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Temporal and Spatial Coherence

Temporal Coherence

Gaussian shaped line profile of
quasi-monochromatic source and
shape of associated wave packet

temporal coherence
characterised by coherence
time τc

τc due to finite bandwidth of
source
quasi-monochromatic
source

τc ≈
1
4ν

4ν: frequency band width



Temporal Coherence (continued)

Wiener-Khinchin theorem relates power spectrum S(ν) and
autocorrelation R(τ):

S(ν) =

+∞∫
−∞

R(τ)e−2πiντdτ

R(τ) =

+∞∫
−∞

S(ν)e2πiντdν

example: Gaussian-shaped spectral profile

S(ν) ∼ e−
“
ν
4ν

”2

⇐⇒ R(τ) ∼ e−
“
τ
τc

”2

corresponding wave packet has Gaussian autocorrelation
function with characteristic width τc

(autocorrelation R(τ) equals the autocovariance C(τ))



Temporal Coherence (continued)
useful relations:

first order system shows exponential autocorrelation function R(τ)
Gaussian spectral frequency domain shows amplitude-modulated
wave train with Gaussian envelope in time domain
Lorentz line profile in frequency domain shows exponentially
damped oscillator profile in time domain

infrared and shorter wavelengths, disperse incoming radiation
with wavelength-dispersive device
spectroscopy at radio wavelengths employs indirect method
incoming wave signal is fed into correlator that produces
temporal coherence function R(τ)

subsequent Fourier transform yields spectral distribution S(ν)



Coherence Length
coherence length

lc = cτc

coherence length in wavelength domain

lc =
λ2

4λ

quasi-monochromatic wave propagating along a line
two positions P1 and P2 on this line of propagation at distance R12
if R12 � lc , there will be strong correlation between the EM-fields
at P1 and P2, interference effects will be possible
if R12 � lc , no interference effects are possible

also called longitudinal correlation or longitudinal spatial
coherence



Coherence Length (continued)

influence of coherence length on
interference pattern of two diffracted
coherent thermal sources S1, S2

waves in Young’s
interference experiment
diffracted beams from
coherent sources S1 and S2
cause interference pattern
large path differences⇒
interference contrast
reduced



Spatial Coherence
spatial coherence relates to spatial extent of source
for τ � τc

γ̃12(τ) = γ̃12(0)e2πiν0τ

|γ̃12(τ)| = |γ̃12(0)|
fixed phase difference α12(τ) = 2πν0τ
ν0: average frequency of wave

frequency bandwidth of radiation source suffiently narrow:
comparison between two points with respect to spatial
coherence occurs at times differing by 4t � τc



Etendue of Coherence
circular source of uniform intensity with angular diameter θs

source brightness distribution described as circular
two-dimensional window function

I(~Ω) = Π

(
θ

θs

)
complex degree of coherence in observation plane Σ at two
positions: position 1 at origin, position 2 at distance ρ from origin
applying van Cittert-Zernike theorem

Π

(
θ

θs

)
⇔ Γ̃(ρ/λ) =

(θs/2)J1(πθsρ/λ)

ρ/λ

J1: Bessel function of first kind



Etendue of Coherence (continued)

normalisation to source brightness (πθ2
s )/4

γ̃(ρ) =
2J1(πθsρ/λ)

πθsρ/λ

modulus of complex degree of coherence

|γ̃(ρ)| =

∣∣∣∣2J1(u)

u

∣∣∣∣
with u = πθsρ/λ

defines extent of coherence in observation plane Σ

for u = 2, |γ̃(ρ)| = J1(2) = 0.577
coherence remains significant for u ≤ 2, or

ρ ≤ 2λ/(πθs)



Etendue of Coherence (continued)
area S in Σ over which coherence remains significant

πρ2 = 4λ2/(πθ2
s )

πθ2
s/4 equals solid angle Ωsource of source

significant coherence if

ε = SΩsource ≤ λ2

condition ε = SΩsource = λ2 is called the Etendue of Coherence
needs to be fulfilled if coherent detection is required



