High Contrast Imaging and Spectroscopy

Christoph U. Keller, keller@strw.leidenuniv.nl with slides from Matthew Kenworthy and Frans Snik

www.strw.leidenuniv.nl/~keller

Direct Exoplanet Imaging & Characterization

- Direct imaging is unique in that no other planetfinding technique can accomplish the combination of
 - detection
 - spectroscopy
 - determination of orbital elements
- Reflected starlight from cold planets
- Non-transiting planets with long orbital periods
- Rotation, weather, seasons, moons, ...

Jupiter: 10⁻⁹ ×Sun

Earth: 10⁻¹⁰ ×Sun

10⁻⁹ Contrast (Intensity Ratio)

en.wikipedia.org/wiki/File:Everest_kalapatthar_crop.jpg

Combination of Approaches

- 1. Large telescope
- 2. Extreme adaptive optics
- 3. Coronagraph
- 4. Focal-plane wavefront sensing
- 5. Diversity between star and planet
- 6. Data reduction

Need for Large Telescopes

- Light bucket: signal $\sim D^2$ \longrightarrow \longrightarrow
- Point-source area on seeing halo $\sim D^2$

• Drop-off of stellar diffraction $\sim D^2$

Wavefront Requirements

- 10⁻¹⁰ contrast at 760 nm (Oxygen O₂ A-Band) requires 0.1 nm rms total wavefront error
- Ground-based telescopes now: ~100 nm rms
- Need subatomic optical path-length control
- Deformable Mirror requirements
 - $-4'000 \rightarrow 40'000$ actuators
 - $-1nm \rightarrow 50pm$ resolution
 - $-1kHz \rightarrow 10kHz$

Extreme AO – XAO

- >80% Strehl on-axis and small corrected field-of-view
- requires many thousands of deformable mirror actuators
- requires exquisite optical performance
- SPHERE on VLT, GPI on Gemini, SCExAO on Subaru

Seeing limited image $5.2 \pm 2\%$ SR

AO corrected image $90.3 \pm 2\%$ SR

Christoph Keller, keller@strw.leidenuniv.nl

IMPRS Heidelberg Summerschool 2019: High-Contrast Imaging and Spectroscopy

Wavefront Errors Everywhere

Hubble Space Telescope

Christoph Keller, keller@strw.leidenuniv.nl IMPRS Heidelberg Summerschool 2019: High-Contrast Imaging and Spectroscopy 10

Diffraction 🛞

Ideal ELT Point-Spread Function

39m telescope pupil

courtesy Frans Snik

image of a point source (log scale)

Ideal ELT Point-Spread Function

39m telescope pupil

image of a point source (log scale)

courtesy Frans Snik

Many Types of Coronagraphs

Phase Lyot

Amplitude Lyot

Controlled Aberrations

- Inherently independent of position of star
- Arbitrary aperture
- Arbitrary dark hole
- Perfect small dark holes

Frans Snik

Achromatic Geometric Phase Plate

any phase pattern thanks to directwrite technique

Miskiewicz & Escuti (2014

achromatic thanks to (self-aligning) multi-twist retarder

17

Komanduri et al. (2013)

Apodizing Phase Plate Coronagraph

on-sky

Christoph Keller, keller@strw.leidenuniv.nl

Holographic Wavefront Sensing

Michael Wilby

Wilby et al. 2016, 2017

Diversity Between Star and Planet

- Angular Differential Imaging
- Reference Star Differential Imaging
- Spectral Differential Imaging
- Polarimetric Differential Imaging
- High Dispersion Spectroscopy

Angular Diversity

The telescope optics are fixed with respect to the science detector and the sky rotates around

 $I_n = I(\theta_n, t_n)$

Angular Diversity

 $I_n = I(\theta_n, t_n)$

Angular Diversity

$$I_n = I(\theta_n, t_n)$$

Spectral Diversity

$$I_1 = I(\lambda_1)$$

PSF scales as
$$\frac{\lambda}{D}$$
.

Spectral Diversity

Spectral Diversity

$$I_n = I(\lambda_n)$$

CHARIS/Subaru

PSF Library

 $I_1 = I(\text{Star 1})$ $I_2 = I(\text{Star 2})$ $I_3 = I(\text{Star 3})$

Use other stars without planets

Extreme Polarimeter at William Herschel Telescope

Christoph Keller, keller@strw.leidenuniv.nl IMPRS Heidelberg Summerschool 2019: High-Contrast Imaging and Spectroscopy 30

Christian Ginski

Polarized CS Cha b/B

Ginski et al. 2018

red cotinus leaf (transmission)

after a week

Imaging & High-Dispersion Spectroscopy

PDS70b,c with MUSE at VLT

muse-vlt.eu/science/cropped-dsc0194-jpg

Haffert et al. (2019)

Diffraction-Limited Hires Spectrograph

LEXI Multi-Core Fiber SCAR

Sebastiaan Haffert

Major Remaining Issues

- Polarization aberrations
 - aberrations depend on polarization state
 - flat mirror is a polarizing beamsplitter
- Chromatic wavefront correction
 - wavefront aberration depends on wavelength
 - current systems limited to ≤10% bandwidth
 - characterization requires large wavelength coverage
- Primary mirror with variable missing segments

Outlook

- Current on-sky final contrast limit: 10⁻⁷
- Larger telescopes help towards 10⁻⁹
- Contrast limit given by coupled system of telescope, instrument, and data reduction
- Space-based telescopes face many of the same problems

