (both with respect to position and
orientation) was one of the drivers on the design of the overall ’integrating
structure’ in which the gratings are held, directly behind the mirror module
in the focused X-ray beam. The required angular precision is achieved by
a ’multi-scale’ design, where the actual ’grating box’ provides low-precision
mounts for high-precision elements (which in turn hold the gratings), which
are interferometrically aligned to micron accuracy (Kahn et al. 1996). Figure
25 shows a picture of a complete RGA. The RGA’s were designed and built
by Columbia University (PI: Steven M. Kahn).

Resolving Power and Shape of the Response In practice, the telescope
blur and finite accuracy of grating-to-grating angular aligment contribute
approximately equally to the resolution of the RGS. The actual performance
of the telescopes has steadily and significantly improved over its original
specification, whereas the grating alignment is fundamentally limited by the
accuracy of the interferometric aligment procedure. The contribution of the
telescope blur according to Eq.(8) scales like
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Fig. 25. Schematic of a single Reflection Grating Array for the RGS. The focused
X-ray beam is incident from the top. The 182 gratings are placed on a Rowland
toroidal surface. The lightweight structure holding the gratings is manufactured
from Beryllium, and is mounted with the triangular mounts directly behind the
mirror module. The reflective faces of the gratings face forward; the five stiffening
ribs on the back of each grating are also visible.

∆λ = (d/m) sinα∆α, (35)

which is strictly independent of wavelength, for given α and telescope blur
∆α. Relative misalignments, characterized by a angular spread ∆φ produce
a weak dependence on wavelength (cf. Section 3.1):

∆λ = (d/m) sin α(1 + sinβ/ sin α)∆φ. (36)

and the telescope contribution becomes progressively less important with in-
creasing dispersion angle. As it is, the telescope blur and misalignment con-
tributions are about equal at the short wavelength end of the band. Figure 26
shows the predicted resolving power of the RGS (based on the FWHM of the
profile, not the HEW, to facilitate comparison with the other instruments),
calculated with a dedicated raytrace code. Both first and second order re-
solving power are plotted this time, because the second order efficiency of
the instrument is actually appreciable.

The gratings exhibit scattering, in this case (just like for a mirror sur-
face) by low-amplitude microroughness on the surface, which gives rise to
a separate, wider component to the spectrometer profile (period fluctuation
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Fig. 26. Predicted resolving power of the RGS, in orders m = −1 (lower gray band)
and m = −2 (upper gray band), overlaid on the set of spectroscopic diagnostics.
The second order bandpass formally extends up to 5 keV, but the effective area is
small above 2.5 keV. (courtesy Jean Cottam, Columbia University).

scattering is negligible, because the spacing of the grooves was actively con-
trolled during the ruling of the master grating). The calculation of the effect
of the roughness on a grating surface is entirely analogous to the calculation
for grazing incidence X-ray scattering by a mirror (e.g. Church, Jenkinson,
and Zavada 1977, and the references given by Klos 1985). In that case, one
imagines the perturbations to the flat surface to be decomposed into their
equivalent Fourier series. Each sinusoidal component in this expansion ba-
sically represents a sinusoidal grating on the mirror surface, which diffracts
light out of the specularly reflected beam, into a series of ghost images on
either side of the specular beam. Again, a distribution of sine waves with
different spatial frequencies will produce a distribution of ghosts, i.e. a con-
tinuous scattering distribution, with the higher spatial frequency sine waves
scattering light further from the core (through the dispersion relation for the
light diffracted by the sine waves). The shape of the scattering distribution
will again reflect the power spectral density of the surface perturbations, an
intrinsic property of the mirror surface. One often characterizes this power
spectral density by a spatial frequency bandwidth, which is then inversely
proportional to the corresponding correlation length of perturbations on the
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mirror surface. The total amount of scattered light is again completely de-
termined by the rms roughness of the surface (rms amplitude of the pertur-
bations), just as with the transmission grating scattering.

Just as with calculating the reflectivity of a reflection grating, one has
to face the fundamental question of how to impose the boundary conditions
to the electromagnetic field on the scattering surface, and there are again
’scalar’ and ’vector’ scattering theories. The simplest calculation is of course
the scalar calculation, assuming very low amplitude long spatial-wavelength
perturbations, such that only the first-order diffraction by the Fourier com-
ponents of the roughness has to be taken into account. This calculation is
straightforward (although the standard papers on the subject are somewhat
confusing). The extension to a periodically modulated surface (a grating) is
also straightforward, and is decribed in Spodek et al. 1998, Kahn et al. 1996,
and Paerels et al. 1994.

The expression for the fraction of light scattered in the lowest order scalar
diffraction scattering theory is closely analogous to the expression we found
for the fraction of light scattered by period fluctuations in a transmission
grating (σ is the rms amplitude of surface perturbations):

fm = k2σ2(sin α + sin βm)2 (37)

which exhibits a rather strong wavelength- and spectral order dependence.
Just as with the transmission grating scattering, we expect that you can
prove (under the usual assumptions) that this factor is just the lowest order
approximation to a Debye-Waller factor of the form

fm = 1 − exp
(
−k2σ2(sin α + sinβm)2

)
(38)

The characteristic angular width Γ of the scattering distribution scales in-
versely proportional to the correlation length l of the perturbations:

Γ ≡ (kl sin βm)−1 (39)

As a general rule of thumb, with decreasing wavelength or increasing spectral
order, the fraction scattered light increases, while the angular distribution
narrows.

The RGS gratings, we found, exhibit scattering on two distinct angular
scales, corresponding to correlation lengths of order l ∼ 10 − 12 µm and l <∼
few grooves, respectively. The first gives rise to a component of scattered light
close to the core of the spectrometer profile (the angular scale corresponds
to ∼ 8 resolution elements at blaze), the second basically produces a faint,
almost constant background of inter-order light. The long-correlation length
roughness has an amplitude of ∼ 11−13 Å, which implies a fraction scattered
light of ∼ 13% at blaze. The effect of this scattered light has not been included
in the resolving power plot (Fig.26). Because the profile consists of a sharp
core, and fainter, more extended scattering wings, the width of this core is
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the determining factor when deciding whether a particular set of spectral
features can be resolved.

The small-correlation length scattering still poses some conceptual prob-
lems. The small angle approximation is not valid when you try to calculate
its exact angular distribution—in a sense, the scattered photons do not ’be-
long’ to a particular order anymore, which means that you really have to
calculate the statistical average of the entire diffraction pattern, assuming a
statistical distribution for the high-spatial frequency surface perturbations.
However, the fraction of light removed from the sharp diffraction peaks is
well-calibrated, and corresponds to a surface roughness of <∼ 11 Å. Since the
RGS is read out with CCD’s, this scattered light is neatly separated from true
continuum radiation in a pulse-height vs. dispersion coordinate plot, and so
the lack of a precise calculation for its angular distribution may not matter
very much in practice. The large-angle scattering wil show up mostly as a
’lost light’ correction factor to the grating efficiencies (and that is how it was
found in the first place).