Etendue of Coherence: Examples

red giant, radius r0 = 1.5 x1011 meter at 10 parsec distance,
θs = 10−6 radians
at λ = 0.5µm, coherence radius ρ, on earth, on screen normal to
incident beam is ρ = 2λ/(πθs) = 32 cm
at λ = 25µm, radius ρ is increased fifty fold to ≈ 15 m
in radio domain atλ = 6 cm, ρ ≈ 35 km



Good Coherence
good coherence means visibility of 0.88 or better
uniform circular source: occurs for u = 1, that is when
ρ = 0.32λ/θ
narrow-bandwidth uniform radiation source at distance R

ρ = 0.32(λR)/D

example: red filter over 1-mm-diameter, disk-shaped flashlight at
20 m away: ρ = 3.8 mm
set of apertures spaced at about 4 mm or less should produce
clear fringes
we always assume that comparison between two points occurs
at times differing by a 4t � τc

if necessary, additional frequency filtering required to reduce
spectral bandwidth of source signal



Aperture Synthesis

Overview
positions 1, 2 in observation plane Σ not pointlike, but finite
aperture with diameter D
single aperture has diffraction-sized beam of λ/D
Van Cittert-Zernike relation needs to be "weighted" with
telescope element (single dish) transfer function H(~Ω)

circular dish antenna: H(~Ω) is Airy brightness function
The Van Cittert-Zernike relations now become:

Γ̃′(~r) =

∫ ∫
source

I(~Ω)H(~Ω)e
2πi~Ω.~r
λ d~Ω

I(~Ω)H(~Ω) = λ−2
∫ ∫

Σ-plane

Γ̃′(~r)e−
2πi~Ω.~r
λ d~r

field of view scales with λ/D, e.g. if λ decreases, the synthesis
resolution improves but the field of view reduces proportionally!



Overview (continued)
aperture synthesis: incoming beams from antenna dish 1 and
antenna dish 2 are fed into a correlator (multiplier) producing as
output Ẽ1(t)Ẽ∗2 (t)
output subsequently fed into integrator/averager producing

E
{

Ẽ1(t)Ẽ∗2 (t)
}

= Γ̃′(~r)

applying Fourier transform and correcting for beam profile of
single dish H(~Ω), source brightness distribution I(~Ω) can be
reconstructed
Indirect imaging with aperture synthesis system is limited to
measuring image details within the single pixel defined by the
beam profile of an individual telescope element, i.e. a single
dish!



Pupil Function
pupil function of linear array comprising N circular apertures with
diameter d , aligned along baseline unit vector ~b, equally spaced
at distance |~s| = ~b · ~s

P(~ζ) =
[
Π
(
λ~ζ
d

)
+ Π

{
λ
d

(
~ζ − ~s

λ

)}
+ Π

{
λ
d

(
~ζ − 2 · ~sλ

)}
+ . . .

]
=
∑N−1

n=0 Π
{
λ
d

(
~ζ − n · ~sλ

)}
amplitude of diffracted field using Fourier shift and scale
theorems

ã(| ~θ |) =

(
λ

R

)[
1
4
π(d/λ)2

] [
2J1(π| ~θ |d/λ)

π| ~θ |d/λ

]
N−1∑
n=0

(
e−i(2π~θ·~s/λ)

)n



Point-Spread Function
sum of geometric series of N complex exponentials

N−1∑
n=0

(
e−i(2π~θ·~s/λ)

)n
=

e−iN(2π~θ·~s/λ) − 1

e−i(2π~θ·~s/λ) − 1

=
e−iN(2π~θ·~s/2λ)

e−i(2π~θ·~s/2λ)

(
e−iN(2π~θ·~s/2λ) − eiN(2π~θ·~s/2λ)

)
(

e−i(2π~θ·~s/2λ) − ei(2π~θ·~s/2λ)
)

= e−i(N−1)π~θ·~s/λ

[
sin N(π~θ · ~s/λ)

sin(π~θ · ~s/λ)

