Outline

- Jones and Mueller Matrices for Linear Polarizers
- Wire Grid Polarizers
- Polaroid-type Polarizers
- Crystal-based Polarizers
- Thin-Film Polarizers
- Polarizer Selection Guide

Polarizers

- polarizer: optical element producing (at least partially) polarized light from unpolarized input beam
- linear, circular, or in general, elliptical polarizer
- most common: linear polarizer
- Iarge variety of types

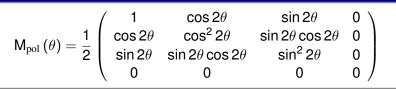
Jones Matrix for Linear Polarizers

- linear polarizer described by transmittance of electrical field in 2 orthogonal directions
- Jones matrix for linear polarizer:

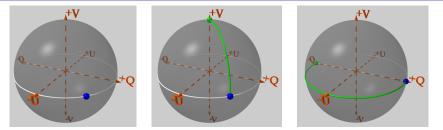
$$\mathsf{J}_{\boldsymbol{\rho}} = \left(\begin{array}{cc} \boldsymbol{\rho}_{\boldsymbol{X}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\rho}_{\boldsymbol{Y}} \end{array} \right)$$

 real values 0 ≤ p_x ≤ 1 and 0 ≤ p_y ≤ 1: transmission factors for x and y-components of electric field

$$E'_x = p_x E_x, \quad E'_y = p_y E_y$$


- $p_x = 1$, $p_y = 0$: linear polarizer in +Q direction
- $p_x = 0$, $p_y = 1$: linear polarizer in -Q direction
- $p_x = p_y$: neutral density filter

Mueller Matric for Linear Polarizer


$$M_{\rho} = \frac{1}{2} \begin{pmatrix} p_{\chi}^2 + p_{\gamma}^2 & p_{\chi}^2 - p_{\gamma}^2 & 0 & 0 \\ p_{\chi}^2 - p_{\gamma}^2 & p_{\chi}^2 + p_{\gamma}^2 & 0 & 0 \\ 0 & 0 & 2p_{\chi}p_{\gamma} & 0 \\ 0 & 0 & 0 & 2p_{\chi}p_{\gamma} \end{pmatrix}$$

- unpolarized incoming beam always linearly polarized
- emerging Stokes vector only completely polarized if $p_x^2 + p_y^2 = |p_x^2 p_y^2|$
- partial linear polarizer produces partially polarized beam from unpolarized light
- real polarizers always only partial polarizers
- polarized incoming beam ⇒ elliptically polarized output beam because of non-zero diagonal terms 2p_xp_y
- totally polarized beam remains totally polarized even when passing partial linear polarizer (no depolarization)

Mueller Matrix for Ideal Linear Polarizer at Angle θ

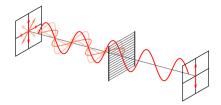
Poincare Sphere

- polarizer is a point on the Poincaré sphere
- transmitted intensity: cos²(1/2), 1 is arch length of great circle between incoming polarization and polarizer on Poincaré sphere

Characterizing Linear Polarizers

- 2 parameters describing performance:
 - k₁: transmittance for fully linearly polarized beam at angle that maximizes transmitted intensity
 - k₂: minimum transmittance for incoming linearly polarized beam

•
$$k_1 = p_x^2, \, k_2 = p_y^2 \text{ if } p_x > p_y$$


- extinction ratio k₁/k₂ contrast
- k_1, k_2 depend on wavelength
- determined from transmittances for unpolarized light of parallel and crossed identical polarizers

$$T_{\text{parallel}} = \frac{1}{2} \left(k_1^2 + k_2^2 \right)$$
$$T_{\text{crossed}} = k_1 k_2$$

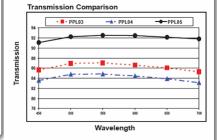
also used: degree of polarizability or polarizance defined by

$$P=\frac{k_1-k_2}{k_1+k_2}$$

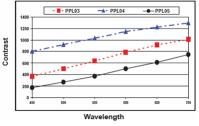
Wire Grid Polarizers

- parallel conducting wires, spacing $d \lesssim \lambda$ act as polarizer
- electric field component parallel to wires induces electrical currents in wires, attenuates transmitted electric field parallel to wires
- induced electrical current 'reflects' polarization parallel to wires \Rightarrow polarizing beam-splitter

Wire Grid Polarizers for the Infrared

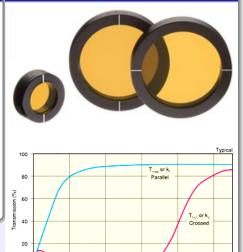

rule of thumb:

- $d < \lambda/2 \Rightarrow$ strong polarization
- $d \gg \lambda \Rightarrow$ high transmission of both polarization states (weak polarization)
- mostly used in infrared because wire spacing becomes very small at visible wavelengths
- made by depositing thin-film metallic grid on substrate
- free-standing wire grid for longer wavelengths


Wire-Grid Polarizers for the Visible

- excellent performance at high light/energy levels
- 90% of energy reflected
- good in high heat/flux environment
- trade-off between transmission and contrast

