Outline

- Homogeneous, Anisotropic Media
- Orystals
- Plane Waves in Anisotropic Media
- Wave Propagation in Uniaxial Media
- Seflection and Transmission at Interfaces

Introduction

material equations for homogeneous, anisotropic media

$$\vec{D} = \epsilon \vec{E}$$

 $\vec{B} = \mu \vec{H}$

- tensors of rank 2, written as 3 by 3 matrices
 - *\epsilon*: *dielectric tensor*
 - µ: magnetic permeability tensor
- for the following, assume μ = 1
- examples:
 - crystals, liquid crystals
 - external electric, magnetic fields acting on isotropic materials (glass, fluids, gas)
 - anisotropic mechanical forces acting on isotropic materials

Properties of Dielectric Tensor

Maxwell equations imply symmetric dielectric tensor

$$\epsilon = \epsilon^{\mathsf{T}} = \begin{pmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{12} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{13} & \epsilon_{23} & \epsilon_{33} \end{pmatrix}$$

- symmetric tensor of rank 2 ⇒ coordinate system exists where tensor is diagonal
- orthogonal axes of this coordinate system: principal axes
- elements of diagonal tensor: principal dielectric constants
- 3 principal indices of refraction in coordinate system spanned by principal axes

$$ec{D} = \left(egin{array}{ccc} n_{\chi}^2 & 0 & 0 \ 0 & n_{y}^2 & 0 \ 0 & 0 & n_{z}^2 \end{array}
ight)ec{E}$$

• x, y, z because principal axes form Cartesian coordinate system

Uniaxial Materials

- isotropic materials: $n_x = n_y = n_z$
- anisotropic materials: $n_x \neq n_y \neq n_z$
- uniaxial materials: $n_x = n_y \neq n_z$
- ordinary index of refraction:
 n_o = n_x = n_y
- extraordinary index of refraction:
 n_e = n_z
- rotation of coordinate system around z has no effect
- most materials used in polarimetry are (almost) uniaxial

Crystals

Crystal Axes Terminology

- optic axis is the axis that has a different index of refraction
- also called *c* or *crystallographic axis*
- fast axis: axis with smallest index of refraction
- ray of light going through uniaxial crystal is (generally) split into two rays
- ordinary ray (o-ray) passes the crystal without any deviation
- extraordinary ray (e-ray) is deviated at air-crystal interface
- two emerging rays have orthogonal polarization states
- common to use indices of refraction for ordinary ray (n_o) and extraordinary ray (n_e) instead of indices of refraction in crystal coordinate system
- *n_e < n_o*: *negative* uniaxial crystal
- $n_e > n_o$: *positive* uniaxial crystal

Plane Waves in Anisotropic Media

Displacement and Electric Field Vectors

• plane-wave ansatz for \vec{D} , \vec{E} , \vec{H}

$$\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$$
$$\vec{D} = \vec{D}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$$
$$\vec{H} = \vec{H}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$$

• no net charges in medium ($\nabla \cdot \vec{D} = 0$)

$$\vec{D}\cdot\vec{k}=0$$

 \vec{D} perpendicular to \vec{k}

- \vec{D} and \vec{E} not parallel $\Rightarrow \vec{E}$ not perpendicular to \vec{k}
- wave normal $\vec{s} = \vec{k}/|\vec{k}|$, energy flow in different directions, at different speeds

Magnetic Field

•
$$\nabla \cdot \vec{H} = 0 \Rightarrow \vec{H} \perp \vec{k}$$

•
$$\nabla \times \vec{H} = \frac{1}{c} \frac{\partial \vec{D}}{\partial t} \Rightarrow \vec{H} \perp \vec{D}$$

- $\nabla \times \vec{E} = -\frac{\mu}{c} \frac{\partial \vec{H}}{\partial t} \Rightarrow \vec{H} \perp \vec{E}$
- \vec{D} , \vec{E} , and \vec{k} all in one plane
- \vec{H} , \vec{B} perpendicular to that plane
- Poynting vector $\vec{S} = \frac{c}{4\pi} \vec{E} \times \vec{H}$ perpendicular to \vec{E} and $\vec{H} \Rightarrow \vec{S}$ (in general) not parallel to \vec{k}
- energy (in general) not transported in direction of wave vector k

Relation between \vec{D} and \vec{E}

 combine Maxwell, material equations in principal coordinate system

$$D_i = \epsilon_i E_i = n^2 \left(E_i - s_i \left(\vec{E} \cdot \vec{s} \right) \right) \quad i = 1 \cdots 3$$