Effective Area Fig. for the two modules combined. The Figure also shows
the effective areas for three other high resolution spectrometers, the AXAF
HETGS and LETGS and the microcalorimeter on Astro-E (’X-ray Spectrom-
eter’, or XRS, to be discussed below). For the RGS we show both first and
second order, because the second order actually has appreciable area. All
curves are based on data and models which were available before the final
instrument calibrations were performed, so they may (have) become slightly
inaccurate.

All of the above instrument properties have been verified and charac-
terized at the long beam X-ray testing facility ’Panter’ of the Max Planck
Institut für Extraterrestrische Physik near Munich (Rasmussen et al. 1998).
The same physical models we have described here were also used to predict
the performance of the instruments in this facility; the free parameters in
the models were set to the values derived from sub-assembly calibrations,
and fine tuned until agreement of the entire instrument performance with
the data was reached. This roundabout ’calibration’ is necessary, because
the laboratory configuration is not fully representative of the flight config-
uration; with a 7.5m telescope focal length, you can still tell the difference
between a source at a finite distance in the laboratory (125 m), and a source
at infinity (the same was true for the AXAF calibration, with the additional
complication of the effect of terrestrial gravity on the shape of the mirrors).

5.4 Examples

As a first example of the RGS performance, we show a laboratory calibration
spectrum, obtained with a Gold anode electron impact X-ray source. Figure
28 shows the CCD pulse height vs. dispersion coordinate diagram. This spec-
trum is interesting, because it actually looks a little bit like an astrophysical
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Fig. 27. Effective area of the RGS, compared with three other high resolution
spectrometers (courtesy Jean Cottam, Columbia University).

spectrum, and because the pulse height/dispersion plot once again demon-
strates the power of performing analysis in that plane. CCD pulse height
increases vertically, dispersion runs horizontally, with wavelength increasing
to the left. The left edge of the image corresponds approximately to 35 Å
in first order, the right edge to approximately 5 Å and the horizontal scale
is approximately linear in dispersion angle β. You can see the small gaps
between the nine individual CCD chips if you look closely. The curved dark
bands are the continuum again (compare Fig. 14 for the AXAF HETGS);
spectral orders m = −1 through −4 are visible in the continuum. Superim-
posed are Au fluorescence lines, the strongest being an n = 4−3 transition at
approximately 6 Å (at the right edge of the plot). In the horizontal direction
you can distinguish five spectral orders of this line, as well as the large-angle
scattering referred to above. Notice how the fourth order nearly coincides
in position along the dispersion direction with the first order O K emission
line. In the vertical direction, centered on each emission line, you see the
CCD response to monochromatic radiation, in addition to a small number of
piled-up events.

Finally, an astrophysical example. With the advent of CCD spectroscopy
on ASCA, it was found, as had been suspected, that the soft X-ray spec-
tra of Seyfert 2 galaxies are dominated by emission lines (e.g. Kunieda et
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Fig. 28. Pulse height/dispersion coordinate diagram, for a laboratory calibration
Au continuum spectrum. CCD pulse height increases vertically, dispersion runs
horizontally, with wavelength increasing to the left. The left edge of the image
corresponds approximately to 35 Å in first order, the right edge to approximately
5 Å (courtesy Masao Sako, Columbia University).

al. 1994, Matt 1996, Ueno et al. 1994, Iwasawa et al. 1994, Iwasawa et al.
1997). The current view on the different properties of Seyfert 1 and 2 ob-
jects is that these are merely due to different viewing angles into a highly
intrinsically anisotropic environment. The nuclear region may be surrounded
by an absorbing torus of cool material, and in Seyfert 2’s, the strong X-ray
continuum arising in the region near the central compact object is blocked
from direct view, leaving a large equivalent width discrete emission spectrum
evidently associated with a region still in view. Such regions should also exist
in Seyfert 1’s, but their line emission is harder to detect against the bright
nuclear continuum.

There is great interest in determining the location and origin of the line
emission: it could be associated with hot, shocked gas in a strong circumnu-
clear starburst (detected at IR wavelengths), or in a cooler X-ray photoion-
ized region associated with the very nucleus of the object, or a combination
of both. A complete understanding of the relative contributions of both emis-
sion mechanisms would shed light on the nature of the currently suspected
connection between Seyfert-type nuclear activity in galaxies, and starbursts.
As we have seen in Section 2, the soft X-ray line spectrum is highly sensitive
to the ionization and excitation mechanism that drives the emission.

Figure 30 shows a simulated EPIC spectrum of the famous Seyfert 2 NGC
4945 (Done, Madejski, and Smith 1996), which basically looks like a much
brighter version of the ASCA spectrum. You can see the continuum, scat-
tered into our line of sight (the intrinsic nuclear continuum does not start
to become detectable through the obscuring material until you reach photon
energies E >∼ 10 keV), a strong fluorescent Fe K complex, and unresolved soft
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X-ray line emission in the 500-1500 eV band. At this resolution, it is impos-
sible to uniquely distinguish between the various excitation mechanisms for
these lines, let alone measure average abundances, velocity fields, or diagnose
radiative transfer effects expected to be associated with an origin in X-ray
photoionized gas.

Figure 29 shows the corresponding RGS spectrum, where the discrete
emission detected with ASCA has been represented with emission from a
collisional plasma at kTe = 0.35 keV and solar abundances, normalized to
produce the correct amount of line power. With spectra of this quality, we
can finally address the questions mentioned above directly, and in detail. For
faint objects, like the Seyfert 2’s, the large throughput of the RGS will be
required to obtain well-exposed spectra.

Some of the most interesting objects for soft X-ray spectroscopy are, or
may be, extended: supernova remnants, clusters, the circumnuclear regions in
nearby AGN, ordinary galaxies. As mentioned in Section 4.2, the resolution of
a diffraction grating spectrometer degrades more or less linearly with source
extent, if the source is resolved by the telescope. But since the RGS relies on
a medium resolution telescope (15” HEW), it is relatively insensitive to this
effect. Sources up to a sizeable fraction of an arcminute still yield an RGS
spectrum with much higher resolving power than a CCD; examples are the
compact supernova remnants in the LMC, and cooling flows in clusters.