]

PSF from PSF = ã(|~θ|) · ã∗(|~θ|):

PSF =

(
λ

R

)2 [1
4
π (d/λ)2

]2 [2J1(|~u |)
|~u |

]2 sin2 N(~u · ~s/d)

sin2(~u · ~s/d)

~u = π~θ d/λ



PSF
PSF from before

PSF =

(
λ

R

)2 [1
4
π (d/λ)2

]2 [2J1(|~u |)
|~u |

]2 sin2 N(~u · ~s/d)

sin2(~u · ~s/d)

N = 1: Airy brightness function for single circular aperture
N = 2: Michelson:

sin2 N(~u·~s/d)/ sin2(~u·~s/d) =
[
2 sin(~u · ~s/d) cos(~u · ~s/d)

]2
/ sin2(~u·~s/d) = 4 cos2(~u·~s/d)

N apertures: maximum constructive interference occurs for

sin N(π~θ · ~s/λ)/ sin(π~θ · ~s/λ) = N
~θ · ~s
λ

= n (= 0,±1,±2, . . .) → |~θ| =
nλ

|~s| cosφ

principal maxima found at same |~θ|-locations, regardless of value
of N ≥ 2



PSF (continued)
PSF from before

PSF =

(
λ

R

)2 [1
4
π (d/λ)2

]2 [2J1(|~u |)
|~u |

]2 sin2 N(~u · ~s/d)

sin2(~u · ~s/d)

Minima, of zero flux density, exist whenever

sin N(π~θ · ~s/λ)/ sin(π~θ · ~s/λ) = 0
~θ · ~s
λ

= ± 1
N
,± 2

N
,± 3

N
, . . . ,±N − 1

N
,±N + 1

N
, . . .

⇒ |~θ| =
nλ

N|~s| cosφ
, for n = ±1,±2, . . . but n 6= kN (k = 0,±1,±2, . . .

cosφ: angle between ~θ and baseline vector ~s
between consecutive principal maxima there will therefore be
N-1 minima
each pair of minima there will have to be a subsidiary
maximum, i.e. a total of N-2 subsidiary maxima between
consecutive principal maxima.



PSF Interpretation
PSF from before

PSF =

(
λ

R

)2 [1
4
π (d/λ)2

]2 [2J1(|~u |)
|~u |

]2 sin2 N(~u · ~s/d)

sin2(~u · ~s/d)

first two terms give normalisation for |~θ | = 0
other terms represent 2-d Airy distribution, intensity-modulated
along direction of baseline vector ~s with periodicity (∆θ)s = λ/|~s|
of narrow bright principal maxima and with a periodicity
(∆θ)Ns = λ/(N|~s|) of narrow weak subsidiary maxima,
interleaved with zero-intensity minima



Multi-Aperture Array PSF

PSF of 10-element
interferometer with
circular apertures

Magnification of
central part Cross-section of

central part of PSF for
10-element
interferometer



Optical Transer Function (OTF)
OTF for N circular apertures from autocorrelation of pupil
function

Hλ(~ζ ,N~s/λ) =

(
λ

R

)2
[

N−1∑
n=0

Π

{
λ

d

(
~ζ − n ·

~s
λ

)}]
∗

[
N−1∑
m=0

Π

{
λ

d

(
~ζ −m ·

~s
λ

)}]

=

(
λ

R

)2 N−1∑
n=0

N−1∑
m=0

Anm(~ζ , ~s/λ)

Anm represents element of N × N autocorrelation matrix A

Anm(~ζ ,~s/λ) =∫ ∫
pupil plane

Π

{
λ

d

(
~ζ
′ − n ·

~s
λ

)}
Π

{
λ

d

(
~ζ
′ − ~ζ −m ·

~s
λ

)}
d~ζ

′



OTF (continued)
values Anm 6= 0 are Chinese-hat functions for single circular
aperture
multi-aperture case: series of principal maxima in
Hλ(~ζ ,~s/λ) plane
this is the uv-plane representing 2-d spatial frequency space
principal maxima at

~ζmax = ~ζ−k ·
~s
λ

with k = n−m = 0,±1,±2, . . . ,±(N−2),±(N−1)

replace Anm by Ak , where k refers to diagonals of autocorrelation
matrix A

k = 0: main diagonal
k = ±1: two diagonals contiguous to main diagonal
...



