Lecture 10: Aperture Synthesis Imaging

Outline

- **•** Spatial and Temporal Coherence
- **2** Etendue of Coherence
- Aperture Synthesis
- **Earth-Rotation Aperture Synthesis**

Temporal and Spatial Coherence

Temporal Coherence

Gaussian shaped line profile of quasi-monochromatic source and shape of associated wave packet

- **o** temporal coherence characterised by coherence time τ*^c*
- \bullet τ_c due to finite bandwidth of source
- **o** quasi-monochromatic source

$$
\tau_{\boldsymbol{c}} \approx \frac{1}{\triangle \nu}
$$

 $\triangle \nu$: frequency band width

Temporal Coherence (continued)

Wiener-Khinchin theorem relates power spectrum *S*(ν) and autocorrelation $R(\tau)$:

$$
S(\nu)=\int\limits_{-\infty}^{+\infty}R(\tau)e^{-2\pi i\nu\tau}d\tau
$$

$$
R(\tau)=\int\limits_{-\infty}^{+\infty}S(\nu)e^{2\pi i\nu\tau}d\nu
$$

• example: Gaussian-shaped spectral profile

$$
S(\nu)\sim e^{-\left(\frac{\nu}{\triangle\nu}\right)^2}\Longleftrightarrow R(\tau)\sim e^{-\left(\frac{\tau}{\tau_c}\right)^2}
$$

- corresponding wave packet has Gaussian autocorrelation function with characteristic width τ*^c*
- (autocorrelation $R(\tau)$ equals the autocovariance $C(\tau)$)

Temporal Coherence (continued)

- useful relations:
	- **•** first order system shows exponential autocorrelation function $R(\tau)$
	- Gaussian spectral frequency domain shows amplitude-modulated wave train with Gaussian envelope in time domain
	- Lorentz line profile in frequency domain shows exponentially damped oscillator profile in time domain
- infrared and shorter wavelengths, disperse incoming radiation with wavelength-dispersive device
- spectroscopy at radio wavelengths employs indirect method
- **•** incoming wave signal is fed into *correlator* that produces temporal coherence function $R(\tau)$
- subsequent Fourier transform yields spectral distribution *S*(ν)

Coherence Length

coherence length

$$
I_c = c\tau_c
$$

• coherence length in wavelength domain

$$
I_c = \frac{\lambda^2}{\triangle \lambda}
$$

• quasi-monochromatic wave propagating along a line

- two positions P_1 and P_2 on this line of propagation at distance R_{12}
- if $R_{12} \ll l_c$, there will be strong correlation between the EM-fields at P_1 and P_2 , interference effects will be possible
- if $R_{12} \gg l_c$, no interference effects are possible
- also called *longitudinal correlation* or *longitudinal spatial coherence*

Coherence Length (continued)

- waves in Young's interference experiment
- **o** diffracted beams from coherent sources S_1 and S_2 cause interference pattern
- large path differences ⇒ interference contrast reduced

influence of coherence length on interference pattern of two diffracted coherent thermal sources *S*1, *S*²

Spatial Coherence

spatial coherence relates to spatial extent of source

o for $\tau \ll \tau_c$

$$
\tilde{\gamma}_{12}(\tau)=\tilde{\gamma}_{12}(0)e^{2\pi i \nu_0 \tau}
$$

- $|\tilde{\gamma}_{12}(\tau)| = |\tilde{\gamma}_{12}(0)|$
- fixed phase difference $\alpha_{12}(\tau) = 2\pi\nu_0\tau$
- \bullet ν_0 : average frequency of wave
- **•** frequency bandwidth of radiation source suffiently narrow: comparison between two points with respect to spatial coherence occurs at times differing by $\triangle t \ll \tau_c$

Etendue of Coherence

- \bullet circular source of uniform intensity with angular diameter θ_s
- source brightness distribution described as circular two-dimensional window function

$$
I(\vec{\Omega}) = \Pi\left(\frac{\theta}{\theta_s}\right)
$$

- **complex degree of coherence in observation plane** Σ **at two** positions: position 1 at origin, position 2 at distance ρ from origin
- applying van Cittert-Zernike theorem

$$
\Pi\left(\frac{\theta}{\theta_{s}}\right) \Leftrightarrow \tilde{\Gamma}(\rho/\lambda) = \frac{(\theta_{s}/2)J_{1}(\pi\theta_{s}\rho/\lambda)}{\rho/\lambda}
$$