6 The Objective Crystal Spectrometer on Spectrum X/γ

The Objective Crystal Spectrometer (OXS) will be flown on the Spectrum
X/γ observatory, which is a collaboration between Russia and a large number
of institutions in Europe and the US. The experiments on it cover the entire
UV through hard X-ray bands. Of these, the OXS is interesting in the present
context, and in fact will reach the highest resolving power of all experiments
discussed. The launch date for Spectrum X/γ, unfortunately, is highly uncer-
tain. You can find information on the project at http://hea.iki.rssi.ru/
SXG/ SXG-home.html (Institute for Space Research (IKI), Moscow, Russia).

The OXS (PI H. Schnopper, Danish Space Research Institute) consists of
a 4000 cm2 panel of flat crystals, which can be placed in front of the aperture
of the SODART (Soviet-Danish X-ray Telescope), such that the diffracted
radiation is sent into the focusing telescope for imaging at the focal plane. A
number of different energy bands are covered with different crystals, centered
on different important emission line complexes. LiF crystals cover the Fe K
band (5.0 − 7.4 keV at resolving power R = 1250), Si crystals cover the S
and Ar K complexes (2.3− 4.6 keV at resolving power R = 3200), and RAP
crystals cover the O K band (0.55 − 0.81 keV at resolving power R = 770).
Finally, there is a Co/C multilayer which covers the band below the C K edge
(0.175 − 0.280 keV, at resolving power R = 50).
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Fig. 29. Simulated RGS spectrum for the Seyfert 2 galaxy NGC4945. (courtesy
Jelle Kaastra, SRON).

Fig. 30. Simulated EPIC spectrum for the Seyfert 2 galaxy NGC4945. (courtesy
Jelle Kaastra, SRON).
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These resolving powers apply to observations of point sources, where one
has to scan through a range of Bragg angles by moving the crystal panel
with respect to the source direction; the telescope plus focal plane detector
merely act as a very sensitive photometer. The resolving powers for the three
highest energy bands are plotted in Figure 31. As you can see, they are
sufficient to detect almost all spectroscopic diagnostics we have discussed.
The observations will be very slow, though: to scan the He-like S ’triplet’
requires scanning a >∼ 30 eV band at 2500 eV. At a resolving power of 3200,
that requires >∼ 30×(3200/2500) = 38 separate exposures (Bragg angle steps)!

Fig. 31. Resolving powers for the three highest energy bands of the OXS.

For an extended source, the OXS has an interesting multiplexing prop-
erty. Light from different parts of the source strikes the crystals at different
angles, which means that different photon energies are reflected and imaged
from different parts of the source simultaneously (Figure 32). For a given ori-
entation of the crystal/telescope, a weird image appears in the focal plane: it
is monochromatic, but in different wavelengths in different spots! By chang-
ing the orientation, you can scan through a range of Bragg angles, and obtain
a spectrum for every spot in the source. You cannot do this with a grating—
since a grating diffracts all wavelengths at the same time, the image of an
extended source in a slitless spectrometer like the grating spectrometers on
AXAF and XMM has the wavelength and spatial information completely
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scrambled. But note that now that the source is no longer a point source,
your ability to separate two different wavelengths is effectively limited by the
angular resolution of the system (crystal rocking curve plus telescope resolu-
tion), whereas the spectral resolving power for a point source is limited by
the rocking curve only.

crystal

P2

P1

θ

imaging telescope

1 from P1λ
λ 2 from P2

Fig. 32. Monochromatic imaging of an extended source with the OXS: light of
wavelength λ1 from direction P1 is imaged in a separate spot from light of wave-
length λ2 from direction P2. To record a spectrum for both P1 and P2, you again
scan through a range of Bragg angles θ.

7 The Microcalorimeter Experiment on Astro-E

7.1 Introduction

The principle behind the operation of a microcalorimeter is simple: a photon
is absorbed in a piece of material. Its energy is converted into heat, and
the temperature rise is a measure of the photon energy (Moseley, Mather,
and McCammon 1984). An idealized detector consists of an absorber with a
thermometer, connected to large heat bath at constant temperature.

A simplified theory of the device proceeds as follows. Assume the pho-
ton energy is instantly and completely converted into heat, and thermalized.
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The thermometer reacts instantly to this change in temperature. In the ab-
sence of incident X-ray photons the total energy of the system formed by the
heat reservoir and absorber plus thermometer is constant, and the statistical
properties of the entire system can be described with the microcanonical en-
semble (Kittel 1958, Ch. 4). From this, the energy of any small subsystem,
such as the X-ray absorber, is found to fluctuate spontaneously, and evidently
there is a continuous exchange of energy between the subsystem and the heat
reservoir. The subsystem is described by the canonical ensemble, and the cal-
culation of the amplitude of the energy fluctuations is straightforward. For
completeness, we will do the calculations in the next subsection. In this ide-
alized instrument, the energy resolution is determined by the spontaneous
thermodynamic fluctuations in the energy of the absorber.

But first, a subtle point. The photon energy is determined from the tem-
perature rise in the absorber, so, strictly speaking, it is spontaneous fluctu-
ations in the temperature of the absorber we want to know about. In a real
microcalorimeter, energy flows back and forth across the link to the reservoir,
and the total thermal energy in the absorber fluctuates. If the time constant
associated with the heat conduction is long compared to the timescale for
thermalization of the energy in the absorber, the temperature in the ab-
sorber will fluctuate. This situation is not described by the canonical ensem-
ble, which assumes complete thermodynamic equilibrium. However, Mather
(1982) has shown that as long as the temperature gradients are small, the sim-
ple thermodynamic result still applies, multiplied by a factor of order unity,
which depends on the temperature dependence of the thermal conductivity
of the link. For simplicity, we’ll ignore this factor here.

It will turn out that at very low temperatures the fluctuations in the
energy of the absorber become very small (in fact, they vanish at zero tem-
perature) due to the quantized nature of the vibrational motions (heat) in
the absorber crystal.

7.2 Thermodynamic Fluctuations

A system in thermodynamic equilibrium in contact with a large heat reservoir
at constant temperature can be described by the canonical ensemble. The
probability of finding a member of the ensemble, or a single system at a
given instant in time, in a state n of total energy En is given by

pn =
e−βEn

∑
n e−βEn

(40)

where β ≡ 1/kT . The quantity Z,

Z ≡
∑

n

e−βEn (41)

is the partition function, which carries all the information about the thermo-
dynamic properties of the system through the enumeration of the En.
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We can derive an expression for the variance of the energy fluctuations as
follows. Taking the derivative with respect to β, we find

∂Z
∂β

= −
∑

n

Ene−βEn (42)

so that the average energy
〈
E
〉

of the system is

〈
E
〉

=

∑
n Ene−βEn

∑
n e−βEn

=

= − 1

Z
∂Z
∂β

(43)

The variance of the fluctuations in the energy is defined as

〈
δE2

〉
≡
〈(

E −
〈
E
〉)2〉

=

=
〈
E2
〉
−
〈
E
〉2

(44)

Taking another derivative, you find

〈
E2
〉

=
1

Z
∂2Z
∂β2

(45)

so that

〈
δE2

〉
=

1

Z
∂2Z
∂β2

− 1

Z2

(
∂Z
∂β

)2

(46)

which can be rewritten
〈
δE2

〉
= −∂

〈
E
〉

∂β
, (47)

or in terms of temperature,

〈
δE2

〉
= kT 2 ∂

〈
E
〉

∂T
. (48)

Since the specific heat at constant volume, cV , is defined as cV ≡ ∂
〈
E
〉
/∂T ,

this can also be written as

〈
δE2

〉
= kT 2cV . (49)

This is a general thermodynamic relation, valid regardless of the precise na-
ture of the system, provided it is in equilibrium.