OTF (continued)
diagonal terms Ak computed in same way as for single circular
aperture with vector notation

Ak =
1
2

(
d
λ

)2

·

·

arccos
(
λ

d

∣∣∣∣ ~ζ − k ·
~s
λ

∣∣∣∣)− (λd
∣∣∣∣ ~ζ − k ·

~s
λ

∣∣∣∣)
(

1−
(
λ

d

∣∣∣∣ ~ζ − k ·
~s
λ

∣∣∣∣)2
) 1

2
Π

(
λ

2d

∣∣∣∣ ~ζ − k ·
~s
λ

∣∣∣∣)

with Chinese-hat functions Ĉk (~ζ − k · ~s/λ) normalised to unit
aperture area

Ak =
1
4
π

(
d
λ

)2

Ĉk (~ζ − k · ~s/λ)

sum over all elements of matrix A

N−1∑
n=0

N−1∑
m=0

Anm ≡ Asa

N−1∑
k=−(N−1)

(N − |k |)Ĉk (~ζ − k · ~s/λ)

Sum check:
N−1∑

k=−(N−1)

(N − |k |) = N + 2
N−1∑
k=1

(N − k)

= N +
1
2

(N − 1) [2(2N − 2)− 2(N − 2)] = N + N2 − N = N2,

Asa = 1
4π(d/λ)2 represents geometrical area of single telescope

element
OTF of array

Hλ(~ζ ,N~s/λ) =

(
λ

R

)2

NAsa

N−1∑
k=−(N−1)

(N − |k |)
N

Ĉk (~ζ − k · ~s/λ) with

Ĉk (~ζ − k · ~s/λ) =

=
2
π

arccos
(
λ

d

∣∣∣∣ ~ζ − k ·
~s
λ

∣∣∣∣)− (λd
∣∣∣∣ ~ζ − k ·

~s
λ

∣∣∣∣)
(

1−
(
λ

d

∣∣∣∣ ~ζ − k ·
~s
λ

∣∣∣∣)2
) 1

2
Π

(
λ

2d

∣∣∣∣ ~ζ − k ·
~s
λ

∣∣∣∣)

geometrical term NAsa reflects total geometrical collecting area
of telescope array
(N times the area of a single aperture Asa) and the term (λ/R)2

accomodates the attenuation due to the spherical expansion of
the wave field.
The OTF for the spatial frequency throughput of the aperture
array is described by a linear array of discrete spatial frequency
domains in the uv-plane, characterised by Chinese-hat functions
centered at zero frequency and at multiples of the baseline
vector ~s/λ, that specifies the equidistance (magnitude and
direction) between adjacent apertures. The peak transfer
declines linearly with increasing mutual separation between
aperture elements relative to the zero-frequency response, i.e.
proportional to (N − |k |)/N for spatial frequencies centered
around k · ~s/λ. This can be easily explained by considering the
monotonously decreasing number of aperture elements, and
hence the associated array collecting power, involved at larger
baseline values. For the maximum available baseline (N − 1)~s/λ
this throughput reduction amounts to 1/N.



