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Motivation
understand electromagnetic radiation and its propagation from
astronomical sources to astronomical detectors
understand how to analyse data from telescopes at all
wavelengths
different detection techniques at different wavelengths



Fundamentals of Electromagnetic Waves

Electromagnetic Waves in Matter

electromagnetic waves are a direct consequence of Maxwell’s
equations

optics: interaction of electromagnetic waves with matter as
described by material equations



Maxwell’s Equations in Matter

∇ · ~D = 4πρ

∇× ~H − 1
c
∂~D
∂t

=
4π
c
~j

∇× ~E +
1
c
∂~B
∂t

= 0

∇ · ~B = 0

Symbols
~D electric displacement
ρ electric charge density
~H magnetic field vector
c speed of light in vacuum
~j electric current density
~E electric field vector
~B magnetic induction
t time

Linear Material Equations

~D = ε~E
~B = µ~H
~j = σ~E

Symbols
ε dielectric constant
µ magnetic permeability
σ electrical conductivity



Wave Equation in Matter
static, homogeneous medium with no net charges (ρ = 0)
for most materials µ = 1
combination of Maxwell’s and material equations leads to
differential equations for a damped (vector) wave

∇2~E − µε

c2
∂2~E
∂t2 −

4πµσ
c2

∂~E
∂t

= 0

∇2~H − µε

c2
∂2~H
∂t2 −

4πµσ
c2

∂~H
∂t

= 0

~E and ~H are equivalent
interaction with matter almost always through ~E
but: at interfaces, boundary conditions for ~H are crucial
damping controlled by conductivity σ



Plane-Wave Solutions
Plane Vector Wave ansatz

~E = ~E0ei(~k ·~x−ωt)

~k spatially and temporally constant wave vector
~k normal to surfaces of constant phase
|~k | wave number
~x spatial location
ω angular frequency (2π× frequency)
t time

~E0 a (generally complex) vector independent of time and space
damping if ~k is complex
real electric field vector given by real part of ~E



Complex index of refraction
after doing temporal derivatives⇒ Helmholtz-equation

∇2~E +
ω2µ

c2

(
ε+ i

4πσ
ω

)
~E = 0,

dispersion relation between ~k and ω

~k · ~k =
ω2µ

c2

(
ε+ i

4πσ
ω

)
complex index of refraction

ñ2 = µ

(
ε+ i

4πσ
ω

)
, ~k · ~k =

ω2

c2 ñ2



Transverse Waves
plane-wave solution must also fulfill Maxwell’s equations

~E0 · ~k = 0, ~H0 · ~k = 0

~H0 =
ñ
µ

~k

|~k |
× ~E0

isotropic media: electric, magnetic field vectors normal to wave
vector⇒ transverse waves
~E0, ~H0, and ~k orthogonal to each other, right-handed vector-triple

conductive medium⇒ complex ñ, ~E0 and ~H0 out of phase
~E0 and ~H0 have constant relationship⇒ consider only one of two
fields



Polarization

spatially, temporally constant vector ~E0 lays in plane
perpendicular to propagation direction ~k
represent ~E0 in 2-D basis, unit vectors ~e1 and ~e2, both
perpendicular to ~k

~E0 = E1~e1 + E2~e2.

E1, E2: arbitrary complex scalars
damped plane-wave solution with given ω, ~k has 4 degrees of
freedom (two complex scalars)
additional property is called polarization
many ways to represent these four quantities



Scalar Wave

electric vector of wave field at position ~r at time t is Ẽ(~r , t)
complex notation to easily express amplitude and phase
real part of complex quantity is the physical quantity



Quasi-Monochromatic Light
monochromatic light: purely theoretical concept
monochromatic light wave always fully polarized
real life: light includes range of wavelengths⇒
quasi-monochromatic light
quasi-monochromatic: superposition of mutually incoherent
monochromatic light beams whose wavelengths vary in narrow
range δλ around central wavelength λ0

δλ

λ
� 1

measurement of quasi-monochromatic light: integral over
measurement time tm
amplitude, phase (slow) functions of time for given spatial
location
slow: variations occur on time scales much longer than the mean
period of the wave