● J_1 : Bessel function of first kind

Etendue of Coherence (continued)

normalisation to source brightness $(\pi \theta_{\tt s}^2)/4$

$$
\tilde{\gamma}(\rho) = \frac{2J_1(\pi\theta_{\rm S}\rho/\lambda)}{\pi\theta_{\rm S}\rho/\lambda}
$$

• modulus of complex degree of coherence

$$
|\tilde{\gamma}(\rho)| = \left|\frac{2J_1(u)}{u}\right|
$$

with $u = \pi \theta_s \rho / \lambda$

- defines extent of coherence in observation plane Σ
- for $u = 2$, $|\tilde{\gamma}(\rho)| = J_1(2) = 0.577$
- coherence remains significant for *u* ≤ 2, or

$$
\rho \leq 2\lambda/(\pi \theta_{\text{s}})
$$

Etendue of Coherence (continued)

area *S* in Σ over which coherence remains significant

$$
\pi \rho^2 = 4\lambda^2/(\pi \theta_s^2)
$$

- $\pi\theta_{\scriptstyle{\mathcal{S}}}^2/4$ equals solid angle $\Omega_{\scriptscriptstyle{\text{source}}}$ of source
- **•** significant coherence if

$$
\epsilon = \mathcal{S} \Omega_{\sf source} \leq \lambda^2
$$

 $\text{condition } \epsilon = \mathcal{S} \Omega_{\text{source}} = \lambda^2$ is called the *Etendue of Coherence* **•** needs to be fulfilled if coherent detection is required

Etendue of Coherence: Examples

- red giant, radius $r_0 = 1.5 \times 10^{11}$ meter at 10 parsec distance, $\theta_{\bm{s}} = \texttt{10}^{-\texttt{6}}$ radians
- at $\lambda = 0.5 \mu$ m, coherence radius ρ , on earth, on screen normal to incident beam is $\rho = 2\lambda/(\pi \theta_s) = 32$ cm
- at $\lambda = 25 \mu$ m, radius ρ is increased fifty fold to ≈ 15 m
- in radio domain at $\lambda = 6$ cm, $\rho \approx 35$ km

Good Coherence

- good coherence means visibility of 0.88 or better
- **•** uniform circular source: occurs for $u = 1$, that is when $\rho = 0.32 \lambda/\theta$
- narrow-bandwidth uniform radiation source at distance *R*

$$
\rho=0.32(\lambda R)/D
$$

- example: red filter over 1-mm-diameter, disk-shaped flashlight at 20 m away: $\rho = 3.8$ mm
- set of apertures spaced at about 4 mm or less should produce clear fringes
- we always assume that comparison between two points occurs at times differing by a $\triangle t \ll \tau_c$
- if necessary, additional frequency filtering required to reduce spectral bandwidth of source signal

Aperture Synthesis

Overview

- **•** positions 1, 2 in observation plane Σ not pointlike, but finite aperture with diameter *D*
- \bullet single aperture has diffraction-sized beam of λ/D
- Van Cittert-Zernike relation needs to be "weighted" with telescope element (single dish) transfer function *H*(Ω) ~
- \bullet circular dish antenna: *H*($\vec{\Omega}$) is *Airy brightness function*
- **The Van Cittert-Zernike relations now become:**

$$
\tilde{\Gamma}'(\vec{r}) = \int \int_{\text{source}} I(\vec{\Omega}) H(\vec{\Omega}) e^{\frac{2\pi i \vec{\Omega} \cdot \vec{r}}{\lambda}} d\vec{\Omega}
$$

$$
I(\vec{\Omega})H(\vec{\Omega}) = \lambda^{-2} \int \int_{\Sigma-\text{plane}} \tilde{\Gamma}'(\vec{r}) e^{-\frac{2\pi i \vec{\Omega}.\vec{r}}{\lambda}} d\vec{r}
$$

• field of view scales with λ/D , e.g. if λ decreases, the synthesis resolution improves but the field of view reduces proportionally!

