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Fundamentals of Polarized Light

Electromagnetic Waves in Matter

electromagnetic waves are a direct consequence of Maxwell’s
equations

optics: interaction of electromagnetic waves with matter as
described by material equations

polarization properties of electromagnetic waves are integral part
of optics



Plane-Wave Solutions
Plane Vector Wave ansatz

~E = ~E0ei(~k ·~x−ωt)

~k spatially and temporally constant wave vector
~k normal to surfaces of constant phase
|~k | wave number
~x spatial location
ω angular frequency (2π× frequency)
t time

~E0 a (generally complex) vector independent of time and space
damping if ~k is complex
real electric field vector given by real part of ~E



Polarization

spatially, temporally constant vector ~E0 lays in plane
perpendicular to propagation direction ~k
represent ~E0 in 2-D basis, unit vectors ~e1 and ~e2, both
perpendicular to ~k

~E0 = E1~e1 + E2~e2.

E1, E2: arbitrary complex scalars
damped plane-wave solution with given ω, ~k has 4 degrees of
freedom (two complex scalars)
additional property is called polarization
many ways to represent these four quantities
if E1 and E2 have identical phases, ~E oscillates in fixed plane



Description of Polarized Light

Polarization Ellipse
Polarization

~E (t) = ~E0ei(~k ·~x−ωt)

~E0 = E1eiδ1~ex + E2eiδ2~ey

wave vector in z-direction
~ex , ~ey : unit vectors in x , y
directions
E1, E2: (real) amplitudes
δ1,2: (real) phases

Polarization Description
2 complex scalars not the most useful description
at given ~x , time evolution of ~E described by polarization ellipse
ellipse described by axes a, b, orientation ψ





Jones Formalism

Jones Vectors

~E0 = Ex~ex + Ey~ey

beam in z-direction
~ex , ~ey unit vectors in x , y -direction
complex scalars Ex ,y

Jones vector
~e =

(
Ex
Ey

)
phase difference between Ex , Ey multiple of π, electric field
vector oscillates in a fixed plane⇒ linear polarization
phase difference ±π

2 ⇒ circular polarization



Summing and Measuring Jones Vectors

~E0 = Ex~ex + Ey~ey

~e =

(
Ex
Ey

)

Maxwell’s equations linear⇒ sum of two solutions again a
solution
Jones vector of sum of two waves = sum of Jones vectors of
individual waves if wave vectors ~k the same
addition of Jones vectors: coherent superposition of waves
elements of Jones vectors are not observed directly
observables always depend on products of elements of Jones
vectors, i.e. intensity

I = ~e · ~e∗ = exe∗x + eye∗y ,



Jones matrices
influence of medium on polarization described by 2× 2 complex
Jones matrix J

~e′ = J~e =

(
J11 J12
J21 J22

)
~e .

assumes that medium not affected by polarization state
different media 1 to N in order of wave direction, combined
influence described

J = JNJN−1 · · · J2J1

order of matrices in product is crucial
Jones calculus describes coherent superposition of polarized
light



Quasi-Monochromatic Light
monochromatic light: purely theoretical concept
monochromatic light wave always fully polarized
real life: light includes range of wavelengths⇒
quasi-monochromatic light
quasi-monochromatic: superposition of mutually incoherent
monochromatic light beams whose wavelengths vary in narrow
range δλ around central wavelength λ0

δλ

λ
� 1

measurement of quasi-monochromatic light: integral over
measurement time tm
amplitude, phase (slow) functions of time for given spatial
location
slow: variations occur on time scales much longer than the mean
period of the wave



Polarization of Quasi-Monochromatic Light

electric field vector for quasi-monochromatic plane wave is sum
of electric field vectors of all monochromatic beams

~E (t) = ~E0 (t) ei(~k ·~x−ωt) .

