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Cygnus A at 6 cm

Image courtesy of NRAO/AUI



Very Large Array (VLA), New Mexico, USA

Image courtesy of NRAO/AUI



Two-Element Interferometer

Fringe Pattern

for I1 = I2 = I0

I = 2I0 {1 + |γ̃12(τ)| cos [α12(τ)− φ]} V = |γ̃12(τ)|

source S on central axis, fully coherent waves from two holes

I = 2I0(1 + cosφ) = 4I0 cos2 φ

2



Fringe Pattern (continued)

I = 4I0 cos2 φ

2

φ =
2π
λ

(r2 − r1) = 2πντ

distance a between pinholes
distance s to observation plane ΣO, s � a
path difference (r2 − r1) in equation for φ in good approximation

r2 − r1 = aθ =
a
s

y

and therefore
I = 4I0 cos2 πay

sλ



Interference Fringes from Monochromatic Point Source

irradiance as a function of the y -coordinate of the fringes in
observation plane ΣO

irradiance vs. distance distribution is Point-Spread Function
(PSF) of ideal two-element interferometer
non-ideal two-element interferometer with finite apertures using
pupil function concept (Observational Astrophysics 1)



Finite Apertures
two circular apertures, diameter d , separated by baseline
direction vector ~s
origin of pupil function P(~r) on baseline vector ~s symmetrically
positioned between apertures
pupil function using 2-dimensional circular window function Π

P(~r) = Π

(
~r − ~s/2

d

)
+ Π

(
~r + ~s/2

d

)
with spatial frequency variable ~ζ = ~r/λ

P(~ζ) = Π

(
~ζ − ~s/2λ

d/λ

)
+ Π

(
~ζ + ~s/2λ

d/λ

)



Finite Apertures (continued)

with ~ζ = ~r/λ

P(~ζ) = Π

(
~ζ − ~s/2λ

d/λ

)
+ Π

(
~ζ + ~s/2λ

d/λ

)

length of baseline vector |~s| = D
if d � D, pupil function can be approximated by

P(~ζ) = δ
(
~ζ − ~s/2λ

)
+ δ

(
~ζ + ~s/2λ

)
optical transfer function (OTF) from self-convolution of (λ/R)P(~ζ)

symmetrical pupil function: autocorrelation of (λ/R)P(~ζ):

OTF = Hλ(~ζ) =

(
λ

R

)2 ∫ ∫
pupil plane

P(~ζ ′)P(~ζ ′ − ~ζ)d~ζ ′



Finite Apertures (continued)
pupil function for d � D

P(~ζ) = δ
(
~ζ − ~s/2λ

)
+ δ

(
~ζ + ~s/2λ

)
autocorrelation of (λ/R)P(~ζ):

OTF = Hλ(~ζ) =

(
λ

R

)2 ∫ ∫
pupil plane

P(~ζ ′)P(~ζ ′ − ~ζ)d~ζ ′

=

(
λ

R

)2 ∫ ∫
pupil plane

[
δ
(
~ζ ′ − ~s/2λ

)
+ δ

(
~ζ ′ + ~s/2λ

)]
·

·
[
δ
(
~ζ ′ − ~ζ − ~s/2λ

)
+ δ

(
~ζ ′ − ~ζ + ~s/2λ

)]
d~ζ ′

= 2
(
λ

R

)2 [
δ(~ζ ) +

1
2
δ
(
~ζ − ~s/λ

)
+

1
2
δ
(
~ζ + ~s/λ

)]



Finite Apertures (continued)
from before

OTF = 2
(
λ

R

)2 [
δ(~ζ ) +

1
2
δ
(
~ζ − ~s/λ

)
+

1
2
δ
(
~ζ + ~s/λ

)]
pair of pinholes transmits three spatial frequencies

DC-component δ(~0)
two high frequencies related to length of baseline vector ~s at ±~s/λ

3 spatial frequencies represent three-point sampling of the
uv-plane in 2-d spatial frequency space
complete sampling of uv-plane provides sufficient information
completely reconstruct original brightness distribution



Point-Spread Function (PSF)
Optical Transfer Function (OTF) of 2-element interferometer

OTF = 2
(
λ

R

)2 [
δ(~ζ ) +

1
2
δ
(
~ζ − ~s/λ

)
+

1
2
δ
(
~ζ + ~s/λ

)]
PSF is Fourier Transform of Hλ(~ζ)

δ(~ζ ) ⇔ 1

δ
(
~ζ − ~s/λ

)
⇔ ei2π~θ·~s/λ

δ
(
~ζ + ~s/λ

)
⇔ e−i2π~θ·~s/λ

Point-Spread Function of 2-element interferometer(
λ

R

)2 [
2(1 + cos 2π~θ · ~s/λ)