• $\vec{s} = \vec{k}/|\vec{k}|$: unit vector in direction of wave vector \vec{k}

- *n*: refractive index associated with direction \vec{s} , i.e. $n = n(\vec{s})$
- 3 equations for 3 unknowns E_i
- eliminate \vec{E} assuming $\vec{E} \neq \vec{0} \Rightarrow$ Fresnel equation

$$\frac{s_x^2}{n^2 - \epsilon_x} + \frac{s_y^2}{n^2 - \epsilon_y} + \frac{s_z^2}{n^2 - \epsilon_z} = \frac{1}{n^2}$$

• with $n_i^2 = \epsilon_i$

$$s_{X}^{2}n_{X}^{2}\left(n^{2}-n_{y}^{2}\right)\left(n^{2}-n_{z}^{2}\right)+s_{y}^{2}n_{y}^{2}\left(n^{2}-n_{x}^{2}\right)\left(n^{2}-n_{z}^{2}\right)+s_{z}^{2}n_{z}^{2}\left(n^{2}-n_{x}^{2}\right)\left(n^{2}-n_{y}^{2}\right)=0$$

Electric Field in Anisotropic Material

electric field can also be written as

$$\mathsf{E}_{k} = \frac{n^{2} s_{k} \left(\vec{E} \cdot \vec{s} \right)}{n^{2} - \epsilon_{k}}$$

• equivalent to (a a constant)

$$ec{\mathsf{E}} = a \left(egin{array}{c} rac{S_{\chi}}{n^2 - n_{\chi}^2} \ rac{S_{\gamma}}{n^2 - n_{\gamma}^2} \ rac{S_{z}}{n^2 - n_{z}^2} \end{array}
ight)$$

- quadratic equation in $n \Rightarrow$ generally two solutions for given direction \vec{s}
- system of 3 equations can be solved for E_k
- denominator vanishes if \vec{k} parallel to a principal axis \Rightarrow treat separately

Non-Absorbing, Non-Active, Anisotropic Materials

k not parallel to a principal axis ⇒ ratio of 2 electric field components *k* and *l*

$$\frac{E_{k}}{E_{l}} = \frac{s_{k}\left(n^{2} - \epsilon_{l}\right)}{s_{l}\left(n^{2} - \epsilon_{k}\right)}$$

- ratio is independent of electric field components
- n^2 and ϵ_i real \Rightarrow ratios are real \Rightarrow electric field is linearly polarized
- in non-absorbing, non-active, anisotropic material, 2 waves propagate that have different linear polarization states and different directions of energy flows
- direction of vibration of \vec{D} corresponding to 2 solutions are orthogonal to each other (without proof)

$$\vec{D}_1 \cdot \vec{D}_2 = 0$$

Wave Propagation in Uniaxial Media

Introduction

• uniaxial media \Rightarrow dielectric constants:

$$\epsilon_x = \epsilon_y = n_o^2$$
$$\epsilon_z = n_e^2$$

second form of Fresnel equation reduces to

$$\left(n^{2}-n_{o}^{2}\right)\left[n_{o}^{2}\left(s_{x}^{2}+s_{y}^{2}\right)\left(n^{2}-n_{e}^{2}\right)+s_{z}^{2}n_{e}^{2}\left(n^{2}-n_{o}^{2}\right)\right]=0$$

• two solutions n_1 , n_2 given by

$$\begin{array}{rcl} n_1^2 & = & n_o^2 \\ \frac{1}{n_2^2} & = & \frac{s_x^2 + s_y^2}{n_e^2} + \frac{s_z^2}{n_o^2} \end{array}$$

Lecture 5: Crystal Optics

Propagation in General Direction

• (unit) wave vector direction in spherical coordinates

$$\vec{s} = \begin{pmatrix} s_x \\ s_y \\ s_z \end{pmatrix} = \begin{pmatrix} \sin\theta\cos\phi \\ \sin\theta\sin\phi \\ \cos\theta \end{pmatrix}$$

- θ: angle between wave vector and optic axis
- φ: azimuth angle in plane perpendicular to optic axis

$$\frac{1}{n_2^2} = \frac{\cos^2\theta}{n_o^2} + \frac{\sin^2\theta}{n_e^2}$$
$$n_2(\theta) = \frac{n_o n_e}{\sqrt{n_o^2 \sin^2\theta + n_e^2 \cos^2\theta}}$$

 take positive root, negative value corresponds to waves propagating in opposite direction