Interference

Young’s Double Slit
Experiment

monochromatic wave
infinitely small holes (pinholes)
source S generates fields
Ẽ(~r1, t) ≡ Ẽ1(t) at S1 and
Ẽ(~r2, t) ≡ Ẽ2(t) at S2

two spherical waves from pinholes
interfere on screen
electrical field at P

ẼP(t) = C̃1Ẽ1(t − t1) + C̃2Ẽ2(t − t2)

t1 = r1/c, t2 = r2/c
r1, r2: path lengths to P from S1, S2

propagators C̃1,2 = i
λ



no tilt tilt by 0.5 λ/d

Change in Angle of Incoming Wave

phase of fringe pattern changes, but not fringe spacing
tilt of λ/d produces identical fringe pattern



long wavelength short wavelength wavelength average

Change in Wavelength

fringe spacing changes, central fringe broadens
integral over 0.8 to 1.2 of central wavelength
intergral over wavelength makes fringe envelope



2 pinholes 2 small holes 2 large holes

Finite Hole Diameter
fringe spacing only depends on separation of holes and
wavelength
the smaller the hole, the larger the ’illuminated’ area
fringe envelope is an Aity pattern (diffraction pattern of a single
hole)



Visibility
“quality” of fringes described by Visibility function

V =
Imax − Imin

Imax + Imin

Imax, Imin are maximum and adjacent minimum in fringe pattern

First Fringes from VLT Interferometer



Coherence

Mutual Coherence
total field in point P

ẼP(t) = C̃1Ẽ1(t − t1) + C̃2Ẽ2(t − t2)

irradiance at P, averaged over time

I = E|ẼP(t)|2 = E
{

ẼP(t)Ẽ∗
P(t)

}
writing out all the terms

I = C̃1C̃∗
1E
{

Ẽ1(t − t1)Ẽ∗
1 (t − t1)

}
+C̃2C̃∗

2E
{

Ẽ2(t − t2)Ẽ∗
2 (t − t2)

}
+C̃1C̃∗

2E
{

Ẽ1(t − t1)Ẽ∗
2 (t − t2)

}
+C̃∗

1C̃2E
{

Ẽ∗
1 (t − t1)Ẽ2(t − t2)

}



Mutual Coherence (continued)
as before

I = C̃1C̃∗
1E
{

Ẽ1(t − t1)Ẽ∗
1 (t − t1)

}
+C̃2C̃∗

2E
{

Ẽ2(t − t2)Ẽ∗
2 (t − t2)

}
+C̃1C̃∗

2E
{

Ẽ1(t − t1)Ẽ∗
2 (t − t2)

}
+C̃∗

1C̃2E
{

Ẽ∗
1 (t − t1)Ẽ2(t − t2)

}
stationary wave field, time average independent of absolute time

IS1 = E
{

Ẽ1(t)Ẽ∗
1 (t)

}
and IS2 = E

{
Ẽ2(t)Ẽ∗

2 (t)
}

irradiance at P is now

I = C̃1C̃∗
1 IS1 + C̃2C̃∗

2 IS2 + C̃1C̃∗
2E
{

Ẽ1(t − t1)Ẽ∗
2 (t − t2)

}
+C̃∗

1C̃2E
{

Ẽ∗
1 (t − t1)Ẽ2(t − t2)

}



Mutual Coherence (continued)
as before

I = C̃1C̃∗
1 IS1 + C̃2C̃∗

2 IS2 + C̃1C̃∗
2E
{

Ẽ1(t − t1)Ẽ∗
2 (t − t2)

}
+C̃∗

1C̃2E
{

Ẽ∗
1 (t − t1)Ẽ2(t − t2)

}
with time difference τ = t2 − t1 last two terms become

C̃1C̃∗
2E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}
+ C̃∗

1C̃2E
{

Ẽ∗
1 (t + τ)Ẽ2(t)

}
this is equivalent to

2 Re
[
C̃1C̃∗

2E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}]
propagators C̃ purely imaginary: C̃1C̃∗

2 = C̃∗
1C̃2 = |C̃1||C̃2|

cross-term becomes

2|C̃1||C̃2|Re
[
E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}]



Mutual Coherence (continued)
irradiance at point P is now

I = C̃1C̃∗
1 IS1 + C̃2C̃∗

2 IS2

+2|C̃1||C̃2|Re
[
E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}]
mutual coherence function of wave field at S1 and S2

Γ̃12(τ) = E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}
irradiance at point P becomes

I = |C̃1|2IS1 + |C̃2|2IS2 + 2|C̃1||C̃2| Re Γ̃12(τ)