]
= 4

(
λ

R

)2

cos2 π~θ · ~s/λ

~θ: 2-d angular coordinate vector
attenuation factor (λ/R)2 from spherical expansion



Point-Spread Function (continued)
from before

PSF = 4
(
λ

R

)2

cos2 π~θ · ~s/λ

flux I0 from each pinhole⇒ brightness distribution for diffracted
beam

I = 4I0 cos2 π~θ · ~s/λ

compare to previous result

I = 4I0 cos2 πay
sλ

the same but now in 2-d setting with ~θ replacing y/s and ~s
replacing pinhole distance a



Interpretation of fringe pattern

flux I0 from each pinhole⇒ brightness distribution for diffracted
beam

I = 4I0 cos2 π~θ · ~s/λ

full constructive interference for

I = 4I0 for
~θ · ~s
λ

= n (= 0,±1,±2, . . .) → |~θ| =
nλ

|~s| cosφ

full destructive interference for

I = 0 for
~θ · ~s
λ

= (n +
1
2

) (= ±1
2
,±3

2
, . . .) → |~θ| =

(n + 1
2)λ

|~s| cosφ

cosφ is angle between ~θ and baseline vector ~s



Interpretation of fringe pattern (continued)

PSF represents corrugated sheet with modulation along
direction of baseline vector ~s and periodicity (∆θ)s = λ/|~s|
PSF is pattern of alternating bright and dark stripes orthogonal
to direction of baseline vector ~s
aperture have finite size, diffracted light from apertures is
localized, i.e. d < S, but approximation by δ-functions no longer
holds



Finite Apertures: PSF
PSF (amplitude squared of diffracted field) from Fourier
transformation of pupil function

ã(~θ) ⇔ λ

R

[
Π

{
λ

d

(
~ζ −

~s
2λ

)}
+ Π

{
λ

d

(
~ζ +

~s
2λ

)}]
shift and scale theorems of Fourier theory: if f (x)⇔ F (s), then
f [a(x − b)]⇔

(
e−2πibs/a

)
F (s/a)

amplitude of diffracted field

ã(| ~θ |) =

(
λ

R

)[
1
4
π (d/λ)2

][
2J1(π| ~θ |d/λ)

π| ~θ |d/λ

](
e−2πi~θ·~s/2λ + e2πi~θ·~s/2λ

)
= 2

(
λ

R

)[
1
4
π (d/λ)2

] [
2J1(|~u |)
|~u |

]
cos~u · ~s/d ~u = π ~θ d/λ

PSF = |ã(|~θ|)|2 = 4
(
λ

R

)2 [1
4
π (d/λ)2

]2 [2J1(|~u |)
|~u |

]2

cos2 ~u · ~s/d



Finite Apertures: PSF Interpretation
from before

PSF = |ã(|~θ|)|2 = 4
(
λ

R

)2 [1
4
π (d/λ)2

]2 [2J1(|~u |)
|~u |

]2

cos2 ~u ·~s/d

full constructive interference for

~θ · ~s
λ

= n (= 0,±1,±2, . . .) → |~θ| =
nλ

|~s| cosφ

full destructive interference for

~θ · ~s
λ

= (n +
1
2

) (= ±1
2
,±3

2
,±5

2
, . . .) → |~θ| =

(n + 1
2)λ

|~s| cosφ

cosφ is angle between ~θ and baseline vector ~s



PSF Interpretation (continued)
from before

PSF = |ã(|~θ|)|2 = 4
(
λ

R

)2 [1
4
π (d/λ)2

]2 [2J1(|~u |)
|~u |

]2

cos2 ~u ·~s/d

first two terms give normalisation for |~θ | = 0
other terms represent corrugated 2-d Airy brightness distribution,
intensity-modulated along the direction of the baseline vector ~s
with periodicity (∆θ)s = λ/|~s|
pattern of alternating bright and dark annuli
separation determined by
(∆θ)d = 1.220λ/d , 2.233λ/d , 3.238λ/d , ...
superimposed by fringes orthogonal to direction of baseline
vector ~s at distance (∆θ)s = λ/|~s |



2-d Brightness Distribution

PSF of single circular aperture PSF of two-element
interferometer, aperture diameter
d = 25 m, length of baseline
vector |~s| = 144 m

double beam interference fringes showing modulation effect of
diffraction by aperture of a single pinhole



Modulation Effect of Aperture

typical one-dimensional cross-section along uy = 0 of the central
part of the interferogram
visibilities are equal to one, because Imin = 0
|γ̃12(τ)| = 1 for all values of τ and any pair of spatial points, if
and only if the radiation field is strictly monochromatic
a non-zero radiation field for which |γ̃12(τ)| = 0 for all values of τ
and any pair of spatial points cannot exist in free space