MOXTEK Inc. ProFlux


Contrast Comparison

Polarcor (Corning)

- glass polarizer with high performance for 600 to 2300 nm
- glass with aligned silver nano-particles in surface layers
- elongated, conducting silver particles act as small wires
- maximum diameter currently limited to 20 mm
- contrast ratio > 10000

Corning Polarcor

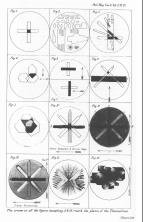
600

800

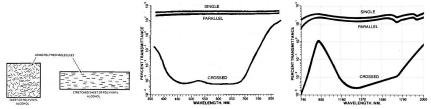
1000

Wavelength (nm)

1200


1400

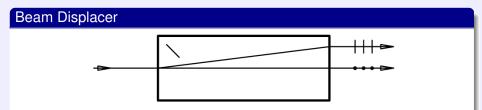
400


Dichroic Materials

- absorb one polarization state
- absorption depends on wavelength ⇒ different colors depending on angles of illumination and viewing
- arises from anisotropy of complex index of refraction
- natural dichroic crystals: tourmaline, herapathite
- W.B. Herapath discovered in 1852 salt of quinine with polarizing properties; made first artificial crystals large enough to study under microscope
- difficult to produce uniform, large dichroic crystals

Polaroid-type Polarizers

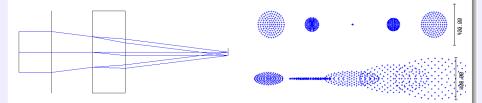
- H-type sheet polarizers: stretched polyvynil alcohol (PVA) sheet, laminated to sheet of cellulose acetate butyrate, treated with iodine
- different H-type polarizers have different amounts of iodine in PVA
- PVA-iodine complex analogous to short, conducting wire
- Polaroid names (e.g. HN-38) identify overall type (H), color (N=neutral), approximate transmittance for unpolarized light
- K-type similar to H-type, but environmentally more stable
- HR-type based on a PVA-polyvinylene-iodine complex, works well from 0.7 to 2.3 μm


Field-of-View of Dichroic Polarizers

- conducting, needle-like particles aligned on common axis parallel to surface
- uniaxially anisotropic medium with complex indices of refraction
- transmitted polarization state sees real index of refraction
- absorbed polarization state sees complex index of refraction with imaginary part large enough to reduce intensity by orders of magnitude
- dichroic polarizers have limited field of view, largely a geometrical effect inherent to uniaxial medium

Crystal-Based Polarizers

- highest quality polarizers
- precise arrangement of atom/molecules and anisotropy separate incoming beam into two beams with precisely orthogonal polarization
- polarizing beam-splitters (both beams usable) and polarizing prisms (only one useful state)
- prisms can be *cemented* or *air spaced*
- air-spaced: good for short wavelengths, high power densities
- cemented: much better optical quality
- calcite is most often used in crystal-based polarizers because of very large birefringence, low absorption in visible
- many other suitable materials


Beam Displacer, Savart and Modified Savart Plates

- most simple crystal polarizer: polarizing beam displacer
- single uniaxial crystal block with optic axis at ${\sim}45^{\circ}$
- ordinary ray passes without deflection
- extraordinary ray deflected by dispersion angle α
- beam separation *d* as function of block length *D*:

$$d = D\tan\alpha = D\frac{(n_e^2 - n_o^2)\tan\theta}{n_e^2 + n_o^2\tan^2\theta}$$

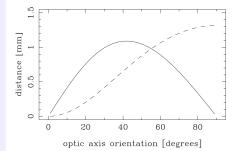
Beam Displacer Problems

- ordinary and extraordinary beams have different path lengths
- extraordinary ray suffers from crystal astigmatism

Focus Difference and Astigmatism

 converging beam focus difference ε between ordinary and extraordinary rays:

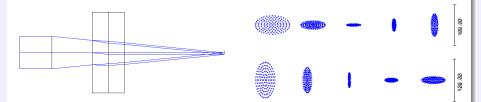
$$\epsilon = \frac{\sin 2\theta \left(n_e^2 - n_o^2\right)}{2\left(n_o^2 \sin^2 \theta + n_e^2 \cos^2 \theta\right)}$$


 $\boldsymbol{\theta}$ is angle of optic axis with normal to interface

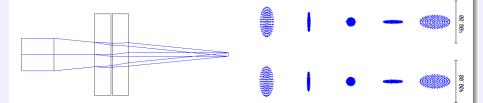
• astigmatism leads to two focus positions longitudinal astigmatism

$$\epsilon_{I} = \frac{D\tan\theta\tan\alpha n_{o}}{n_{e}\sqrt{n_{o}^{2}\sin^{2}\theta + n_{e}^{2}\cos^{2}\theta}}$$

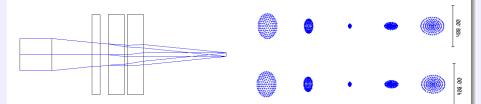
- for imaging system, 'smearing' of image given by *transverse* astigmatism $\epsilon_t = \frac{\epsilon_l}{F}$ where *F* is the F-number of the beam
- rule of thumb for calcite: astigmatic focus difference $\epsilon_l \sim$ 5% of thickness