can write this way because δλ� λ0

measured intensity of quasi-monochromatic beam〈
~Ex ~E∗x

〉
+
〈
~Ey ~E∗y

〉
= lim

tm−>∞

1
tm

∫ tm/2

−tm/2

~Ex (t)~E∗x (t) + ~Ey (t)~E∗y (t)dt ,

〈· · · 〉: averaging over measurement time tm.
measured intensity independent of time
Quasi-monochromatic: frequency-dependent material properties
(e.g. index of refraction) are constant within ∆λ





Stokes and Mueller Formalisms

Stokes Vector
need formalism to describe polarization of quasi-monochromatic
light
directly related to measurable intensities
Stokes vector fulfills these requirements

~I =


I
Q
U
V

 =


ExE∗x + EyE∗y
ExE∗x − EyE∗y
ExE∗y + EyE∗x

i
(
ExE∗y − EyE∗x

)
 =


E2

1 + E2
2

E2
1 − E2

2
2E1E2 cos δ
2E1E2 sin δ


Jones vector elements Ex ,y , real amplitudes E1,2, phase
difference δ = δ2 − δ1

I2 ≥ Q2 + U2 + V 2 .



Stokes Vector Interpretation

~I =


I
Q
U
V

 =


intensity

linear 0◦ − linear 90◦

linear 45◦ − linear 135◦

circular left− right


degree of polarization

P =

√
Q2 + U2 + V 2

I

1 for fully polarized light, 0 for unpolarized light
summing of Stokes vectors = incoherent adding of
quasi-monochromatic light waves



Mueller Matrices
4× 4 real Mueller matrices describe (linear) transformation
between Stokes vectors when passing through or reflecting from
media

~I′ = M~I ,

M =


M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44


N optical elements, combined Mueller matrix is

M′ = MNMN−1 · · ·M2M1



Polarized Light in Solar Physics

Magnetic Field Maps from Longitudinal Zeeman Effect



Second Solar Spectrum from Scattering Polarization



Scattering Polarization

Single Particle Scattering
light is absorbed and re-emitted
if light has low enough energy, no energy transfered to electron,
but photon changes direction⇒ elastic scattering
for high enough energy, photon transfers energy onto electron⇒
inelastic (Compton) scattering
Thomson scattering on free electrons
Rayleigh scattering on bound electrons
based on very basic physics, scattered light is linearly polarized







Polarization as a Function of Scattering Angle

same variation of polarization with scattering angle applies to
Thomson and Rayleigh scattering
scattering angle θ
projection of amplitudes:

1 for polarization direction perpendicular to scattering plane
cos θ for linear polarization in scattering plane

intensities = amplitudes squared
ratio of +Q to −Q is cos2 θ (to 1)
total scattered intensity (unpolarized = averaged over all
polarization states) proportional to 1

2

(
1 + cos2 θ

)



Solar Continuum Scattering Polarization

(from Stenflo 2005)

due to anisotropy of the radiation field
anisotropy due to limb darkening
limb darkening due to decreasing temperature with height
last scattering approximation without radiative transfer

http://www.astro.phys.ethz.ch/papers/stenflo/pdf/AA429_713_2005.pdf


Solar Spectral Line Scattering Polarization

resonance lines exhibit “large” scattering polarization signals



Jupiter and Saturn

(courtesy H.M.Schmid and D.Gisler)

Planetary Scattered Light

Jupiter, Saturn show scattering
polarization
multiple scattering changes
polarization as compared to single
scattering
much depends on cloud height
equivalent effect to study
extrasolar planetary systems
ExPo (Extreme Polarimeter)
development here in Utrecht



Zeeman Effect

photos.aip.org/

Splitting/Polarization of Spectral Lines
discovered in 1896 by Dutch physicist
Pieter Zeeman
different spectral lines show different
splitting patterns
splitting proportional to magnetic field
split components are polarized
normal Zeeman effect with 3
components explained by H.A.Lorentz
using classical physics
splitting of sodium D doublet could not
be explained by classical physics
(anomalous Zeeman effect)
quantum theory and electron’s intrinsic
spin led to satisfactory explanation

http://photos.aip.org/








Quantum-Mechanical Hamiltionian
classical interaction of magnetic dipol moment ~µ and magnetic
field given by magnetic potential energy

