Imagers and Detectors

ATI 2015 Lecture 09
M. Kenworthy // Leiden Observatory

Observations

Astronomical observations are: Expensive

Impossible to repeat in a controlled way

An OBSERVATION is a permanent record of what is seen at the focal plane of a telescope.

The Human Eye

Theoretical: $\theta \sim \lambda/D \sim 0.5 \mu m/7 mm \sim 14''$

In practice: $\theta \sim 1$ arcminute

The Eye's Computer

Percival Lowel

Canals on Mars!!!

The Eye's Computer

Photographic Plates

Photodetectors

The QM properties of electrons lead to atomic lines and semiconductor bands $\begin{array}{c} \text{Multiple electrons around a positively charged nucleus have four quantum numbers:} \\ n,l,m_l,m_s \\ \text{Only ONE FERMION can have one set of quantum numbers!} \\ \text{Electrons (and other particles) are described with Schrodinger's Wave Equation:} \\ i\hbar\frac{\partial}{\partial t}\Psi(x,t)=\hat{H}\Psi(x,t) \\ \text{Electrons are described by probability clouds called ORBITALS with specific energies.}} \\ \\ \text{In equation of the particles} \\ \text{In equation of the particl$

Two types of arrays in the Optical/IR

IR Arrays

 $(1\mu m - 40\mu m)$

Charge Coupled Devices (CCDs)

$$(0.1nm - 1\mu m)$$

- + directly access individual pixels
- complex and expensive
- + monolithic structure built in Si wafer
- charge transfer inefficiencies

The Teledyne 2k x 2k Hawaii-2RG detector

Detector technology HgCdTe or Si PIN Detector input Readout mode 100 kHz to 5MHz (continuously Pixel readout rate adjustable) Total pixels 2048 x 2048 Pixel pitch Fill factor > 98% Output ports Signal: 1, 4, 32 selectable Spectral range 0.3 - 5.3µm Can also be combined to a 2x2 mosaic

Operating

temperature

(array mean) Charge storage

Pixel operability

Dark current (array)

Quantum efficiency

≥ 30K

Power dissipation ≤ 4 mW @ 100 kHz

≥ 100,000e

 $\leq 0.1 \text{ e}^{-}/\text{sec}$ (77K, 2.5 μm)

≤ 15 e CDS @ 100 kHz

Some Performance Aspects of Detectors

- · Spectral response and bandwidth
- Linearity / saturation
- Dynamic range
- Quantum efficiency
- Noise
- Geometric properties
- Time response
- Polarization
- Operational aspects

Noise

Most important:

Generations of Raytheon Infrared Detectors

$$\sigma = rac{Signal}{Noise}$$
 measured as (S+B)-mean{B} Total noise = $\sqrt{\sum (N_i)^2}$ if statist. independent

Most relevant noise sources:

Photon noise follows Poisson statistics: $P(m) = \frac{e^{-n}n^m}{m!}$

(= probability to detect m photons in a given time interval where, on average, n photons $\frac{1}{2} (N-\sqrt{n})$

G-R noise: statistics of the generated and recombined holes and electrons, related to the Poisson statistics of the incoming photons.

Johnson, kTC or reset noise: thermodynamic noise due to the thermal motion of the charge carriers.

1/f noise (increased noise at low frequencies) due to bad electrical contacts, temperature fluctuations, surface effects (damage), crystal defects, JFETs, ...

Geometrical Properties

Geometrical dimension and pixel number $\mathbf{x} \times \mathbf{y}$

Noise

 $\frac{Signal}{Noise}$

Signal: (S + B) - mean(B)

Noise: can be added as $\sqrt{\sum{(N_i)^2}}$

Photon noise follows Poisson statistics:

$$P(m) = \frac{e^{-n}n^m}{m!} \qquad S/N = \sqrt{n}$$

where P(m) the probability to detect m photons over a time interval and where the mean rate of photons is n

Calibrating a CCD image

For each SCIENCE image S (exposure time t_s)

Subtract off a BIAS image B to remove ADC offset (zero time integration)

Subtract off a DARK image D to remove dark current offset (exposure time td)

Divide by a FLAT FIELD image F to remove gain variations (exposure time t_f)

$$S' = \frac{S - \frac{t_S}{t_D}(D - B) - B}{F - \frac{t_F}{t_D}(D - B) - B}$$

• $F - \frac{t_F}{t_D}(D - B) - B$ often normalized such that mean of S' = mean of S

Gain, Read Noise, Saturation limit

- gain (G) between arbitrary digital units (ADU, A) and number of photo-electrons (e): A = G ⋅ e
- noise in e is given by $\sigma_e^2 = e$
- and therefore $\sigma_A^2 = G^2 \sigma_e^2 = G^2 e$
- gain G determined from $G = \frac{\sigma_A^2}{A}$

The Atmosphere

Recap: The Atmosphere

Atmosphere is modeled with:

An outer and inner scale length, and a power spectrum of index fluctuations between them

Thin layers of frozen turbulence at 2 to 5 different altitudes

Described with three parameters:

 $r_0, \tau_0 \text{ and } \theta_0$

) ଦବ ଦବ ଦବ ଦବ ଦବ ଦବ ଦବ

Full Width at Half Maximum (FWHM) and Airy Disk Imaging a point source with a telescope shows a diffraction pattern due to finite size of telescope aperture and wavelike nature of light

The Goldilocks Detector

There is an OPTIMUM pixel scale for a given wavelength

From Shannon and Nyquist Sampling theorem: $\,\sim 2.5 pix/FWHM$

Most AO imagers have a plate scale that matches 2.5 pixels FWHM at the shortest wavelength

Astronomers want as much spatial resolution as possible

Diffraction limited by the telescope's primary mirror: $pprox rac{\lambda}{D_{tel}}$

for the Hubble Space Telescope

$$\approx \frac{0.5 \mu m}{2.4 m} = 0.2 \mu rad$$

 ≈ 43 milliarcsec

Hubble Space Telescope Cred

The atmosphere limits diffraction limited imaging

Diffraction limited by the turbulent atmosphere: $pprox rac{\lambda}{r_0}$

Typically for professional observatories:

$$\approx \frac{0.5\,\mu m}{10\,cm} = 5\mu rad$$

$$\approx 1 \text{ arcsec}$$

Imagers

Wide Field Imagers

Telescope baffling for f/5 mirror at MMTO 6.5m telescope

https://www.cfa.harvard.edu/~mlacasse/

Wide Field Imagers

Internal reflections from a Schmidt camera

http://www.robertreeves.com/repair1.htm

Visible Pupil image

https://visao.as.arizona.edu/simulations/magao-pupils-and-fourier-optics/

Kate Morzinski

Infrared 3.4 micron Pupil image

https://visao.as.arizona.edu/simulations/magao-pupils-and-fourier-optics/

Kate Morzinski

Offner Relay Used to make cold stops in IR cameras Cylindrical Mirror Flat Mirror Flat Mirror Spherical Mirror Spherical Mirror Beamsplitter Spherical Mirror with Pupil Image Telescope Focal Plane http://www.astronomy.ohio-state.edu/-depoy/research/instrumentation/andicam/andicam.html