Beam Separation and Astigmatism

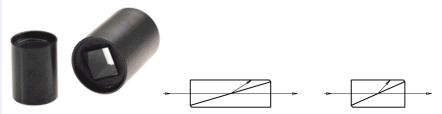
beam separation d (solid), longitudinal astigmatism ϵ_l (dashed) of extraordinary beam for 10-mm calcite beam displacer at 630 nm


- optic axis orientation of 45° close to optimum
- beam separation increases almost linearly for small optic axis angles
- astigmatism increases much more slowly
- possible to trade off beam separation versus astigmatism

Savart Plate


- avoid difference of focal point position problem by splitting calcite into two pieces crossed at 90°
- exchanges ordinary and extraordinary beams half-way ⇒ both beams have same optical path length
- splitting reduced by $\sqrt{2}$ for same total length of calcite
- both beams now show crystal astigmatism, oriented in opposite directions; amount of astigmatism half of single-piece beam displacer

Modified Savart Plate


- both calcite blocks in same orientation
- half-wave plate at 45° between them to exchange ordinary and extraordinary beams
- same direction of astigmatism in both beams

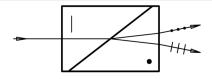
Cylinder Lens Compensating Crystal Astigmatism

- additional cylindrical lens compensates astigmatism
- limited wavelength range because of wavlength dependence of half-wave retarder
- deviation from half-wave retardance or 45° orientation leads to ghost beam between oppositely polarized beams
- other aberrations such as spherical aberration occur also
- developed for SOLIS VSM, excellent performance

Glan-Thompson Prism

- two calcite prisms with cement (index n_c) in between
- surrounding dielectric medium with refractive index n
- ordinary beam undergoes TIR, absorbed by black paint on side
- critical cut angles for TIR for ordinary and extraordinary beams

$$\sin \Omega_o = \frac{n_c}{n_o}, \quad \sin \Omega_e = \frac{n_c}{n_e}$$


 cut angle Ω such that acceptable range of angles of incidence is symmetric around normal incidence

Glan-Thompson Properties

- 2 versions differ in prism angles, index of cement
 - long version: acceptance angle of ~26°
 - short form: acceptance angle of ${\sim}15^{\circ}$
- typical extinction ratios 10⁵ to 10⁷
- somewhat reduced extinction rations when used from "wrong" side
- if prism is illuminated with convergent light, different parts of beam will have slightly different orientations of linear polarization ⇒ strong reduction in extinction ratio for convergent beam

Wollaston Prism

- Wollaston prisms most common beam-deviating polarizers
- 2 beams with orthogonal linear polarizations, parallel and perpendicular to refracting edge
- both rays refracted away from normal of exit face
- first half: ordinary and extraordinary rays see their respective indices of refraction
- indices are reversed in second half of prism
- made of calcite or quartz prisms cemented together
- usable spectral range typically 300 nm to 2200 nm
- angle of divergence determined by wedge angle ($\sim 15-45^\circ$)

Wollaston Beam Deviation

 at refracting interface, Snell's law for the ordinary and extraordinary beams

 $n_o \sin \Omega = n_e \sin \theta_o$ and $n_e \sin \Omega = n_o \sin \theta_e$

• at exit face, two beams are refracted differently; with Snell's law

 $n_e \sin(\Omega - \theta_o) = n \sin \theta'_o$ and $n_o \sin(\Omega - \theta_e) = n \sin \theta'_e$

- *n* is index of external dielectric medium
- equations are not completely symmetrical ⇒ two beams will have slightly different absolute angles upon exiting
- beam deviation depends on wavelength-dependent birefringence
- in converging beam, two beams do not come to focus at the same distance behind the exit face
- each beam is astigmatic

Thin-Film Polarizers

- thin-film polarizers mostly used in cube beam-splitters
- 2 orthogonally polarized beams emerge at right angles
- thin-film stack between 2 cemented glass prisms
- total internal reflection at Brewster angle within thin film
- limited extinction ratio and wavelength range
- extinction ratio of transmitted beam much better than reflected beam
- produced cheaply even for large apertures (5–10 cm)
- also possible on surface of oblique glass plate

Polarizer Selection Guide

type	extinction ratio	transmission (polarized)	wavelength range (nm)	bandpass (nm)	acceptance angle (°)	size mm	cost
Glan	> 10 ⁵	> 84%	300-2700	full	8	< 40	\$\$\$
Glan-Thompson	$> 10^{6}$	> 92%	300-2700	full	15-25	< 30	\$\$\$
Wollaston	$> 10^{6}$	> 92%	300-2200	full	20	< 50	\$\$
Polarcor	$> 10^4$	> 80%	630-2300	150	> 20	< 25	\$\$
Polaroid	$150 - 10^4$	> 75%	310-2000	200	> 20	> 200	\$
Polarizing cube	> 500	> 90%	400-1600	200-400	10	70	\$\$
Wire Grid	> 100	> 90%	$4 \cdot 10^2 - 10^6$	$\sim \lambda$	> 20	> 70	\$\$