U = −~µ · ~B

~µ the magnetic moment and ~B the magnetic field vector
magnetic moment of electron due to orbit and spin
Hamiltonian for quantum mechanics

H = H0 + H1 = H0 +
e

2mc

(
~L + 2~S

)
~B

H0 Hamiltonian of atom without magnetic field
H1 Hamiltonian component due to magnetic field

e charge of electron
m electron rest mass
~L the orbital angular momentum operator
~S the spin operator



Energy States in a Magnetic Field

energy state 〈ENLSJ | characterized by
main quantum number N of energy state
L(L + 1), the eigenvalue of ~L2

S(S + 1), the eigenvalue of ~S2

J(J + 1), the eigenvalue of ~J2,
~J = ~L + ~S being the total angular momentum
M, the eigenvalue of Jz in the state 〈NLSJM|

for the magnetic field in the z-direction, the change in energy is
given by

∆ENLSJ(M) = 〈NLSJM|H1|NLSJM〉



The Landé g Factor

based on pure mathematics (group theory, Wiegner Eckart
theorem), one obtains

∆ENLSJ(M) = µ0gLBM

with µ0 = e~
2m the Bohr magneton, and gL the Landé g-factor

in LS coupling where B sufficiently small compared to spin-orbit
splitting field

gL = 1 +
J(J + 1) + L(L + 1)− S(S + 1)

2J(J + 1)



hyperphysics.phy-astr.gsu.edu/hbase/quantum/sodzee.html

Spectral Lines -
Transitions between
Energy States

spectral lines are
due to transitions
between energy
states:

lower level with 2Jl + 1
sublevels Ml

upper level with 2Ju + 1
sublevels Mu

not all transitions
occur

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/sodzee.html


Selection rule
not all transitions between two levels are allowed
assuming dipole radiation, quantum mechanics gives us the
selection rules:

Lu − Ll = ∆L = ±1
Mu −Ml = ∆M = 0,±1
Mu = 0 to Ml = 0 is forbidden for Ju − Jl = 0

total angular momentum conservation: photon always carries
Jphoton = 1
normal Zeeman effect: line splits into three components because

Landé g-factors of upper and lower levels are identical
Ju = 1 to Jl = 0 transition

anomalous Zeeman effect in all other cases



Effective Landé Factor and Polarized Components
each component can be assigned an effective Landé g-factor,
corresponding to how much the component shifts in wavelength
for a given field strength
components are also grouped according to the linear polarization
direction for a magnetic field perpendicular to the line of sight
π components are polarized parallel to the magnetic field (pi for

parallel)
σ components are polarized perpendicular to the magnetic field

(sigma for German senkrecht)

for a field parallel to the line of sight, the π-components are not
visible, and the σ components are circularly polarized



Bernasconi et al. 1998

Zeeman Effect in Solar Physics
discovered in sunspots by
G.E.Hale in 1908
splitting small except for in
sunspots
much of intensity profile due
to non-magnetic area⇒
filling factor
a lot of strong fields outside of
sunspots
full Stokes polarization
measurements are key to
determine solar magnetic
fields
180 degree ambiguity

http://aa.springer.de/bibs/8329002/2300704/small.htm


Fully Split Titanium Lines at 2.2µm

Rüedi et al. 1998

http://aa.springer.de/papers/8338003/2301089/small.htm


Hanle Effect

Bianda et al. 1998

Depolarization and Rotation
scattering polarization
modified by magnetic field
precession around magnetic
field depolarizes and rotates
polarization
sensitive ∼ 103 times smaller
field strengths that Zeeman
effect
measureable effects even for
isotropic field vector
orientations

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999sopo.conf...31B&amp;db_key=AST&amp;data_type=HTML&amp;format=&amp;high=43fb7cfc5930508