Now we have to calculate cV for our system. As a model, we will assume
a pure insulating crystal. In that case, the only contribution to the specific
heat is due to elastic vibrations of the ions in the crystal lattice. As you
remember, at high temperatures such that classical physics applies, cV is a
constant because the average energy per degree of freedom for each particle
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is equal to 1
2kT . Each vibrating particle has six degrees of freedom, so for N

particles

cV =
∂
〈
E
〉

∂T
=

∂
(
N · 3kT

)

∂T
= 3Nk. (50)

But at low temperatures, the quantized nature of the vibrations becomes
evident and with decreasing temperature, eventually you start noticing that
more and more oscillators are in the ground state, and that the amount of
heat absorbed or given up per degree of temperature rapidly declines with
decreasing temperature. This happens when kT becomes comparable to or
goes below the energies h̄ω0 associated with the highest eigenfrequencies ω0

of the vibrations of the solid. The associated temperature is referred to as
the Debye temperature, Θ:

Θ ≡ h̄ω0/k. (51)

Well below the Debye temperature, the heat capacity must rapidly decrease
with decreasing temperature. It is this fact that makes the calorimeter an
attractive spectrometer at low temperatures: the specific heat can be made
very small at low temperatures, and hence the thermodynamic fluctuations
in the energy can be made very small.

The standard calculation for the specific heat associated with the lattice
vibrations of a solid at low temperatures goes as follows (e.g. Peierls 1955).
First, you write down the coupled equations of motion for the particles in
the crystal, and you apply boundary conditions to find the normal modes.
One usually applies periodic boundary conditions, in which case the allowed
values of the wavevector f form a lattice, with a density of V/(2π)3, where
V is the volume of the crystal. The eigenfrequencies are ω(f , s). For a lattice
containing r particles in the unit cell, there are in principle 3r solutions with
the same f to the boundary value problem, each with a different frequency
ω(f , s). In the case of a simple lattice with only one particle in the unit cell,
the three solutions belonging to the same f are two transverse and one longi-
tudinal wave, in which case s simply labels the three possible polarizations.
This remains true for more complicated unit cells, for very long wavelength
(low frequency) vibrations, which correspond to relative motions of entire,
undistorted unit cells with respect to each other.

You can write the total energy (kinetic plus potential) of the crystal in
terms of the canonical coordinates of the normal modes. You then interpret
these coordinates as operators and apply the commutation rules to them. The
resulting expression for the total energy now looks like a sum over discrete
excitations of a set of independent harmonic oscillators:

E =
∑

f

∑

s

(
n(f , s) +

1

2

)
h̄ω(f , s), (52)

with the oscillator of eigenfrequency ω(f , s) excited into its n’th excited state.
You can also interpret this expression as saying that there are n(f , s) discrete
quanta of vibration, phonons, with energy h̄ω(f , s).
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By calculating the average energy
〈
E
〉

for this set of phonons, we get the
expression for cV . The partition function, Z1, for a single harmonic oscillator
is

Z1 =

∞∑

n=0

e−β(n+ 1

2
)h̄ω =

=
e

1

2
βh̄ω

eβh̄ω − 1
(53)

so that the average energy,
〈
E1

〉
, for one oscillator is

〈
E1

〉
= − 1

Z1

∂Z1

∂β
=

1

2
h̄ω +

h̄ω

eβh̄ω − 1
(54)

and for the entire crystal

〈
E
〉

=
∑

f ,s

{
1

2
h̄ω(f , s) +

h̄ω(f , s)

eβh̄ω(f ,s) − 1

}
. (55)

The first term is the familiar zero point energy of a harmonic oscillator
summed over all modes, the second term is the thermal energy ET of the
crystal (kinetic plus potential energy of vibration):

ET =
∑

f ,s

h̄ω(f , s)

eβh̄ω(f ,s) − 1
. (56)

The evaluation of this sum is difficult, because it requires knowing ω(f , s)
for every value of f , s. You can get an approximate solution, valid at very
low temperatures, as follows (Peierls 1955). First, you argue that at very
low T only very low frequency modes are excited, and those are the long-
wavelength sound-wave like excitations we mentioned above. Assume that
the sound velocity cs is constant at very low frequency, ω(f , s) = cs(θ, φ)f ,
where θ, φ indicate the direction of f (for each of the three polarizations
s = 1, 2, 3). Replace the summation in the expression for ET by an integral
over f -space:

ET =
V

(2π)3

3∑

s=1

∫
∞

0

f3df

∫ ∫
dΩ

h̄cs(θ, φ)

eβh̄csf − 1
(57)

where dΩ is an element of solid angle, and the integral has been extended up
to infinity, because at low temperatures only vibrations with low frequencies
are excited, and the high-frequency part of the normal mode spectrum does
not contribute. Change variables to x = βh̄cs(θ, φ)f :

ET =
V (kT )4

(2πh̄)3

3∑

s=1

∫ ∫
dΩ

c3
s

∫
∞

0

dx
x3

ex − 1
. (58)
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The integral over x is equal to π4/15. The integral and sum of c−3
s still

require knowing the elastic constants of the crystal. Peierls introduces a mean
effective sound velocity by

3∑

s=1

∫ ∫
dΩ

c3
s

≡ 12π

c3
eff

(59)

and with this

ET =
π2(kT )4V

10h̄3c3
eff

. (60)

Since ET depends on temperature as T 4, the specific heat depends on T as
T 3, indeed a steep function of T , and cV goes to zero as T goes to zero.