Christoph U. Keller, C.U.Keller@astro-uu.nl

Ordinary and Extraordinary Rays

from before

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_o^2} + \frac{\sin^2 \theta}{n_e^2}$$
$$n_2(\theta) = \frac{n_o n_e}{\sqrt{n_o^2 \sin^2 \theta + n_e^2 \cos^2 \theta}}$$

• n_2 varies between n_o for $\theta = 0$ and n_e for $\theta = 90^{\circ}$

- first solution propagates according to ordinary index of refraction, independent of direction ⇒ ordinary beam or ray
- second solution corresponds to *extraordinary* beam or ray
- index of refraction of extraordinary beam is (in general) not the extraordinary index of refraction

Ordinary Beam

ordinary beam speed independent of wave vector direction

• for
$$D_i = \epsilon_i \vec{E}_i = n^2 \left(\vec{E}_i - s_i \left(\vec{E} \cdot \vec{s} \right) \right), i = 1 \cdots 3$$
 to hold for any direction $\vec{s}, \vec{E}_o \cdot \vec{s} = 0$ and $E_{o,z} = 0$

 electric field vector of ordinary beam (with real constant *a_o* ≠ 0)

$$\vec{E}_o = a_o \left(\begin{array}{c} \sin \phi \\ -\cos \phi \\ 0 \end{array} \right)$$

- ordinary beam is linearly polarized
- *Ē_o* perpendicular to plane formed by wave vector *k* and *c*-axis
- displacement vector $\vec{D}_o = n_o \vec{E}_o \parallel \vec{E}_o$
- Poynting vector $\vec{S}_o \parallel \vec{k}$

Extraordinary Ray

• since $\vec{D}_e \cdot \vec{k} = 0$ and $\vec{D}_e \cdot \vec{D}_o = 0 \Rightarrow$ unique solution (up to real constant a_e)

$$\vec{D}_e = a_e \begin{pmatrix} \cos\theta\cos\phi \\ \cos\theta\sin\phi \\ -\sin\theta \end{pmatrix}$$

• since
$$E_e \cdot D_o = 0$$
, $D_e = \epsilon \vec{E}_e$

$$\vec{E}_e = a \begin{pmatrix} n_e^2 \cos \theta \cos \phi \\ n_e^2 \cos \theta \sin \phi \\ -n_o^2 \sin \theta \end{pmatrix}$$

• uniaxial medium
$$\Rightarrow \vec{E}_o \cdot \vec{E}_e = 0$$

• however, $\vec{E}_e \cdot \vec{k} \neq 0$

Dispersion Angle

• angle between \vec{k} and Poynting vector \vec{S} = angle between \vec{E} and \vec{D} = dispersion angle

$$\tan \alpha = \frac{\left|\vec{E}_e \times \vec{D}_e\right|}{\vec{E}_e \cdot \vec{D}_e} = \frac{(n_e^2 - n_o^2)\tan\theta}{n_e^2 + n_o^2\tan^2\theta} = \frac{\sin 2\theta}{2} \frac{(n_e^2 - n_o^2)}{n_o^2\sin^2\theta + n_e^2\cos^2\theta}$$

equivalent expression

$$\alpha = \theta - \arctan\left(rac{n_o^2}{n_e^2} \tan heta
ight)$$

- for given \vec{k} in principal axis system, α fully determines direction of energy propagation in uniaxial medium
- for θ approaching $\pi/2$, $\alpha = 0$
- for $\theta = 0$, $\alpha = 0$

Propagation Direction of Extraordinary Beam

• angle θ' between Poynting vector \vec{S} and optic axis

$$an heta'=rac{n_o^2}{n_e^2} an heta$$

- ordinary and extraordinary wave do (in general) not travel at the same speed
- phase difference in radians between the two waves given by

$$\frac{\omega}{c}\left(n_{2}(\theta)d_{e}-n_{o}d_{o}
ight)$$

*d*_{o,e}: geometrical distances traveled by ordinary and extraordinary rays

Propagation Along c Axis

- plane wave propagating along *c*-axis $\Rightarrow \theta = 0$
- ordinary and extraordinary beams propagate at same speed $\frac{c}{n_0}$
- electric field vectors are perpendicular to c-axis and only depend on azimuth ϕ
- ordinary and extraordinary rays are indistinguishable
- uniaxial medium behaves like an isotropic medium
- example: "c-cut" sapphire windows