Overview (continued)

- aperture synthesis: incoming beams from antenna dish 1 and antenna dish 2 are fed into a *correlator (multiplier)* producing as output $\tilde{E}_1(t)\tilde{E}_2^*(t)$
- output subsequently fed into *integrator/averager* producing

$$
\mathbf{E}\left\{\tilde{E}_1(t)\tilde{E}_2^*(t)\right\}=\tilde{\Gamma}'(\vec{r})
$$

- applying Fourier transform and correcting for beam profile of single dish $H(\vec{\Omega})$, source brightness distribution $I(\vec{\Omega})$ can be reconstructed
- Indirect imaging with aperture synthesis system is limited to measuring image details within the *single pixel* defined by the beam profile of an individual telescope element, i.e. a single dish!

Pupil Function

pupil function of linear array comprising *N* circular apertures with diameter d , aligned along baseline unit vector \vec{b} , equally spaced at distance $|\vec{s}| = \vec{b} \cdot \vec{s}$

$$
P(\vec{\zeta}) = \left[\Pi\left(\frac{\lambda \vec{\zeta}}{d}\right) + \Pi\left\{\frac{\lambda}{d}\left(\vec{\zeta} - \frac{\vec{s}}{\lambda}\right)\right\} + \Pi\left\{\frac{\lambda}{d}\left(\vec{\zeta} - 2 \cdot \frac{\vec{s}}{\lambda}\right)\right\} + \ldots\right] \\ = \sum_{n=0}^{N-1} \Pi\left\{\frac{\lambda}{d}\left(\vec{\zeta} - n \cdot \frac{\vec{s}}{\lambda}\right)\right\}
$$

amplitude of diffracted field using Fourier shift and scale theorems

$$
\tilde{a}(|\vec{\theta}|) = \left(\frac{\lambda}{R}\right) \left[\frac{1}{4}\pi (d/\lambda)^2\right] \left[\frac{2J_1(\pi|\vec{\theta}|d/\lambda)}{\pi|\vec{\theta}|d/\lambda}\right] \sum_{n=0}^{N-1} \left(e^{-i(2\pi\vec{\theta}\cdot\vec{s}/\lambda)}\right)^n
$$

Point-Spread Function

• sum of geometric series of N complex exponentials

$$
\sum_{n=0}^{N-1} \left(e^{-i(2\pi \vec{\theta} \cdot \vec{s}/\lambda)} \right)^n = \frac{e^{-iN(2\pi \vec{\theta} \cdot \vec{s}/\lambda)} - 1}{e^{-i(2\pi \vec{\theta} \cdot \vec{s}/\lambda)} - 1}
$$

$$
= \frac{e^{-iN(2\pi \vec{\theta} \cdot \vec{s}/2\lambda)}}{e^{-i(2\pi \vec{\theta} \cdot \vec{s}/2\lambda)}} \frac{\left(e^{-iN(2\pi \vec{\theta} \cdot \vec{s}/2\lambda)} - e^{iN(2\pi \vec{\theta} \cdot \vec{s}/2\lambda)} \right)}{\left(e^{-i(2\pi \vec{\theta} \cdot \vec{s}/2\lambda)} - e^{i(2\pi \vec{\theta} \cdot \vec{s}/2\lambda)} \right)}
$$

$$
= e^{-i(N-1)\pi \vec{\theta} \cdot \vec{s}/\lambda} \left[\frac{\sin N(\pi \vec{\theta} \cdot \vec{s}/\lambda)}{\sin(\pi \vec{\theta} \cdot \vec{s}/\lambda)} \right]
$$

PSF from PSF = $\tilde{a}(|\vec{\theta}|) \cdot \tilde{a}^*(|\vec{\theta}|)$:

$$
\mathsf{PSF} = \left(\frac{\lambda}{B}\right)^2 \left[\frac{1}{4}\pi (d/\lambda)^2\right]^2 \left[\frac{2J_1(|\vec{u}|)}{|\vec{u}|}\right]^2 \frac{\sin^2 N(\vec{u} \cdot \vec{s}/d)}{\sin^2(\vec{u} \cdot \vec{s}/d)} \vec{u} = \pi \vec{\theta} d/\lambda
$$

• PSF from before

$$
\text{PSF} \,=\, \left(\frac{\lambda}{R}\right)^2 \left[\frac{1}{4}\pi \left(d/\lambda\right)^2\right]^2 \left[\frac{2J_1(\left|\vec{u}\,\right|)}{\left|\vec{u}\,\right|}\right]^2 \frac{\sin^2 N(\vec{u}\cdot\vec{s}/d)}{\sin^2(\vec{u}\cdot\vec{s}/d)}
$$

