
Chapter 1.3, 1.4 & 2.2 OAF-2 
Numerical Recipes Chapter 13.3

Today’s course

Topics:
Aliasing & Nyquist frequency

(Optimal) Filtering

measuring moments of a s.p.
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detection of astronomical signals (s.p.) 
plus noise is influenced by instrument 
transfer function and data sampling

statistical moments characterise the 
signal (plus noise) 

Recap lecture 1

Assume WSS s.p. (mean does not depend on 
time, or much slower than measuring 
process, auto-correlation depends on 
offset only)

Noise can be due to the detector, 
background, and/or intrinsic to the signal
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Another math tool 
Power Spectral Density

 (∝ amplitude of individual sinusoids) 

(will return in more depth in Chapter 6)

P (f) = ˜F (f) ˜F (f)∗

Continuous FT:

P (f) =
∫ ∞

−∞
R(τ)e−2πifτdτ

F (f) =
∫ ∞

−∞
f(t) e−2πiftdt

for wss signals:

Continuous PSD:

hence:

˜F (f)F (f) = |F (f)|2 =
∫ ∞

−∞
R(τ)e−2πifτdτ
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in time domain multiply s.p. with shah function

Data sampling

Discrete PSD: power ∝ amplitude squared:Pj =
2
a0

|aj |2

ms(x) = m(x)
1
τ

ΠI(
x

τ
) =

∑

n

m(nτ)δ(x− nτ)msamp,n =

Discrete FT:

a0 = Msamp,k=0 =
N−1∑

n=0

msamp,n ≡ N0

ak = Msamp,k =
N−1∑

n=0

msamp,n e2πink/N

Msamp,k =
N−1∑

n=0

msamp,n e2πink/N
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Nyquist frequency

Optical spectra: range from min 
to maxi frequency = bandwidth set 
by the width and shape of the 
spectral lines

sharp narrow signal requires more 
frequencies for its description than 
broad signal 
cf. the number of sin+cos necessary to describe the signal

Nyquist frequency = half the 
frequency related with the 
sampling rate
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Nyquist frequency

Sampling at the Nyquist frequency: 
no loss of information 

h(t) = ∆t
∞∑

n=−∞
hn

sin[2πfnyq(t− n∆t)]
π(t− n∆t)

Continuous signal h(t) fully described 
by the samples

if fnyq = 2fmax in signal
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Nyquist theorem: cont’d

Windowing & noise, Brault & White 1971, A&A
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Nyquist theorem: cont’d

Sampling;  Brault & White 1971, A&A
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Nyquist theorem: cont’d

Sampling;  Brault & White 1971, A&A

Nyquist Freq
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Nyquist theorem: cont’d

Sampling;  Brault & White 1971, A&A

Nyquist Freq

Sampling causes replication of signal
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Aliasing

Aliasing Page 496 Num Res

FT[continuous signal]

signal: continuous drawn

FT[sampled signal]

signal: samples dots
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Aliasing: cont’d

Convolution with shah function: replication
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Filtering
Frequency Filtering

Time Filtering

y(t) =
∫ ∞

−∞
x(t− θ)h(θ)dθ

y(t) = x(t) ∗ h(t)
Filtering of process x with filter h

Y (f) = X(f)H(f)

measure a process x(t) over interval T assumed 
zero outside T

≡ y(t) = Π(
t

T
)x(t)

Y (f) = X(f) ∗ Tsinc(Tf)
all information about frequencies <1/T is lost!

Sampling: high frequencies are filtered out

leads to band limited data

Window: low frequencies are filtered out
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(Optimal) Filtering
Num Res Chapter 13.0-13.3

deconvolve measured signal and 
response function of sampled data

Num Res Chapter 13.1
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Discrete convolution 
theorem

(r ∗ s)j ≡
M/2∑

k=−M/2+1

sj−krk ⇔ SnRn

Discrete deconvolution

F̃ (r ∗ s)j

Rn
= Sn

However noise and uncertainties is 
response can make this process 

unreliable 
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Noise removal by optimal 
filtering
cs(t) = s(t) + n(t)

Design an optimal filter φ(t) that 
produces a signal u(T) as close as 

possible to u(t)

Ũ(f) =
C(f)φ(f)

R(f)
Close in least square sense

is minimised
∫ ∞

−∞
|Ũ(f)− U(f)|2df

~
s(t) is the smeared signal i.e. true× response
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Noise removal by optimal 
filtering

∫ ∞

−∞
| [S(f) + N(f)]φ(f)

R(f)
− S(f)

R(f)
|2df

∫ ∞

−∞
|R(f)|−2{|S(f)|2|1− φ(f)|2 + |N(f)|2|φ(f)|2}df

∫
S(f)N(f)df terms are zero since noise 

and signal are uncorrelated

︸ ︷︷ ︸

ϴ minimised with respect to φ
ϴ

15



Noise removal by optimal 
filtering

dθ

dφ
= 0

−2S2(1− φ) + 2N2φ = 0

φ =
S2

S2 + N2Optimal filter

|S(f)|2 + |N(f)|2 = PDS(f) = |CS(f)|2

Does not contain true signal directly!
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Noise removal by optimal 
filtering

Page 542 Num Res
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Some Applications

An optimal filter for the detection of galaxy 
clusters through weak lensing

Maturi, et al. 2005, A&A, 442, 851

On optimal detection of point sources in CMB maps
Vio et al, 2002, A&A, 391, 789

The largest scale perturbations: A window on the 
physics of the beginning

Wandelt, New Astronomy Review, 2006, 11, 900
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C.f. X-ray Timing experiments

GX 340+0
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X-ray Timing experiments
GX 5-1 Poisson 
noise removed
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X-ray Timing experiments
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estimating the moments of 
a stochastic process

Chapter 2.2.2
See also Appendix B3.2, Lena ea.

How representative is a measurement 
of a S.P.?
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How representative is a measurement?
SGR 1900+14

23



How representative is a measurement?
SGR 1900+14
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Different for the case of type I X-ray 
bursts 

Galloway private communication

1 Measurement of x(t) in a time T => windowing and 
averaging over time ΔT

y(t) = Π(
t

T
)x(t)windowing:

averaging:

z(t) ≡ y∆T (t) =
1

∆T

∫ t+∆T/2

t−∆T/2
y(t′)dt′ =

1
∆T

∫ ∞

−∞
Π(

t− t′

∆T
)y(t′)dt′

= low-pass filter, remember Nyquist theorem
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