Lecture 8: Indirect Imaging 1

@ Electromagnetic Waves
@ Interference
@ Coherence




Motivation
@ understand electromagnetic radiation and its propagation from
astronomical sources to astronomical detectors
@ understand how to analyse data from telescopes at all
wavelengths
@ different detection techniques at different wavelengths




Fundamentals of Electromagnetic Waves

Electromagnetic Waves in Matter

@ electromagnetic waves are a direct consequence of Maxwell’s
equations

@ optics: interaction of electromagnetic waves with matter as
described by material equations




Maxwell’s Equations in Matter
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Linear Material Equations
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Symbols

D electric displacement

p electric charge density
H magnetic field vector

c speed of light in vacuum
J electric current density
E electric field vector

B magnetic induction

t time

e dielectric constant

i magnetic permeability
o electrical conductivity




Wave Equation in Matter

@ static, homogeneous medium with no net charges (p = 0)
@ for most materials p = 1

@ combination of Maxwell’s and material equations leads to
differential equations for a damped (vector) wave
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@ E and H are equivalent

@ interaction with matter almost always through £

@ but: at interfaces, boundary conditions for H are crucial
@ damping controlled by conductivity o




Plane-Wave Solutions

Plane Vector Wave ansatz

E _ Eoei(l?.)?_(d)

k spatially and temporally constant wave vector
k normal to surfaces of constant phase
\k| wave number
X spatial location
w angular frequency (27 x frequency)
t time
Eo a (generally complex) vector independent of time and space
@ damping if k is complex
e real electric field vector given by real part of £




Complex index of refraction

@ after doing temporal derivatives = Helmholtz-equation
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@ dispersion relation between k and w
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@ complex index of refraction
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Transverse Waves
@ plane-wave solution must also fulfill Maxwell’s equations
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@ isotropic media: electric, magnetic field vectors normal to wave
vector = transverse waves

@ Ey, Hp, and k orthogonal to each other, right-handed vector-triple
@ conductive medium = complex 7, E'o and ﬁo out of phase

@ E, and Hy have constant relationship = consider only one of two
fields




Polarization

@ spatially, temporally constant vector Eo lays in plane
perpendicular to propagation direction k

@ represent Ey in 2-D basis, unit vectors é; and &, both
perpendicular to k

Eo = E1 é1 + Egég.
E,, E5: arbitrary complex scalars

@ damped plane-wave solution with given w, k has 4 degrees of
freedom (two complex scalars)

@ additional property is called polarization
@ many ways to represent these four quantities




Scalar Wave

@ electric vector of wave field at position 7 at time t is E(7, t)
@ complex notation to easily express amplitude and phase
@ real part of complex quantity is the physical quantity




Quasi-Monochromatic Light

monochromatic light: purely theoretical concept
monochromatic light wave always fully polarized
real life: light includes range of wavelengths =-
quasi-monochromatic light
quasi-monochromatic: superposition of mutually incoherent
monochromatic light beams whose wavelengths vary in narrow
range 6\ around central wavelength )\
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measurement of quasi-monochromatic light: integral over
measurement time fp

amplitude, phase (slow) functions of time for given spatial
location

slow: variations occur on time scales much longer than the mean
period of the wave




Interference

@ monochromatic wave
Experiment @ infinitely small holes (pinholes)
@ source S generates fields
E(ry,t) = E4(t) at Sy and
E(ro,t) = Ex(t) at S,

@ two spherical waves from pinholes
interfere on screen

@ electrical field at P

Ep(t) = CLEi(t— 1) + CEs(t — b)

e lh=n/c,b=r/c
@ ry, I>: path lengths to P from S, S,
@ propagators C; 2= X




no tllt
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Change in Angle of Incoming Wave
@ phase of fringe pattern changes, but not fringe spacing
@ tilt of A\/d produces identical fringe pattern




long wavelength short wavelength wavelength average
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Change in Wavelength
@ fringe spacing changes, central fringe broadens

@ integral over 0.8 to 1.2 of central wavelength

@ intergral over wavelength makes fringe envelope




2 pinholes 2 small holes 2 large holes

F|n|te Hole Diameter

° frmge spacing only depends on separation of holes and
wavelength

@ the smaller the hole, the larger the ’illuminated’ area

@ fringe envelope is an Aity pattern (diffraction pattern of a single
hole)




Visibility

@ “quality” of fringes described by Visibility function

hnax — i
V= max min
Imax + /min

@ lnax, hnin @are maximum and adjacent minimum in fringe pattern

First Fringes from VLT Interferometer
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*First Fringes’ from Sirius with VLTI

ESO PR Photo 10/01 (18 March 2001 ) ©European Southern Observatory




Coherence

Mutual Coherence
@ total field in point P

Ep(t) = CiEi(t—t) + CoEx(t — 1)
@ irradiance at P, averaged over time
I = E|Ep(1)P = E{Ep(Ex(1)}

@ writing out all the terms




Mutual Coherence (continued)
@ as before

@ stationary wave field, time average independent of absolute time
Is, = E {E(t)ér(t)} and s, = E {Eg(t)ég(r)}
@ irradiance at P is now
I= CiCils, + CCsls, + C1CiE { Er(t - 1)E5(t - 1)}
+CiGE{Ef(t - t)Eo(t — 1)