 \bullet $N = 1$: Airy brightness function for single circular aperture \bullet $N = 2$: Michelson:

 $\sin^2 N(\vec{u}\!\cdot\!\vec{s}/d)/\sin^2(\vec{u}\!\cdot\!\vec{s}/d) = \left[2\sin(\vec{u}\cdot\vec{s}/d)\cos(\vec{u}\cdot\vec{s}/d)\right]^2/\sin^2(\vec{u}\!\cdot\!\vec{s}/d)$

N apertures: **maximum** constructive interference occurs for

$$
\sin N(\pi \vec{\theta} \cdot \vec{s}/\lambda)/\sin(\pi \vec{\theta} \cdot \vec{s}/\lambda) = N
$$

$$
\frac{\vec{\theta} \cdot \vec{s}}{\lambda} = n(= 0, \pm 1, \pm 2, \ldots) \rightarrow |\vec{\theta}| = \frac{n\lambda}{|\vec{s}| \cos \phi}
$$

 $principal$ maxima found at same $|\vec{\theta}|$ -locations, regardless of value of $N > 2$

PSF (continued)

 \Rightarrow

• PSF from before

$$
\mathsf{PSF} \,=\, \left(\frac{\lambda}{R}\right)^2 \left[\frac{1}{4}\pi \left(d/\lambda\right)^2\right]^2 \left[\frac{2J_1(\left|\vec{u}\,\right|)}{\left|\vec{u}\,\right|}\right]^2 \frac{\sin^2 N(\vec{u}\cdot\vec{s}/d)}{\sin^2(\vec{u}\cdot\vec{s}/d)}
$$

Minima, of **zero** flux density, exist whenever

$$
\frac{\vec{\theta} \cdot \vec{s}}{\lambda} = \pm \frac{1}{N}, \pm \frac{2}{N}, \pm \frac{3}{N}, \dots, \pm \frac{N-1}{N}, \pm \frac{N+1}{N}, \dots
$$

$$
|\vec{\theta}| = \frac{n\lambda}{N|\vec{s}|\cos\phi}, \text{ for } n = \pm 1, \pm 2, \dots \text{ but } n \neq kN \ (k = 0, \pm 1, \pm 2, \dots)
$$

- **c** cos ϕ : angle between $\vec{\theta}$ and baseline vector \vec{s}
- between consecutive principal maxima there will therefore be **N-1 minima**
- each pair of minima there will have to be a **subsidiary maximum**, i.e. a total of **N-2 subsidiary maxima** between consecutive principal maxima. The principal maxima maxima maxima. The principal maxima maxima. The principal m

PSF Interpretation

• PSF from before

$$
\mathsf{PSF} \,=\, \left(\frac{\lambda}{R}\right)^2 \left[\frac{1}{4}\pi \left(d/\lambda\right)^2\right]^2 \left[\frac{2J_1(|\vec{u}\,|)}{|\vec{u}\,|}\right]^2 \frac{\sin^2 N(\vec{u}\cdot\vec{s}/d)}{\sin^2(\vec{u}\cdot\vec{s}/d)}
$$

- first two terms give normalisation for $|\vec{\theta}\,|=0$
- o other terms represent 2-d Airy distribution, intensity-modulated along direction of baseline vector \vec{s} with periodicity $(\Delta \theta)_s = \lambda/|\vec{s}|$ of narrow bright principal maxima and with a periodicity $(\Delta \theta)_{\text{Ns}} = \lambda / (N |\vec{s}|)$ of narrow weak subsidiary maxima, interleaved with zero-intensity minima

Multi-Aperture Array PSF

PSF of 10-element interferometer with circular apertures

-13 -10 -0.5 $\frac{0.0}{0.0}$ $\overline{0.5}$ 7.0 central part of PSF for 10-element interferometer

Optical Transer Function (OTF)