I1 = |C̃1|2IS1 , I2 = |C̃2|2IS2 are irradiances at P from a single
aperture

I = I1 + I2 + 2|C̃1||C̃2| Re Γ̃12(τ)



Self-Coherence
if S1 = S2, mutual coherence function becomes autocorrelation
function

Γ̃11(τ) = R̃1(τ) = E
{

Ẽ1(t + τ)Ẽ∗
1 (t)

}
Γ̃22(τ) = R̃2(τ) = E

{
Ẽ2(t + τ)Ẽ∗

2 (t)
}

autocorrelation functions are also called self-coherence functions
for τ = 0

IS1 = E
{

Ẽ1(t)Ẽ∗
1 (t)

}
= Γ11(0) = E

{
|Ẽ1(t)|2

}
IS2 = E

{
Ẽ2(t)Ẽ∗

2 (t)
}

= Γ22(0) = E
{
|Ẽ2(t)|2

}
autocorrelation function with zero lag (τ = 0) represent (average)
irradiance (power) of wave field at S1, S2



Complex Degree of Coherence

using selfcoherence functions

|C̃1||C̃2| =

√
I1
√

I2√
Γ11(0)

√
Γ22(0)

normalized mutual coherence defines the complex degree of
coherence

γ̃12(τ) ≡ Γ̃12(τ)√
Γ11(0)Γ22(0)

=
E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}
√

E
{
|Ẽ1(t)|2

}
E
{
|Ẽ2(t)|2

}
irradiance in point P as general interference law for a partially
coherent radiation field

I = I1 + I2 + 2
√

I1I2 Re γ̃12(τ)



Spatial and Temporal Coherence
complex degree of coherence

γ̃12(τ) ≡ Γ̃12(τ)√
Γ11(0)Γ22(0)

=
E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}
√

E
{
|Ẽ1(t)|2

}
E
{
|Ẽ2(t)|2

}
measures both

spatial coherence at S1 and S2
temporal coherence through time lag τ

γ̃12(τ) is a complex variable and can be written as:

γ̃12(τ) = |γ̃12(τ)|eiψ12(τ)

0 ≤ |γ̃12(τ)| ≤ 1
phase angle ψ12(τ) relates to

phase angle between fields at S1 and S2
phase angle difference in P resulting in time lag τ



Coherence of Quasi-Monochromatic Light

quasi-monochromatic light, mean wavelength λ, frequency ν,
phase difference φ due to optical path difference:

φ =
2π
λ

(r2 − r1) =
2π
λ

c(t2 − t1) = 2πντ

with phase angle α12(τ) between fields at pinholes S1, S2

ψ12(τ) = α12(τ)− φ

and
Re γ̃12(τ) = |γ̃12(τ)| cos [α12(τ)− φ]

intensity in P becomes

I = I1 + I2 + 2
√

I1I2 |γ̃12(τ)| cos [α12(τ)− φ]



Visibility of Quasi-Monochromatic, Partially Coherent Light
intensity in P

I = I1 + I2 + 2
√

I1I2 |γ̃12(τ)| cos [α12(τ)− φ]

maximum, minimum I for cos(...) = ±1
visibility V at position P

V =
2
√

I1
√

I2
I1 + I2

|γ̃12(τ)|

for I1 = I2 = I0

I = 2I0 {1 + |γ̃12(τ)| cos [α12(τ)− φ]}
V = |γ̃12(τ)|



Interpretation of Visibility
for I1 = I2 = I0

I = 2I0 {1 + |γ̃12(τ)| cos [α12(τ)− φ]}
V = |γ̃12(τ)|

modulus of complex degree of coherence = visibility of fringes
modulus can therefore be measured
shift in location of central fringe (no optical path length
difference, φ = 0) is measure of α12(τ)

measurements of visibility and fringe position yield amplitude
and phase of complex degree of coherence



Intensity Interferometry

Basic Idea

intensity fluctuations are also partially coherent
random superposition of wave packets results in Gaussian
distribution of amplitude fluctuations
intensity cross-correlation E {4I1(t + τ)4I2(t)} between two
different parts of incoming wave is not zero
implies correlation between photons from thermal sources



Hanbury Brown and Twiss

intensity interferometry can measure stellar diameters
diameter of Sirius in 1956 by Hanbury Brown and Twiss
only light buckets are needed to collect photons
basic principle was doubted by many
classical explanation (see exercises)
quantum-mechanical explanation: “photon bunching”,
Bose-Einstein statistics makes photons to be bunched together


