PREVIOUS LECTURE:

COMPARING DATA WITH A MODEL: LEAST-SQUARES FITTING

MAXIMUM LIKELIHOOD METHOD: GAUSSIAN DATA

CONFIDENCE LEVELS MONTE CARLO SIMULATIONS

OUTLIERS!

TODAY:

"REAL" MAXIMUM LIKELIHOOD METHOD: POISSONIAN DATA

FINDING PERIODICITIES IN DATA • LOMB-SCARLE DIAGRAMS • PHASE DISPERSION MINIMISATION • FOURIER TECHNIQUES

COMPARING TWO DISTRIBUTIONS K-S TEST

OAF2 CHAPTER 6.1 & 6.2 SEE NUM RES CHAPTER 13.8, 14.3, & 14.7

EXAMPLE SIMPLE MONTE CARLO SIMULATION

ERRORS ON DATA-POINTS GAUSSIAN DISTRIBUTED SIMULATION: REPLACE EACH POINT WITH A VALUE FROM THE GAUSSIAN DISTRIBUTION, REDO FIT TO MINIMISE χ^2 REPEAT OFTEN

provide a distribution in $\chi^2 \Delta \chi^2 = 1 \Rightarrow 68\%$ confidence

EXAMPLE SIMPLE MONTE CARLO SIMULATION II

PHASE BINNING $\phi_i = \frac{t_i}{P} - \text{INT}(\frac{t_i}{P})$

How often do we have to observe the system when observing at random times to fill each of 10 phase bins?

MAXIMUM LIKELIHOOD METHOD (POISSON NOISE, UNBINNED DATA)

PROBABILITY TO FIND n_i photons when m_i expected

FOR EACH PIXEL *i* IN AN IMAGE

 $P_i = \frac{m_i^{n_i} e^{-m_i}}{n_i!}$

TOTAL PROBABILITY $L' \equiv \prod P_i$

$$\ln L' \equiv \sum_{i} \ln P_i = \sum_{i} n_i \ln m_i - \sum_{i} m_i - \sum_{i} \ln n_i!$$

MINIMISE
$$\ln L \equiv -2(\sum_i n_i \ln m_i - \sum_i m_i)$$

MAXIMUM LIKELIHOOD METHOD (APPLICATION X-RAY BINARY CIR X-1, A JET PRESENT?)

PART OF A CHANDRA HRC OBSERVATION

MODEL AND SUBSEQUENTLY SUBTRACT PSF

ONLY CLOSE TO THE SOURCE THE ASSUMPTION OF A CONSTANT BACKGROUND

IS VALID

DETECTION OF A CONSTANT BACKGROUND, A, PLUS A SOURCE OF STRENGTH B OF WHICH A FRACTION FALLS ON PIXEL i

$$-0.5 \ln L = \sum_{i} n_{i} \ln(A + Bf_{i}) - \sum_{i} (A + Bf_{i})$$

AGAIN SEARCH FOR THE MINIMUM OF L FOR VARIATIONS IN A AND B

 f_i determined independently in some cases total pixels Z

$$\frac{\partial \ln L}{\partial A} = 0 \Rightarrow \sum_{i} \frac{n_i}{A + Bf_i} - \sum_{i} (1) = \sum_{i} \frac{n_i}{A + Bf_i} - Z = 0$$
$$\frac{\partial \ln L}{\partial B} = 0 \Rightarrow \sum_{i} \frac{n_i f_i}{A + Bf_i} - \sum_{i} (f_i) = \sum_{i} \frac{n_i f_i}{A + Bf_i} - 1 = 0$$

APPLICATION MAXIMUM LIKELIHOOD METHOD X-RAY BINARY CIR X-1

ONE SOURCE SUBTRACTED

PERIOD FINDING I UNEVENLY SAMPLED DATA: LOMB-SCARGLE MEAN $\bar{h} = \frac{1}{N} \sum_{i} h_{i}$ VARIANCE $\sigma^{2} = \frac{1}{N-1} \sum_{i} (h_{i} - \bar{h})^{2}$ LEAST-SQUARES FITTING OF $h_{i} = A \cos(\omega t_{i}) + B \sin(\omega t_{i})$ TO THE DATA

$$P_N(\omega) \equiv \frac{1}{2\sigma^2} \left\{ \frac{\left[\sum_j (h_j - \bar{h}) \cos \omega (t_j - \tau)\right]^2}{\sum_j \cos^2 \omega (t_j - \tau)} + \frac{\left[\sum_j (h_j - \bar{h}) \sin \omega (t_j - \tau)\right]^2}{\sum_j \sin^2 \omega (t_j - \tau)} \right\}$$

SPECTRAL POWER AS A FUNCTION OF FREQUENCY ω

$$\tau \operatorname{constant} = \tan(2\omega\tau) = \frac{\sum_j \sin 2\omega t_j}{\sum_j \cos 2\omega t_j}$$

PERIOD FINDING I (CONTINUED) NORMALISED LOMB-SCARGLE PERIODOGRAMS

PERIOD FINDING II PHASE-DISPERSION MINIMISATION: PDM FOLD DATA GIVEN A TRIAL PERIOD IN M BINS CALCULATE THE VARIANCE IN EACH BIN

LARGE VARIANCE

NOT THE RIGHT PERIOD

 $\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2 \quad \text{variance in the data}$

CHOOSE M SAMPLES WITH n_k points in sample J $s_k^2 = \frac{1}{N-1} \sum_{j=1}^{n_k} (x_j - \bar{x})^2$ variance in one sample

STELLINGWERF 1978, APJ, 224, 953

PDM (CONTINUED)

VARIANCE IN THE SAMPLES=VARIANCE IN THE DATA "RIGHT" PERIOD $\Theta \ll 1$

SCRAMBLE DATA IN A MONTE CARLO SIMULATION TO CALCULATE SIGNIFICANCES

ECLIPSING SU UMA STAR: DV URSAE MAJORIS

EXAMPLE USE OF PDM

SU UMA ARTIST IMPRESSION

NOGAMI ET AL. 2001

COMPARING A DISTRIBUTION WITH A THEORETICAL DISTRI OR TWO DISTRIBUTIONS

KOLMOGOROV-SMIRNOV TEST:

COMPARE TWO CUMULATIVE DISTRIBUTION FUNCTIONS

OR

E.G. 2 OBSERVED

AN ADVANTAGE OF USING K-S STATISTIC

THE DISTRIBUTION CAN BE CALCULATED IN THE CASE OF THE NULL-HYPOTHESIS

$$Q_{KS}(x) = 2\sum_{j=1}^{\infty} (-1)^{j-1} e^{-2j^2 x^2}$$

Probability $(D > D_{obs}) = Q_{KS}([\sqrt{N_e} + 0.12 + \frac{0.11}{\sqrt{N_e}}D])$

with $N_e = N$ number of or $N_e = \frac{N_1 N_2}{N_1 + N_2}$ data pnts 1 distribution 2 distributions

EXAMPLE K-S TEST

DISTRIBUTION OF NEUTRON STARS AND BLACK HOLE X-RAY BINARIES IN OUR GALAXY

JONKER & NELEMANS 2004

PROBABILITY THAT BHS AND NSS FROM THE SAME DISTRIBUTION

37%, D=0.19

90%, D=0.12

2D K-S TEST

DISTRIBUTION OF NEUTRON STARS AND BLACK HOLE X-RAY BINARIES IN OUR GALAXY

2D K-S TEST

$$r = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})}\sqrt{\sum_{i} (y_i - \bar{y})}}$$

R=CORRELATION COEFFICIENT