OTF for *N* circular apertures from autocorrelation of pupil function

$$
H_{\lambda}(\vec{\zeta}, N\vec{s}/\lambda) = \left(\frac{\lambda}{R}\right)^2 \left[\sum_{n=0}^{N-1} \Pi \left\{\frac{\lambda}{d} \left(\vec{\zeta} - n \cdot \frac{\vec{s}}{\lambda}\right)\right\}\right] *
$$

$$
= \left[\sum_{m=0}^{N-1} \Pi \left\{\frac{\lambda}{d} \left(\vec{\zeta} - m \cdot \frac{\vec{s}}{\lambda}\right)\right\}\right]
$$

$$
= \left(\frac{\lambda}{R}\right)^2 \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} A_{nm}(\vec{\zeta}, \vec{s}/\lambda)
$$

Anm represents element of *N* × *N* autocorrelation matrix **A**

$$
A_{nm}(\vec{\zeta}, \vec{s}/\lambda) =
$$

$$
\int \int_{\text{pupil plane}} \Pi \left\{ \frac{\lambda}{d} \left(\vec{\zeta}' - n \cdot \frac{\vec{s}}{\lambda} \right) \right\} \Pi \left\{ \frac{\lambda}{d} \left(\vec{\zeta}' - \vec{\zeta} - m \cdot \frac{\vec{s}}{\lambda} \right) \right\} d\vec{\zeta}'
$$

OTF (continued)

- values $A_{nm} \neq 0$ are Chinese-hat functions for single circular aperture
- multi-aperture case: series of **principal maxima** in $H_{\lambda}(\vec{\zeta}, \vec{s}/\lambda)$ plane
- this is the uv-plane representing 2-d spatial frequency space
- principal maxima at

$$
\vec{\zeta}_{max} = \vec{\zeta} - k \cdot \frac{\vec{s}}{\lambda} \text{ with } k = n-m = 0, \pm 1, \pm 2, \ldots, \pm (N-2), \pm (N-1)
$$

• replace A_{nm} by A_k , where *k* refers to diagonals of autocorrelation matrix **A**

- $k = 0$: main diagonal
- $k = \pm 1$: two diagonals contiguous to main diagonal
- ...

OTF (continued)

·

 \bullet diagonal terms A_k computed in same way as for single circular aperture with vector notation

$$
\left[\arccos\left(\frac{\lambda}{d}\left|\vec{\zeta}-k\cdot\frac{\vec{s}}{\lambda}\right|\right)-\left(\frac{\lambda}{d}\left|\vec{\zeta}-k\cdot\frac{\vec{s}}{\lambda}\right|\right)\left(1-\left(\frac{\lambda}{d}\left|\vec{\zeta}-k\cdot\frac{\vec{s}}{\lambda}\right|\right)\right)^2\right]
$$

with Chinese-hat functions $\hat{C}_k(\vec{\zeta} - k \cdot \vec{s}/\lambda)$ normalised to unit aperture area

$$
A_k = \frac{1}{4}\pi \left(\frac{d}{\lambda}\right)^2 \hat{C}_k(\vec{\zeta} - k \cdot \vec{s}/\lambda)
$$

sum over all elements of matrix **A**

$$
\sum_{k=1}^{N-1}\sum_{k=1}^{N-1}A_{nm} \equiv A_{sa} \sum_{k=1}^{N-1} (N-|k|)\hat{C}_k(\vec{\zeta}-k\cdot\vec{s}/\lambda)
$$

Earth-Rotation Aperture Synthesis

Introduction

- due to rotation of Earth, baseline vectors $k \cdot \vec{s}/\lambda$ of N-element array scan the YZ-plane if X-axis is lined up with North polar axis
- **•** principal maxima or 'grating lobes' in PSF are concentric annuli around central source peak at angular distances $k \cdot \lambda / |\vec{s}|$
- \bullet if circular scans in YZ-plane are too widely spaced ($|\vec{s}|$ is larger than single dish diameter), the Nyquist criterion is not respected and undersampling of spatial frequency uv-plane (=YZ-plane) occurs
- consequently, grating lobes will show up within the field of view defined by the single-dish beam profile
- can be avoided by decreasing sampling distance $|\vec{s}|$

Westerbork Radio Synthesis Telescope (WSRT)

- \bullet 14 parabolic antennae, diameters $D = 25$ m
- lined up along East-West direction over \approx 2750 m
- 10 antennae have fixed mutual distance of 144 m
- 4 antennae can be moved collectively with respect to fixed array, without changing their mutual distance
- 14 antennae comprise 40 simultaneously operating interferometers
- **•** array is rotated in plane containing Westerbork perpendicular to Earth's rotation axis
- limited to sources near the North polar axis
- standard distance between 9 and A equals 72 meters