Van Cittert-Zernike Theorem

Basic Approach

relates brightness distribution of extended source and phase
correlation between two points in radiation field
extended source S incoherent, quasi-monochromatic
positions P1 and P2 in observers plane Σ

Ẽ1(t)Ẽ∗2 (t) = E{Ẽ1(t)Ẽ∗2 (t)} = Γ̃12(0)



Basic Approach (continued)
in observers plane Σ with subscripts 1 and 2 referring to
positions P1 and P2

Ẽ1(t)Ẽ∗2 (t) = E{Ẽ1(t)Ẽ∗2 (t)} = Γ̃12(0)

if Ẽ1 and Ẽ2 are uncorrelated, then |Γ̃12(0)| = 0

full correlation: |γ̃12|
(

= |Γ̃12(0)|√
I1I2

)
= 1

partial correlation: 0 < |γ̃12(0)| < 1
extended source is collection of non-coherent infinitesimal
sources
reduction in fringe contrast described by Visibility function V:

V =
Imax − Imin

Imax + Imin
= |γ̃12(0)|



Overview without Equations

relate γ12(0) to brightness
distribution of extended
source S
source S is
quasi-monochromatic,
incoherent source in plane
σ, intensity distribution
I(y , z)

observation plane Σ parallel
to σ
l is perpendicular to both
planes (coincident with the
X -axis) connecting center of
extended source
(y = 0, z = 0) to zero
reference in Σ
(Y = 0,Z = 0).



Overview without Equations (continued)
two positions P1, P2

describe coherence γ12(0)
in plane Σ

infinitesimal radiation
element dS in source at
distances R1 and R2 from P1
and P2

assume S not a source but
an aperture of identical size
and shape
assume that I(y , z) is not
description of intensity
distribution but its functional
form corresponds to the field
distribution across that
aperture



Overview without Equations (continued)
imagine a transparancy at
aperture with amplitude
transmission characteristics
that correspond functionally
to the irradiance distribution
I(y , z)

imagine that aperture is
illuminated by spherical
wave converging towards
fixed point P2 so that
diffraction pattern is
centered at P2

this diffracted field
distribution, normalised to
unity at P2, is everywhere
(e.g. at P1) equal to the
value of γ12(0) at that point



Overview with Equations
in limit R1, R2 much larger than source diameter and relevant
part of Σ-plane, equivalent of Fraunhofer diffraction
almost always satisfied for astronomical observations
van Cittert-Zernike theorem

Γ̃(~r) =

∫ ∫
source

I(~Ω)e
2πi~Ω.~r
λ d~Ω

I(~Ω) = λ−2
∫ ∫

Σ-plane

Γ̃(~r)e−
2πi~Ω.~r
λ d~r

I(~Ω) is intensity distribution of extended source as function of unit
direction vector ~Ω as seen from observation plane Σ

Γ̃(~r) is coherence function in Σ-plane
center of extended source S is origin of ~Ω (coincident with
central axis l), small angular extent of source: I(~Ω) = I(θy , θz)

and d~Ω = dθydθz , where θy , θz two orthogonal angular
coordinate axes across the source



Overview with Equations (continued)
van Cittert-Zernike theorem

Γ̃(~r) =

∫ ∫
source

I(~Ω)e
2πi~Ω.~r
λ d~Ω

I(~Ω) = λ−2
∫ ∫

Σ-plane

Γ̃(~r)e−
2πi~Ω.~r
λ d~r

vector ~r represents arbitrary baseline ~r(X ,Y ) in plane with
d~r = dYdZ (e.g. P1P2 = ~rP1 −~rP2)

Γ̃(~r) and I(~Ω) are linked through Fourier transform, except for
scaling with wavelength λ
scaling might be perceived as "true" Fourier transform with
conjugate variables ~Ω and ~r/λ,
van Cittert-Zernike theorem as Fourier pair

I(~Ω) ⇔ Γ̃(~r/λ)



Overview with Equations (continued)
van Cittert-Zernike theorem

Γ̃(~r) =

∫ ∫
source

I(~Ω)e
2πi~Ω.~r
λ d~Ω

I(~Ω) = λ−2
∫ ∫

Σ-plane

Γ̃(~r)e−
2πi~Ω.~r
λ d~r

complex spatial degree of coherence

γ̃(~r) =
Γ̃(~r)∫ ∫

source
I(~Ω)d~Ω

i.e. normalising by total source intensity
extended source S is spatially incoherent, but partially correlated
radiation field at e.g. positions P1 and P2 exists since all
individual source elements contribute to a specific location P in
Σ-plane



Derivation of Van Cittert-Zernike Theorem
observation plane Σ
contains baseline vector
~r(Y ,Z ) and is perpendicular
to vector pointing at centre
of radiation source
angular coordinates θy and
θz across the source
correspond to linear
coordinates of unit direction
vector ~Ω(ΩX ,ΩY ,ΩZ ), i.e.
direction cosines of ~Ω
relative to X ,Y ,Z coordinate
system (Ω2

X + Ω2
Y + Ω2

Z = 1).