To do a practical calculation, we need an estimate for ceff . Debye has
suggested a way of expressing this parameter in terms of the empirically
easier to characterize parameter Θ. In transforming Eq.(56) to an integral
over f -space, he also took cs to be constant, even for high frequencies, and
independent of polarization. The number of independent normal modes in a
crystal can never be larger than three times the number of particles in the
system. So, given that three polarizations are associated with each allowed
f , the integral over f -space that replaces the sum over normal modes should
only be extended up to a value of f such that the volume in f -space contains
just Nr f -space lattice points, with N the number of unit cells (and r the
number of ions in the unit cell). The corresponding radius f0 of this sphere
in f -space is thus found from the condition

4π

3
f3
0

V

(2π)3
= Nr, (61)

and f0 is then the highest frequency in the problem. With the definition of
the Debye temperature, Θ,

Θ =
h̄ω0

k
=

h̄csf0

k
=

=
h̄cs

k

(
6π2Nr

V

) 1

3

. (62)

Expressing cs in terms of Θ, and substituting for ceff in Eq.(60), we get for
the thermal energy at low temperature

ET =
3π4

5
NrkT

(
T

Θ

)3

, (63)

and for the specific heat

cV =
12π4

5
kNr

(
T

Θ

)3

. (64)
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The Debye temperature is an empirical parameter, characteristic of the crys-
tal material, to be determined experimentally from a fit to measured values
of cV as a function of T .

For the rms fluctuation in the energy of the crystal we finally obtain

〈
δE2

〉 1

2 =

(
12π4

5

k2Nr

Θ3

) 1

2

T
5

2 . (65)

To get a very rough idea what this could work out to in practice, consider
a piece of Si, of volume 1 mm3, at a temperature of 0.1 Kelvin. The density
of Si is 2.33 g cm−3, its Debye temperature is Θ = 640 K. It’s customary
to quote the FWHM energy resolution, which is equal to 2.35 times the rms
resolution. In this sense, the energy resolution is 4.2 eV! And notice there
is no fundamental reason it couldn’t be smaller—just lower the number of
particles and/or the temperature.

Let’s take a short break, and examine the expression for the rms fluc-
tuation in the energy of the quantized harmonic oscillator. With very lit-
tle work, we can demonstrate a result of profound significance for bosonic
quantum systems, too beautiful not to highlight here. From Eq.(47) we had〈
δE2

〉
= −∂

〈
E
〉
/∂β, which you can write as an equation for the mean square

fluctuation
〈
δn2
〉

in the average occupation number
〈
n
〉

of a harmonic oscil-
lator:

〈
δn2
〉

= − 1

h̄ω

∂
〈
n
〉

∂β
. (66)

Substitute 〈
n
〉

=
1

eβh̄ω − 1
(67)

and you get

〈
δn2
〉

= − 1

h̄ω

∂

∂β

(
1

eβh̄ω − 1

)
=

=
eβh̄ω

(eβh̄ω − 1)2
=

=
eβh̄ω − 1

(eβh̄ω − 1)2
+

1

(eβh̄ω − 1)2
=

=
〈
n
〉

+
〈
n
〉2

. (68)

This seemingly innocent result has a profound implication. In the classical
regime, we have h̄ω ≪ kT , so 〈n〉 ≈ kT/h̄ω ≫ 1, and in that case evi-

dently
〈
δn2
〉
≈ 〈n〉2. The fractional fluctuation in the number of excitations

is then
〈
δn2
〉
/ 〈n〉2 ≈ 1, which is the result for the fractional mean square

fluctuation in the energy density of a random superposition of plane waves
(e.g. Longair, 1984, p. 245). In the quantum regime, however, the other term
dominates, and the expression for the mean square fluctuations reduces to the
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usual Poisson counting statistics expression for discrete particles. In general,
therefore, the thermodynamic properties of vibrations in a crystal indicate
that the vibrations exhibit both a wave- and a particle-like character!

Since this is just a property of the quantized harmonic oscillator, the same
is true for a box filled with pure radiation in thermodynamic equilibrium.
What produces the result is that the harmonic oscillator in thermodynamic
equilibrium has a Planck spectrum (Eq.(67)). Einstein used Eq.(48) in 1909
to point out that the empirical fact that radiation in thermodynamic equi-
librium has a Planck spectrum implies that, thermodynamically, radiation
behaves as if it has both a wave- and a particle-like character (Pais 1982,
Longair 1984). In fact, in the 1905 paper on the photoelectic effect (as it is
usually referred to), he had already used a different thermodynamic relation
to show that the Wien spectrum led to the inference that ’monochromatic
radiation of low density behaves thermodynamically as though it consisted
of a number of independent energy quanta of magnitude [hν]’. Equation (68)
holds for the Bose-Einstein distribution in general, and, even more miracu-
lously, in 1925, before the advent of wave mechanics, Einstein showed that
the thermodynamic fluctuation properties of a Bose gas of material particles
also implied that the ’particles’ exhibit both particle- and wave-like charac-
teristics!

The above digression is actually relevant to the theory of the microcalori-
meter. The qualitative argument is sometimes made that you can estimate
the amplitude of the thermodynamic energy fluctuations in the absorber as
follows. There are of order N ∼ cV /k modes in the crystal, the typical mode
has occupation number 〈n〉 ∼ 1 and variance

〈
δn2
〉
∼ 1, and each mode

carries of order kT energy. Hence,

〈
δE2

〉
∼ N ·

〈
δn2
〉
· (kT )2 ∼ cV

k
· 1 · k2T 2 =

= kT 2cV . (69)

This is somewhat misleading. At high T , the average occupation number of
each mode is large, but the variance in the number is also large, and equal to
〈n〉2, so the squared fractional fluctuation is equal to unity, and the correct
estimate is

〈
δE2

〉
∼ N ·

〈
δn2
〉

〈
n
〉2 · (kT )2 ∼ cV

k
· 1 · k2T 2 =

= kT 2cV . (70)

But at low T ,
〈
δn2
〉
≈ 〈n〉, and the average energy per mode is not kT ,

but rather ∼ h̄ωi exp(−βh̄ωi) (with ωi the eigenfrequency of the mode), and
you don’t get the right answer this way because the oscillations are quantized
with most oscillators in the ground state, and because the particle oscillations
are not statistically independent.
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This also brings us to the question of the ultimate energy resolution of
an ideal microcalorimeter. At very low T , or with a very small device (small
number of modes), there are only very few phonons present in equilibrium,
and the fractional (quantum) fluctuations are large. But Eq.(49) still holds,
that’s just thermodynamics (provided the timescale for thermalization of the
phonon population is short compared to other timescales in the problem).
Since cV is now very small, the fluctuations only carry tiny amounts of en-
ergy, and the resolving power is still high (and given by Eq.(49)). Presumably,
however, at some point you will start to notice the effect of the statistical
spread in the number of phonons excited by the absorption of a single pho-
ton, and how fast a given phonon population evolves (e.g. relaxes to a Planck
distribution). The resolving power averaged over a large number of identi-
cal photons will still be given by thermodynamics (if the thermalization is
sufficiently rapid), but for a single photon of unknown energy (and that is
what you build the spectrometer for, to determine uniquely the energy of
each photon), the resolution will degrade.