WSRT (continued)

- after 12 hours, 38 concentric semi-circles with radii ranging from L_{min} = 72 meters to L_{max} = 2736 meters in increments of $\Delta I = 72$ meters
- **o** correlators integrate over 10 s, sampling of semi-circles every 1/24 degrees
- o other half can be found by mirroring the first half since $I(\vec{\Omega})$ is a real function

Imaging

- brightness distribution $I(\vec{\Omega})$ by Fourier inversion
- **•** only discrete samples of spatial coherence function $\overrightarrow{\Gamma}(\overrightarrow{r})$, integral replaced by sum
- weighting function to get considerable reduction of side lobes at expense of ultimate angular resolution
- reconstructed $\hat{I}(\vec{\Omega})$ needs to be corrected for single dish response function *H*(Ω) ~

Point-Spread Function

- spatial frequency response function of rotated array in uv-plane from geometry of concentric scans
- scalar function due to circular symmetry

$$
PSF_{ERAS} = \left(\frac{\lambda}{B}\right)^2 \left[\frac{1}{4}\pi (d/\lambda)^2\right]^2 \left[\frac{2J_1(u)}{u}\right]^2 \frac{\sin^2 N(u\triangle L/D)}{\sin^2(u\triangle L/D)}
$$

with $u = \pi \theta D / \lambda$ and θ , the radially symmetric, diffraction angle

• central peak: similar to Airy function with spatial resolution

$$
\triangle \theta = \frac{\lambda}{2L_{max}} \text{radians}
$$

with 2*Lmax* the maximum diameter of the array in the YZ-plane

concentric grating lobes: angular distances of annuli from central peak follow from the location of principal maxima given by modulation term $\sin^2 N(u \triangle L/D)/\sin^2(u \triangle L/D)$

PSF (continued)

 \bullet for an N-element array with increment $\triangle L$, these angular positions are given by:

$$
\theta_{grating} = \frac{\lambda}{\triangle L}, 2\frac{\lambda}{\triangle L}, \dots, (N-1)\frac{\lambda}{\triangle L}
$$

- undersampling of YZ-plane since grating lobes are well within field of view
- can decrease distance between antennae 9 and A during second half rotation for 36 meter increment coverage
- **o** four half rotations in 48 hours can increase coverage to 18 meter increments \Rightarrow complete uv coverage
- incomplete coverage of YZ-plane means that values of coherence function $\tilde{\Gamma}(\vec{r})$ are set to zero in empty spaces, which will certainly give an erroneous result
- apply CLEAN method for improving dirty radio maps

Bandwidth Restrictions

- coherence length of source needs to be larger than maximum path length difference at longest baseline
- **imposes maximum frequency bandwidth for observations**
- **•** largest angle of incidence equals half the field of view, i.e. $\lambda/2D$
- coherence length compliant with largest baseline $L_{coh}\gg \frac{\lambda}{2D}L_{max}$
- frequency bandwidth requirement

$$
\frac{\triangle \nu}{\nu_0} \ll \frac{2D}{L_{max}}
$$

- WRST: $2D/L_{max} \approx 1/50$, at 21 cm (≈ 1400 MHz), $\Delta \nu \ll 28$ MHz, coherence length > 10 m
- in practise: $\triangle \nu \approx 10$ MHz
- increase bandwidth by division into frequency subbands
- subband maps scaled with λ and added

General Case

- extended source in arbitrary direction
- **o** during Earth's rotation, antenna beams kept pointed at source
- tip of baseline vector describes a trajectory
- maintain maximum coherence by delaying one antenna signal with respect to the other antenna within fraction of a wavelength
- source at angle ϕ_0 to Earth's rotation axis
- **•** circles in uv-plane change into ellipses and coherence function is sampled on ellipses rather than on circles
- major axes of these ellipses remain equal to the physical length of the WSRT baselines, minor axes are shortened by $\cos \phi_0$
- PSF becomes elliptical

$$
\textit{PSF} = \frac{\alpha\lambda}{2L_{\textit{max}}\cos\phi_0}
$$

- source in equatorial plane: no resolution in one direction
- **•** baselines need North-South components (e.g. VLA)