Earth-Rotation Aperture Synthesis

Introduction

due to rotation of Earth, baseline vectors k · ~s/λ of N-element
array scan the YZ-plane if X-axis is lined up with North polar axis
principal maxima or ’grating lobes’ in PSF are concentric annuli
around central source peak at angular distances k · λ/|~s |
if circular scans in YZ-plane are too widely spaced (|~s | is larger
than single dish diameter), the Nyquist criterion is not respected
and undersampling of spatial frequency uv-plane (=YZ-plane)
occurs
consequently, grating lobes will show up within the field of view
defined by the single-dish beam profile
can be avoided by decreasing sampling distance |~s |



Westerbork Radio Synthesis Telescope (WSRT)

14 parabolic antennae, diameters D = 25 m
lined up along East-West direction over ≈ 2750 m
10 antennae have fixed mutual distance of 144 m
4 antennae can be moved collectively with respect to fixed array,
without changing their mutual distance
14 antennae comprise 40 simultaneously operating
interferometers
array is rotated in plane containing Westerbork perpendicular to
Earth’s rotation axis
limited to sources near the North polar axis
standard distance between 9 and A equals 72 meters



WSRT (continued)

after 12 hours, 38 concentric semi-circles with radii ranging from
Lmin = 72 meters to Lmax = 2736 meters in increments of
4L = 72 meters
correlators integrate over 10 s, sampling of semi-circles every
1/24 degrees
other half can be found by mirroring the first half since I(~Ω) is a
real function



Imaging

brightness distribution I(~Ω) by Fourier inversion
only discrete samples of spatial coherence function Γ̃(~r), integral
replaced by sum
weighting function to get considerable reduction of side lobes at
expense of ultimate angular resolution
reconstructed Î(~Ω) needs to be corrected for single dish
response function H(~Ω)



Point-Spread Function
spatial frequency response function of rotated array in uv-plane
from geometry of concentric scans
scalar function due to circular symmetry

PSFERAS =

(
λ

R

)2 [1
4
π (d/λ)2

]2 [2J1(u)

u

]2 sin2 N(u4L/D)

sin2(u4L/D)

with u = πθD/λ and θ, the radially symmetric, diffraction angle
central peak: similar to Airy function with spatial resolution

4θ =
λ

2Lmax
radians

with 2Lmax the maximum diameter of the array in the YZ-plane
concentric grating lobes: angular distances of annuli from central
peak follow from the location of principal maxima given by
modulation term sin2 N(u4L/D)/ sin2(u4L/D)



PSF (continued)

for an N-element array with increment 4L, these angular
positions are given by:

θgrating =
λ

4L
,2

λ

4L
, ....., (N − 1)

λ

4L



CLEAN

undersampling of YZ-plane since grating lobes are well within
field of view
can decrease distance between antennae 9 and A during
second half rotation for 36 meter increment coverage
four half rotations in 48 hours can increase coverage to 18 meter
increments⇒ complete uv coverage
incomplete coverage of YZ-plane means that values of
coherence function Γ̃(~r) are set to zero in empty spaces, which
will certainly give an erroneous result
apply CLEAN method for improving dirty radio maps



Bandwidth Restrictions
coherence length of source needs to be larger than maximum
path length difference at longest baseline
imposes maximum frequency bandwidth for observations
largest angle of incidence equals half the field of view, i.e. λ/2D
coherence length compliant with largest baseline Lcoh � λ

2D Lmax

frequency bandwidth requirement

4ν
ν0
� 2D

Lmax

WRST: 2D/Lmax ≈ 1/50, at 21 cm (≈ 1400 MHz), 4ν � 28
MHz, coherence length > 10 m
in practise: 4ν ≈ 10 MHz
increase bandwidth by division into frequency subbands
subband maps scaled with λ and added



General Case
extended source in arbitrary direction
during Earth’s rotation, antenna beams kept pointed at source
tip of baseline vector describes a trajectory
maintain maximum coherence by delaying one antenna signal
with respect to the other antenna within fraction of a wavelength
source at angle φ0 to Earth’s rotation axis
circles in uv-plane change into ellipses and coherence function is
sampled on ellipses rather than on circles
major axes of these ellipses remain equal to the physical length
of the WSRT baselines, minor axes are shortened by cosφ0

PSF becomes elliptical

PSF =
αλ

2Lmax cosφ0

source in equatorial plane: no resolution in one direction
baselines need North-South components (e.g. VLA)