Mutual Coherence (continued)
@ as before

I= CiCils, + CoCyls, + CIGE{Ei(t - t)E;(t - 1)}
+C:C.E {I:ﬂ*(t ) Ey(t - tg)}
@ with time difference 7 = &, — t; last two terms become
Ci CiE {E (t+ T)E;(t)} + CiCE {E*(t + T)Ez(t)}
@ this is equivalent to
2 Re [61 CiE {E (t+7) ”5(1‘)}}

e propagators C purely imaginary: C;C; = CiCy = |Cy||Cy]
@ cross-term becomes

2/C11C|Re [E{ Ey(t+ n)E3(0)}]




Mutual Coherence (continued)
@ irradiance at point P is now

/= é1 éT/& + égééklsz
+2|C1[[Cz|Re [E{ Ex(t+ 7)E5 (1)}

@ mutual coherence function of wave field at Sy and S,
Fra(r) = E{Er(t+ 7)E5(1) |
@ irradiance at point P becomes
I = |Ci[Pls, + |Caf?ls, +2|Cy||Ca| Re T 1a(T)

o Iy = |Ci|?ls,, ko = |Cs[?ls, are irradiances at P from a single
aperture

= I+l +2|Cy||Ca| ReT1a(7)




Self-Coherence

e if §; = S,, mutual coherence function becomes autocorrelation
function

ﬁ11(7’) =

Foo(r) =

:EI’1(7')

E{Ei(t+n)E (1)}
Ra(7)

E{Ex(t+7)E5 (1)}

@ autocorrelation functions are also called self-coherence functions
@ forr=0

Is,

E{E(DE (D)}
E{E(DE5(1)}

r1(0)

M22(0)

E{|E (02}
E{|E(0)?}

@ autocorrelation function with zero lag (7 = 0) represent (average)
irradiance (power) of wave field at Sy, S,

Is,




Complex Degree of Coherence
@ using selfcoherence functions

ViVE
v T11 (0)\/ F22(0)

@ normalized mutual coherence defines the complex degree of
coherence

1C1]|Ca| =

Foa(r) E{Ei(t+)E5 (0}

Sra(r) = -
F12 () 22(0) \/E{’E(t)‘Z}E{]Ez(t)\z}

@ irradiance in point P as general interference law for a partially
coherent radiation field

| = I1 + IQ + 2\//1/2 Re’y12(7)




Spatial and Temporal Coherence
@ complex degree of coherence

Foa(r) E{E(t+n)E;(n)}

r2(r) = -
Y12 /T11(0)T22(0) \/E{|E1(t)\2}E{|E2(t)|2}

@ measures both

e spatial coherence at Sy and S,
e temporal coherence through time lag 7

@ F42(7) is a complex variable and can be written as:
Sna(r) = [ra(r) €20

© 0 < [2(r)] <1
@ phase angle 112(7) relates to

e phase angle between fields at Sy and S
e phase angle difference in P resulting in time lag 7




Coherence of Quasi-Monochromatic Light

@ quasi-monochromatic light, mean wavelength ), frequency 7,
phase difference ¢ due to optical path difference:
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¢ = %(fz—ﬁ) Z%C(fz—ﬁ) = 27uT

@ with phase angle a42(7) between fields at pinholes Sy, S,
VY12(7) = ag2(1) — ¢

@ and
Re d12(1) = |F12(7)| cos [asa(7) — 4]
@ intensity in P becomes

I =l + b+ 2y/lik |12(7)| cos [a2(7) — 4]




Visibility of Quasi-Monochromatic, Partially Coherent Light
@ intensity in P

I = h + kb + 2y/lik [512(7)| cos [a12(7) — ¢]

@ maximum, minimum / for cos(...) = +1
@ visibility V at position P

2vhVh

V =
L+ b

[F12(7)|
e for /4 :I2:I0

I = 2k {1+ [512(r)| cos[arz(7) - 4}
V = [%2(7)




Interpretation of Visibility

OfOI’/1:IQZIO

I = 2k {1+ [F12(7)| cos [as2(T) — ¢}
Vo= [Fr2(7)|

@ modulus of complex degree of coherence = visibility of fringes

@ modulus can therefore be measured

@ shift in location of central fringe (no optical path length
difference, ¢ = 0) is measure of aq2(7)

@ measurements of visibility and fringe position yield amplitude
and phase of complex degree of coherence




Intensity Interferometry

@ intensity fluctuations are also partially coherent

@ random superposition of wave packets results in Gaussian
distribution of amplitude fluctuations

@ intensity cross-correlation E {A/l;(t + 7)Ak(t)} between two
different parts of incoming wave is not zero

@ implies correlation between photons from thermal sources




Hanbury Brown and Twiss

0=6.310"2 arcsec

o
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ed correlation r2(d)

Normalized

Baseling in meatres

@ intensity interferometry can measure stellar diameters
@ diameter of Sirius in 1956 by Hanbury Brown and Twiss
@ only light buckets are needed to collect photons

@ basic principle was doubted by many

@ classical explanation (see exercises)

@ quantum-mechanical explanation: “photon bunching”,
Bose-Einstein statistics makes photons to be bunched together