Propagation Perpendicular to c Axis

• plane wave propagating perpendicular to *c*-axis $\Rightarrow \theta = \pi/2$

$$\vec{E}_o = \left(\begin{array}{c} \sin\phi\\ -\cos\phi\\ 0\end{array}\right)$$

- \vec{E}_o perpendicular to plane formed by \vec{k} and c-axis
- electric field vector of extraordinary wave

$$ec{E}_{m{e}} = \left(egin{array}{c} 0 \\ 0 \\ 1 \end{array}
ight)$$

- \vec{E}_e parallel to *c*-axis
- direction of energy propagation of extraordinary wave parallel to k since E_e || D_e

Phase Delay between Ordinary and Extraordinary Rays

- ordinary and extraordinary wave propagate in same direction
- ordinary ray propagates with speed $\frac{c}{n_0}$
- extraordinary beam propagates at different speed $\frac{c}{n_e}$
- \vec{E}_o , \vec{E}_e perpendicular to each other \Rightarrow plane wave with arbitrary polarization can be (coherently) decomposed into components parallel to \vec{E}_o and \vec{E}_e
- 2 components will travel at different speeds
- (coherently) superposing 2 components after distance d ⇒ phase difference between 2 components ^w/_c(n_e − n_o)d radians
- phase difference \Rightarrow change in polarization state
- basis for constructing linear retarders

Summary: Wave Propagation in Uniaxial Media

- ordinary ray propagates like in an isotropic medium with index no
- extraordinary ray sees direction-dependent index of refraction

$$n_2(\theta) = \frac{n_o n_e}{\sqrt{n_o^2 \sin^2 \theta + n_e^2 \cos^2 \theta}}$$

- n₂ direction-dependent index of refraction of the extraordinary ray
- no ordinary index of refraction
- ne extraordinary index of refraction
 - θ angle between extraordinary wave vector and optic axis
- extraordinary ray is not parallel to its wave vector
- angle between the two is *dispersion angle*

$$\tan \alpha = \frac{(n_e^2 - n_o^2) \tan \theta}{n_e^2 + n_o^2 \tan^2 \theta}$$

Reflection and Transmission at Uniaxial Interfaces

General case

- from isotropic medium (n_l) into uniaxial medium (n_o, n_e)
- θ_I : angle between surface normal and \vec{k}_I for incoming beam
- θ_{1,2}: angles between surface normal and wave vectors of (refracted) ordinary wave k
 ⁱ
 and extraordinary wave k
 ^j
 2
- phase matching at interface requires

$$\vec{k}_I \cdot \vec{x} = \vec{k}_1 \cdot \vec{x} = \vec{k}_2 \cdot \vec{x}$$

• \vec{x} : position vector of a point on interface surface

$$n_l \sin \theta_l = n_1 \sin \theta_1 = n_2 \sin \theta_2$$

- $n_1 = n_o$: index of refraction of ordinary wave
- n₂: index of refraction of extraordinary wave

Ordinary and Extraordinary Rays

• ordinary wave \Rightarrow Snell's law

$$\sin\theta_1 = \frac{n_l}{n_1}\sin\theta_l$$

law for extraordinary ray not trivial

$$n_l \sin \theta_l = n_2 \left(\theta(\theta_2) \right) \sin \theta_2$$

- (in general) θ_2 and therefore \vec{k}_2 will *not* determine direction of extraordinary beam since Poynting vector (in general) not parallel to wave vector
- solve for $\theta_2 \Rightarrow$ determine direction of Poynting vector
- special cases reduce complexity of equations

Extraordinary Ray Refraction for General Case

$$\cot \theta_{2} = \frac{c_{x}c_{y}\left(n_{o}^{2} - n_{e}^{2}\right) \pm n_{o}\sqrt{\frac{n_{o}^{2}n_{e}^{2} + n_{e}^{2}c_{x}^{2}\left(n_{e}^{2} - n_{o}^{2}\right)}{\sin^{2}\theta_{I}} - n_{o}^{2} - \left(n_{e}^{2} - n_{o}^{2}\right)\left(c_{x}^{2} + c_{y}^{2}\right)}}{n_{o}^{2} + c_{x}^{2}\left(n_{e}^{2} - n_{o}^{2}\right)}$$