Derivation of Van Cittert-Zernike Theorem (continued)

spatial coherence of
EM-field between two
positions 1 and 2 is outcome
of correlator producing
E
{

Ẽ1(t)Ẽ∗2 (t)
}

positions 1, 2 not point like,
represent radio antennae or
optical telescopes
if I(~Ω) = I0δ(~Ω), i.e. a point
source on the X -axis, the
Van Cittert-Zernike relation
yields |Γ̃(~r)| = I0 and
|γ̃(~r)| = 1: a plane wave
simultaneously hits entire
YZ -plane, full coherence is
preserved



Derivation of Van Cittert-Zernike Theorem (continued)

infinitesimal source element in
direction ~Ω0 =⇒ I0δ(~Ω− ~Ω0)
projection of ~Ω0 on the Σ−plane is
~Ω′0(ΩY ,ΩZ )

difference in path length between
positions 1 and 2 given by
projection of ~r on ~Ω0, i.e.
~r .~Ω′0 = ΩY Y + ΩZ Z
therefore

Ẽ1(t) = Ẽ0(t)e
2πiν0

„
t+

~Ω0.~r
c

«

= Ẽ0(t)e

„
2πiν0t+ 2πi~Ω0.~r

λ

«
Ẽ∗2 (t) = Ẽ0(t)e−2πiν0t



Derivation of Van Cittert-Zernike Theorem (continued)

Ẽ1(t) = Ẽ0(t)e
2πiν0

„
t+

~Ω0.~r
c

«

= Ẽ0(t)e

„
2πiν0t+ 2πi~Ω0.~r

λ

«
Ẽ∗2 (t) = Ẽ0(t)e−2πiν0t

E
{

Ẽ1(t)Ẽ∗2 (t)
}

= E
{
|Ẽ0(t)|2

}
e

2πi~Ω0.~r
λ = I0(~Ω0)e

2πi~Ω0.~r
λ

integration over full source extent (all source elements are
spatially uncorrelated)

Γ̃(~r) =

∫ ∫
source

I0(~Ω)e2πi~Ω.~r/λd~Ω

γ̃(~r) =

∫ ∫
source

I0(~Ω)e2πi~Ω.~r/λd~Ω∫ ∫
source

I0(~Ω)d~Ω



Derivation of Van Cittert-Zernike Theorem (continued)
coherence

Γ̃(~r) =

∫ ∫
source

I0(~Ω)e2πi~Ω.~r/λd~Ω

Γ̃(~r) at a certain point represents a single Fourier component
(with baseline ~r ) of the intensity distribution of the source with
strength Γ̃(~r)d~r
short baseline (small |~r |) corresponds to low spatial frequency
component in brightness distribution I(θy , θz), i.e. coarse
structure
large values of |~r | correspond to fine structure in I(θy , θz)

diffraction limited resolution in aperture synthesis is

|~rmax | = Lmax =⇒ θmin =
λ

2Lmax

factor 2 in denominator of expression for θmin follows from
rotation symmetry in aperture synthesis



Example: Uniform Slit

coherence function γ̃12(0) for uniform slit source
slit width b, running coordinate ξ, observation plane Σ, running
coordinate y , located at large distance l from slit source
(Fraunhofer limit)



Example: Uniform Slit (continued)

source function is window function Π
(
ξ
b

)
in angular equivalent Π

(
β
β0

)
, with β0 = b/l

application of Van Cittert-Zernike theorem I(~Ω)⇔ Γ̃(~r/λ):

Π

(
β

β0

)
⇔ β0sinc

(
yβ0

λ

)
= β0sinc

(
yb
λl

)
sinc(x) =

( sinπx
πx

)



Example: Uniform Slit (continued)

from Van Cittert-Zernike theorem I(~Ω)⇔ Γ̃(~r/λ):

Π

(
β

β0

)
⇔ β0sinc

(
yβ0

λ

)
= β0sinc

(
yb
λl

)
modulus of normalised complex coherence function

|γ̃(y)| =

∣∣∣∣∣β0sinc yb
λl

β0

∣∣∣∣∣ =

∣∣∣∣sinc
yb
λl

∣∣∣∣ = V ⇒ Visibility

enlarging b with a factor shrinks coherence function by same
factor
if brightness structure of radiation source covers wide range of
angular scales from ∆ down to δ, spatial coherence function
shows finest detail of λ/∆ over maximum extent of ≈ λ/δ