7.3 An Alternative Derivation

The thermodynamic fluctuations we worked out in the previous section pro-
vide a useful measure of the energy resolution of the microcalorimeter. In
this section we will work out an alternative derivation of the energy resolu-
tion that is actually physically more correct, in that it explicitly models how
the actual signal of the temperature pulse induced by the absorption of a
photon is detected against the noise in the absorber. This treatment is also
the starting point for the calculation of the properties of actual devices (in-
cluding amplifier noise, etc.). As it turns out, the derivation yields a surprise:
the ’thermodynamic limit’ we derived above is not a real limit on the energy
resolution!

We start again from the fluctuation formula Eq.(49). We argue that the
energy fluctuations

〈
δE2

〉
correspond to temperature fluctuations:

〈
δT 2

n

〉
=

〈
δE2

〉

c2
V

=
kT 2

cV
(71)

where the subscript ’n’ indicates that δTn is the noise fluctuation in the
temperature due to the spontaneous energy fluctuations. This is a somewhat
questionable step, as mentioned earlier—the fluctuation formula for

〈
δE2

〉

only holds in thermodynamic equilibrium, but we’ll assume again that the
equality Eq.(71) is good to order unity. For a complete treatment, thermody-
namics doesn’t work, and you would have to resort to solving the Boltzmann
equation to study the energy transport and thermalization processes!

When analyzing the signal pulse shape and the noise properties, it will be
convenient to work in frequency space, rather than in the time domain. The
principles of this type of analysis, common in detector physics, can be found in
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various texts; I have used Houghton and Smith (1966, Ch. 5). The calculation
goes as follows: we will derive the power spectral density of the temperature
noise due to the thermodynamic fluctuations, and the power spectral density
of the temperature signal induced by the absorption of an X-ray photon. The
ratio, at each frequency, of these two spectra, is a ’monochromatic’ signal-
to-noise ratio. Integrating this signal-to-noise ratio over all frequencies, we
obtain the total signal to noise ratio, and the ultimate energy resolution
obtainable in the presence of noise.

We will analyze the noise first. We start by writing down the energy
conservation law for the absorber:

d(δE)

dt
= cV

d(δT )

dt
= W − GδT (72)

where δT is the difference in temperature of the absorber and the heat reser-
voir, and W is any external source of power. The term GδT describes the
conduction of heat from the absorber to the heat reservoir; G is the thermal
conductance of the link (in units Watt Kelvin−1).

Eq.(72) is most conveniently solved in frequency space. But if we apply
the equation to the fluctuations δTn caused by a source of noise power Wn,
we have to be careful with the Fourier transforms; the usual definition of the

transform, δ̂Tn(ω), of δTn(t),

δ̂Tn(ω) ≡ 1√
2π

∫
∞

−∞

dt e−iωtδTn(t), (73)

does not converge. Instead, assume that δTn(t) is nonzero only for a finite
time interval, t = −a → +a, where a is chosen large, but finite. Then define
the function (see for example Bennett 1956)

δ̂Tn(ω, a) ≡ 1√
2π

∫ a

−a

dt e−iωtδTn(t). (74)

Then, for −a < t < a,

δTn(t) =
1√
2π

∫
∞

−∞

dω δ̂Tn(ω, a)eiωt. (75)

The definite integral of δT 2
n(t) is

∫ a

−a

dt δT 2
n(t) =

∫ a

−a

dt δTn(t) · 1√
2π

∫
∞

−∞

dω δ̂Tn(ω, a)eiωt =

=

∫
∞

−∞

dω δ̂Tn(ω, a) · 1√
2π

∫ a

−a

dt δTn(t)eiωt =

=

∫
∞

−∞

dω δ̂Tn(ω, a) · δ̂Tn

∗

(ω, a) =

=

∫
∞

−∞

dω
∣∣δ̂Tn(ω, a)

∣∣2, (76)
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so the variance of the temperature noise can be written as the integral over
a spectral density,

〈
δT 2

n

〉
=

1

2a

∫ a

−a

dt δT 2
n(t) =

∫
∞

−∞

dω

∣∣δ̂Tn(ω, a)
∣∣2

2a
. (77)

You can find a logically rigorous definition of the spectral density in Kittel
(1958, Ch. 28).

Now we’re ready to solve Eq.(72) for the noise; in terms of the transforms

δ̂Tn(ω, a) and Ŵn(ω, a), we get

δ̂Tn(ω, a) =
Ŵn(ω, a)

G + iωcV
, (78)

from which we find

∣∣δ̂Tn(ω, a)
∣∣2 =

∣∣Ŵn(ω, a)
∣∣2

G2 + ω2c2
V

=

=

∣∣Ŵn(ω, a)
∣∣2

G2(1 + ω2τ2)
(79)

with τ ≡ cV /G. The interpretation of τ is obvious from solving Eq.(72) in
the absence of an external power source: the equation

cV
d(δT )

dt
= −GδT (80)

has the solution

δT (t) = δT0 e−t/τ (81)

with τ = cV /G, so τ is the thermal relaxation time of the system. Eq.(79)
says the same thing: if the power source W varies rapidly, on timescales
short compared to τ (frequencies high compared to 1/τ), the amplitude of
the temperature change goes down due to the finite relaxation time.

Now we argue that
∣∣Ŵn(ω, a)

∣∣2 is independent of frequency, that is, that
the power associated with the thermodynamic fluctuations has a white noise

spectrum. Now integrate
∣∣δ̂Tn(ω, a)

∣∣2/2a over all frequencies, and set the

result,
〈
δT 2

n

〉
, equal to kT 2/cV :

∣∣Ŵn(ω, a)
∣∣2

2a
=

kT 2G

π
. (82)

This result is usually quoted in terms of a spectral density of the noise
power,Wf , defined such that

〈
W 2

n

〉
≡
∫

∞

0

df Wf (83)
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with f the linear frequency (ω = 2πf); with that definition

Wf = 4kT 2G. (84)

For the spectral density of the temperature fluctuations we get

∣∣δ̂Tn(ω, a)
∣∣2

2a
=

kT 2

πG(1 + ω2τ2)
. (85)

Now we need to derive the spectral density of the temperature signal due
to the absorption of a photon. Assume that the photon is absorbed at t = 0,
by an ideal detector. The temperature pulse shape will look like a sharp spike
of amplitude δTX,0 = Eγ/cV , with Eγ the photon energy, at t = 0, followed
by exponential decay as the heat leaks away to the reservoir:

δTX(t) = δTX,0 e−t/τ . (86)

Its Fourier transform, in the sense of Eq.(74) is

δ̂TX(ω, a) =
δTX,0√

2π

1 − e−(iω+1/τ)a

iω + 1/τ
∼=

∼= δTX,0√
2π

1

iω + 1/τ
(87)

provided a ≫ τ . We have

∣∣δ̂TX(ω, a)
∣∣2 =

δT 2
X,0

2π

τ2

1 + ω2τ2
. (88)

When we take the ratio of Eq.(88) to the spectral density of the noise tem-
perature fluctuations, we get the spectral density of the square of the signal-
to-noise ratio, ρ2(ω) (dimension: Hz−1):

ρ2(ω) =
δT 2

X,0Gτ2

2kT 2
. (89)

And this is the surprise: because the shape of the spectral densities of the
noise and signal temperature variations are identical (actually, not surprising:
signal and noise satisfy the same energy conservation equation), the spectral
density of the signal to noise ratio is constant. When you integrate ρ2(ω)
over frequency, you get the total (square of the) signal to noise ratio, in our
case equal to the square of the resolving power R, and the integral diverges,
which implies that the resolving power is infinite!

You can understand this remarkable result in another way, in the time
domain. Superimposed on the randomly fluctuating temperature, you see a
sharp spike right when a photon is absorbed. You make a naive measurement
of the photon energy by measuring the amplitude of the temperature rise
right at the start of the pulse. This number has a statistical fluctuation in
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it due to the presence of the noise. But as the pulse decays, you can of
course make another measurement, and another, and another, correcting the
measurements for the known decay of the pulse with time constant τ . The
noise averages out, and in fact goes to zero in the limit that you can take
infinitely many samples infinitely closely spaced in time. And this is allowed,
because we have said that the detector was ideal: it reacts instantaneously
to changes in temperature of the absorber (or: it has an infinite frequency
bandwidth), so noise samples taken over infinitesimal time intervals are all
statistically independent.

Had you designed the circuitry such that you integrated ρ2(ω) only up to
the cutoff frequency 1/τ , you would have found

R2 =
δT 2

X,0Gτ2

2kT 2

∫ 1/τ

−1/τ

dω =

=
E2

γ

kT 2cV
, (90)

and this is precisely the result we derived in the previous section. It’s now
clear how ’imperfections’ in the detector can be incorporated into the calcula-
tion. For instance, the presence of another source of noise can be incorporated
by adding its spectral density in quadrature to the density of the thermody-
namic fluctuations. If this other noise source also has a white power spectrum,
the effect will be to just lower the resolving power by a constant number. If
there is another time constant in the problem, for instance, associated with a
finite time for thermalization of the photon energy, this changes the bound-
aries of the integral in Eq.(90), again changing the resolving power by a
constant factor.

To obtain a really complete description of the performance of the mi-
crocalorimeter, we need to write down the coupled equations for the thermal
and electrical properties of the system, which take the place of the single
thermal balance equation Eq.(72). The coupling between these equations of
course arises from terms which describe the ohmic heating of the detector,
the change in electrical resistance of the thermometer in response to changes
in the temperature, etc. The resulting change in the properties of the detector
with respect to the simple properties we derived from Eq.(72) is referred to
as ’electrothermal feedback’. Moseley, Mather and McCammon (1984) pro-
vide such a description in terms of complex impedance theory; Labov et al.
(1997) present a derivation based on the differential equations. It is instruc-
tive to solve the equations for the simplified case of a constant voltage on
the thermometer, assuming that the circuit only contains this thermometer,
of resistance R, and the bias power source. Then W = I2R in Eq.(72), and
d(IR)/dt ≡ 0. Taking the time derivative of Eq.(72), and neglecting small
terms, you find

cV
d2(δT )

dt2
+
(
G +

W0

T0
α
)d(δT )

dt
= 0 (91)
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that is, the same equation as before, but with an effective time constant

1

τeff
=

1

τth

(
1 +

W0

GT0
α
)

(92)

with τth = cV /G the ’thermal time constant’ which characterizes the ’bare’
thermal problem. Here, α ≡ d(lnR)/d(lnT ), which measures the steepness of
the thermometer response to changes in temperature. This suggests integrat-
ing up to a frequency 1/τeff , in which case the spectral resolving power will

exceed the ’thermodynamic limit’ by a factor
(
1 + (W0/GT0)α

)1/2
: a more

sensitive thermometer (bigger α) is better.
In general, therefore, the uncertainty in the determination of the photon

energy will be approximately

〈
δE2

〉
= ξkT 2cV (93)

with ξ a pure number that depends on the strength of additional noise sources,
other relaxation time constants (inclusing electrical), and, implicitly, on the
thermometer response and operating conditions of the entire detector system.

Finally, traditionally in detector physics, one does not calculate with the
spectral density of the temperature, but of course with that of the (square
of the) physical power delivered by the various components of the detector
system. You can redo the above calculation in these terms, remembering that
the absorption of a photon in an ideal detector delivers a power spike in the
form of a delta function (which has a flat power spectrum, just like the noise),
normalized such that the time integral over the spike is equal to the photon
energy. In this connection, one often uses the concept of the ’noise equivalent
power’ (NEP), defined such that the NEP is the amount of power delivered
to the detector at frequency f equal to the noise power at that frequency
in a 1 Hz bandwidth. For the thermodynamic, or phonon, noise, we had the
spectral density of the noise power Wf = 4kT 2G, so for this noise source,

NEPphonons ≡ W
1

2

f = (4kT 2G)
1

2 (94)

with dimension W/
√

Hz. The energy resolution in these terms is

〈
δE2

〉
= τ2

∫ fmax

0

df |NEPphonons(f)|2 . (95)

7.4 The microcalorimeter on Astro-E

In this section, we’ll look at some of the features of the operation of a real
first-generation X-ray microcalorimeter, the X-ray Spectrometer (XRS) on
Astro-E. Information on Astro-E, a joint Japan-US project, can be found on
http://heasarc.gsfc.nasa.gov/docs/frames/astroe about.html; a re-
cent conference paper can be found on http://wwwvms.mppmu.mpg.de/ltd7/
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contribute/by field/C.htm (Stahle et al. 1997). It carries five telescopes,
four with a CCD focal plane detector, one with the microcalorimeter; there
is also a hard X-ray instrument. The microcalorimeter has been developed in
collaboration by NASA/Goddard Space Flight Center and the University of
Wisconsin (PI: Richard Kelley, GSFC). Launch is in early 2000.