propagation vector of extraordinary ray

$$S_x = \cos \alpha \cos \theta_2 + \frac{\sin \alpha \sin \theta_2 (c_x \sin \theta_2 - c_y \cos \theta_2)}{\sqrt{c_z^2 + (c_x \sin \theta_2 - c_y \cos \theta_2)^2}}$$

$$S_y = \cos \alpha \sin \theta_2 - \frac{\sin \alpha \cos \theta_2 (c_x \sin \theta_2 - c_y \cos \theta_2)^2}{\sqrt{c_z^2 + (c_x \sin \theta_2 - c_y \cos \theta_2)^2}}$$

$$S_z = c_z * \frac{\sin \alpha}{\sqrt{c_z^2 + (c_x \sin \theta_2 - c_y \cos \theta_2)^2}}$$

- \vec{c} optic axis vector $\vec{c} = (c_x, c_y, c_z)^T$
- \vec{S} propagation direction of extraordinary ray $\vec{S} = (S_x, S_y, S_z)^T$
- θ_l angle between \vec{k}_l and interface normal
- θ_2 angle between \vec{k}_e and interface normal
- α dispersion angle

Normal Incidence

- normal incidence $\Rightarrow \theta_I = 0, \ \theta_1 = \theta_2 = 0$
- choose plane formed by surface normal and crystal axis
- both wave vectors and ordinary ray not refracted
- extraordinary ray refracted by dispersion angle α

$$\alpha = \theta - \arctan\left(\frac{n_o^2}{n_e^2}\tan\theta\right)$$

Optic Axis in Plane of Incidence and Plane of Interface

•
$$\theta + \theta_2 = \pi/2 \Rightarrow \cot \theta_2 = \frac{n_e}{n_o} \cot \theta_1$$

1

- θ₁: angle between surface normal and *ordinary* ray or wave vector (sin θ₁ = n_o sin θ₁)
- extraordinary wave sees equivalent refractive index

$$n_{y} = \sqrt{n_{e}^{2} + \sin^{2}\theta_{I}\left(1 - \frac{n_{e}^{2}}{n_{o}^{2}}\right)}$$

direction of Poynting vector

$$S_x = \cos(\theta_2 + \alpha)$$

$$S_y = \sin(\theta_2 + \alpha)$$

$$S_z = 0$$

 determine dispersion angle α and add to θ₂ to obtain direction of extraordinary ray

Optic Axis Perpendicular to Plane of Incidence

• *c*-axis perpendicular to plane of incidence $\Rightarrow \theta = \frac{\pi}{2}$, $n_2(\frac{\pi}{2}) = n_e$

$$n_l \sin \theta_l = n_e \sin \theta_2$$

extraordinary wave vector obeys Snell's law with index n_e

•
$$\theta = \frac{\pi}{2} \Rightarrow$$
 dispersion angle $\alpha = 0$

- Poynting vector || wave vector, extraordinary beam itself obeys Snell's law with n_e
- double refraction only for non-normal incidence

Interface from Uniaxial Medium to Isotropic Medium

- ordinary ray follows Snell's law
- transmitted extraordinary wave vector and ray coincide
- exit of extraordinary wave on interface defined by extraordinary ray
- extraordinary wave vector follows Snell's law with index n₂ (θ)

$$n_I \sin \theta_E = n_2 \sin \theta_U$$

- n_l index of isotropic medium
- θ_E angle of wave/ray vector with surface normal in isotropic medium
- n₂, θ_U corresponding values for extraordinary wave vector in uniaxial medium
- n₂ is function of θ normally already known from beam propagation in uniaxial medium
- θ_U is function of geometry of interface,
- plane-parallel slab of uniaxial medium, $\theta_E = \theta_I$, (in general) extraordinary beam displaced on exit

- TIR also in anisotropic media
- *n_o* ≠ *n_e* ⇒ one beam may be totally reflected while other is transmitted
- principal of most crystal polarizers
- example: calcite prism, normal incidence, optic axis parallel to first interface, exit face inclined by 40°
- → extraordinary ray not refracted, two rays
 propagate according to indices n_o,n_e
- at second interface rays (and wave vectors) at 40° to surface
- 632.8 nm: *n*_o = 1.6558, *n*_e = 1.4852
- requirement for total reflection $\frac{n_U}{n_i} \sin \theta_U > 1$
- with n_l = 1 ⇒ extraordinary ray transmitted, ordinary ray undergoes TIR