The microcalorimeter consists of 6× 6 separate pixels, covering 3′ × 3′ on
the sky (the telescope angular response is of the order of 2 arcmin HEW).
The X-ray absorbing element is HgTe, attached to a Si substrate with an
implanted thermistor as thermometer. The thermal time constant for the
conduction of heat between the absorber and the heat bath is approximately
80µs, so that the detector can count of order 10 counts/sec per pixel with-
out (difficult to discriminate) overlapping pulses. For bright sources, neutral
density filters can be inserted in the X-ray beam to reduce count rates.

The microcalorimeter is inside a dewar. The instrument itself is cooled to
65 mK by an Adiabatic Demagnetization Refrigerator, located inside a liquid
He dewar, which in turn is located inside a solid Ne dewar. The lifetime is
determined by the cryogenics, and is expected to be of order two years. During
this initial phase of the mission, priority will be given to microcalorimeter
observations.

The energy resolution is approximately 12 eV, while 7 eV has been seen
in individual array elements. The microcalorimeter itself has good quantum
efficiency (basically X-ray absorption optical depth) up to 10 keV. The low
end of the bandpass is determined by the X-ray transmission of a set of filters
that prevent radiation from space from heating the instrument, which limits
the band to roughly E >∼ 400 eV.

The performance of the XRS in terms of spectral resolving power, and
the spectral diagnostics accessible with it, was plotted in Fig. 8. The XRS
will have most of its impact at high energies, specifically in the Fe K band.
Novel (for astrophysics) diagnostics that will become available at Fe K are
the unambiguous determination of the (distribution of) ionization stages of
fluorescing Fe, as long as it has been ionized up into the L-shell, from a direct
measurement of the energies of the Fe K fluorescent lines; direct detection of
the Compton recoil spectrum of Fe K photons scattered by cold electrons,
and possibly even detection of Raman scattered Fe K photons. The powerful
hot plasma diagnostics derived from spectroscopy of the dielectronic satellites
may just be accessible, provided the spectrum is bright enough.

8 The 21st Century

Astrophysical considerations suggest that after AXAF, XMM, and Astro-E,
extending the spectroscopic capability to cosmologically interesting redshifts
is the most important thing to do, rather than, for instance, increasing spec-
tral resolving power for its own sake.
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X-ray line emission arises predominantly in optically thin plasmas (al-
though significant optical depths may occur in resonance lines), and the
emission line power is relatively easy to calculate as a function of the local
variables. In addition, the X-ray band is so wide that it simultaneously covers
the K transitions of all ionization stages of all the elements from C up to Fe.
This makes, for instance, absolute abundance determinations easy, because
they don’t have to rely on model-dependent corrections for the abundances
of unseen ionization stages (as is the case in the optical and UV bands). The
importance of X-ray spectroscopy to nucleosynthesis, stellar evolution, and
formation and evolution of galaxies is obvious. As another example, detailed
information on the physical conditions in clusters at significant redshifts (dis-
tribution of temperature, density, and abundances) has direct implications
for the evolution of large scale structure and the cosmological parameters.
Galactic astrophysics will of course also benefit. To name just one example,
detailed photospheric spectroscopy of hot neutron stars will finally constrain
the mass-radius relation for these objects, and hopefully will uniquely con-
strain the equation of state at supranuclear densities.

Obviously, what is required is a spectrometer, preferably imaging, with
resolving power no less than AXAF, XMM, and Astro-E (so at least R >∼ few
hundred), and a huge effective area. For the study of redshifted objects, it is
crucial that these characteristics extend to low photon energies (the Oxygen
Lyα line, to name an example, shifts to ∼ 300 eV at z ∼ 1). These require-
ments naturally suggest lightweight, medium angular resolution optics, with
as large a combined area as you can afford, with an imaging spectrometer at
the focal plane. The natural (or only) candidate for the latter is of course a
microcalorimeter array, with significantly improved energy resolution.

As you can see from Fig.8, the ∼ 12 eV characteristic of the Astro-E sepc-
trometer is not good enough for detailed spectroscopy at low energies. Hence,
work is in progress to construct ∆E ∼ 2 eV microcalorimeters. The most im-
portant innovation is the use of an extremely sensitive thermometer, based
on a superconducting element that is held at a temperature in the middle
of the transition between the superconducting and normal states. Hence, its
resistance is extremely sensitive to changes in temperature. Thermometers of
this type are referred to as Transition Edge Sensors (TES). Recently, a res-
olution of 4 eV was already demonstrated with such a device by a group at
the National Institute of Standards and Technology (NIST, Boulder, Colo.;
see Physics Today, July 1998, p.19).

NASA is currently funding work on the Constellation X project, a fleet of
six identical observatories, with a combined effective area of order 15,000 cm2

at 1 keV and 6,000 cm2 at 6 keV. The proposed instrument package includes
∆E = 2 eV microcalorimeter arrays, reflection grating spectrometers, and
hard X-ray telescopes that will be sensitive up to at least 40 keV (1500 cm2

at 40 keV).
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The grating spectrometers complement the microcalorimeters at low en-
ergies, where their sensitivity declines due to declining resolving power and
strong X-ray absorption in the necessary long-wavelength radiation filters.
The design of the spectrometers is similar to those on XMM, but the grat-
ings could be of a novel design: lightweight thin Si films, etched along crystal
planes to achieve an extremely smooth and accurate groove shape. In or-
der to increase the graze angles and allow a higher resolving power (Eq.(31))
without loss of reflectivity, multilayer coatings may be applied to the gratings.

A prime motivation for including sensitive hard X-ray telescopes is the
study of AGN spectra. The study of these spectra with spectrometers that cut
off at 10 keV has shown that it is important to have the ability to characterize
the hard continuum spectrum, to allow for an accurate extrapolation to lower
energies, where the continuum is strongly modulated by absorption and the
presence of emission line complexes. In addition, one hopes to study heavily
absorbed type II objects (Seyfert 2 galaxies and, if they are ever found, the
analogous ’type 2 QSO’s’) with much higher sensitivity. And there are of
course numerous other novel applications.

The European XEUS project (X-ray Early Universe Spectrometer) pur-
sues similar goals. The design currently revolves around a truly giant (10 m2

aperture) single X-ray telescope, which would be assembled in sections over
the years at the space station. Operations can begin as soon as the core of
this assembly has been placed in orbit. A telescope with such a large area
needs to have a very long focal length, in order to keep graze angles small and
reflectivity high up to high energies; the current figure is F ∼ 50 m! With
such an extreme focal length, building a ’monolithic’ telescope becomes more
expensive than simply putting focusing optics and focal plane instrument on
two separate satellites that track each other, and this is the current plan.
The focal plane satellite will be designed such that its instrumentation can
be exchanged. XEUS might start out with CCD detectors, and then move on
to microcalorimeter arrays.
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