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Homogeneous, Anisotropic Media

Introduction
material equations for homogeneous, anisotropic media

~D = ε~E
~B = µ~H

tensors of rank 2, written as 3 by 3 matrices
ε: dielectric tensor
µ: magnetic permeability tensor

for the following, assume µ = 1
examples:

crystals, liquid crystals
external electric, magnetic fields acting on isotropic materials
(glass, fluids, gas)
anisotropic mechanical forces acting on isotropic materials
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Properties of Dielectric Tensor
Maxwell equations imply symmetric dielectric tensor

ε = εT =

 ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33


symmetric tensor of rank 2⇒ coordinate system exists where
tensor is diagonal
orthogonal axes of this coordinate system: principal axes
elements of diagonal tensor: principal dielectric constants
3 principal indices of refraction in coordinate system spanned by
principal axes

~D =

 n2
x 0 0

0 n2
y 0

0 0 n2
z

 ~E

x , y , z because principal axes form Cartesian coordinate system
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Uniaxial Materials

isotropic materials: nx = ny = nz

anisotropic materials:
nx 6= ny 6= nz

uniaxial materials: nx = ny 6= nz

ordinary index of refraction:
no = nx = ny

extraordinary index of refraction:
ne = nz

rotation of coordinate system
around z has no effect
most materials used in polarimetry
are (almost) uniaxial
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Crystals

Crystal Axes Terminology

optic axis is the axis that has a different index of refraction
also called c or crystallographic axis
fast axis: axis with smallest index of refraction
ray of light going through uniaxial crystal is (generally) split into
two rays
ordinary ray (o-ray) passes the crystal without any deviation
extraordinary ray (e-ray) is deviated at air-crystal interface
two emerging rays have orthogonal polarization states
common to use indices of refraction for ordinary ray (no) and
extraordinary ray (ne) instead of indices of refraction in crystal
coordinate system
ne < no: negative uniaxial crystal
ne > no: positive uniaxial crystal
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Plane Waves in Anisotropic Media

Displacement and Electric Field Vectors

plane-wave ansatz for ~D, ~E , ~H

~E = ~E0ei(~k ·~x−ωt)

~D = ~D0ei(~k ·~x−ωt)

~H = ~H0ei(~k ·~x−ωt)

no net charges in medium (∇ · ~D = 0)

~D · ~k = 0

~D perpendicular to ~k
~D and ~E not parallel⇒ ~E not perpendicular to ~k
wave normal ~s = ~k/|~k |, energy flow in different directions, at
different speeds
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Magnetic Field

constant, scalar µ, vanishing current
density⇒ ~H ‖ ~B

∇ · ~H = 0⇒ ~H ⊥ ~k
∇× ~H = 1

c
∂~D
∂t ⇒ ~H ⊥ ~D

∇× ~E = −µ
c
∂~H
∂t ⇒ ~H ⊥ ~E

~D, ~E , and ~k all in one plane
~H, ~B perpendicular to that plane

Poynting vector ~S = c
4π
~E × ~H

perpendicular to ~E and ~H ⇒ ~S (in
general) not parallel to ~k

energy (in general) not transported in
direction of wave vector ~k
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Relation between ~D and ~E
combine Maxwell, material equations in principal coordinate
system

Di = εiEi = n2
(

Ei − si

(
~E · ~s

))
i = 1 · · · 3

~s = ~k/|~k |: unit vector in direction of wave vector ~k
n: refractive index associated with direction ~s, i.e. n = n(~s)

3 equations for 3 unknowns Ei

eliminate ~E assuming ~E 6= ~0⇒ Fresnel equation

s2
x

n2 − εx
+

s2
y

n2 − εy
+

s2
z

n2 − εz
=

1
n2

with n2
i = εi

s2
x n2

x

“
n2 − n2

y

” “
n2 − n2

z

”
+ s2

y n2
y

“
n2 − n2

x

” “
n2 − n2

z

”
+ s2

z n2
z

“
n2 − n2

x

” “
n2 − n2

y

”
= 0
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Electric Field in Anisotropic Material
electric field can also be written as

Ek =
n2sk

(
~E · ~s

)
n2 − εk

equivalent to (a a constant)

~E = a


sx

n2−n2
xsy

n2−n2
y

sz
n2−n2

z


quadratic equation in n⇒ generally two solutions for given
direction ~s
system of 3 equations can be solved for Ek

denominator vanishes if ~k parallel to a principal axis⇒ treat
separately
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Non-Absorbing, Non-Active, Anisotropic Materials
~k not parallel to a principal axis⇒ ratio of 2 electric field
components k and l

Ek

El
=

sk
(
n2 − εl

)
sl
(
n2 − εk

)
ratio is independent of electric field components
n2 and εi real⇒ ratios are real⇒ electric field is linearly polarized
in non-absorbing, non-active, anisotropic material, 2 waves
propagate that have different linear polarization states and
different directions of energy flows
direction of vibration of ~D corresponding to 2 solutions are
orthogonal to each other (without proof)

~D1 · ~D2 = 0
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Wave Propagation in Uniaxial Media

Introduction
uniaxial media⇒ dielectric constants:

εx = εy = n2
o

εz = n2
e

second form of Fresnel equation reduces to(
n2 − n2

o

) [
n2

o

(
s2

x + s2
y

)(
n2 − n2

e

)
+ s2

zn2
e

(
n2 − n2

o

)]
= 0

two solutions n1, n2 given by

n2
1 = n2

o

1
n2

2
=

s2
x + s2

y

n2
e

+
s2

z

n2
o
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Propagation in General Direction

(unit) wave vector direction in spherical coordinates

~s =

 sx
sy
sz

 =

 sin θ cosφ
sin θ sinφ

cos θ


θ: angle between wave vector and optic axis
φ: azimuth angle in plane perpendicular to optic axis

1
n2

2
=

cos2 θ

n2
o

+
sin2 θ

n2
e

n2 (θ) =
none√

n2
o sin2 θ + n2

e cos2 θ

take positive root, negative value corresponds to waves
propagating in opposite direction

Christoph U. Keller, C.U.Keller@astro-uu.nl Lecture 5: Crystal Optics 12



Ordinary and Extraordinary Rays
from before

1
n2

2
=

cos2 θ

n2
o

+
sin2 θ

n2
e

n2 (θ) =
none√

n2
o sin2 θ + n2

e cos2 θ

n2 varies between no for θ = 0 and ne for θ = 90◦

first solution propagates according to ordinary index of refraction,
independent of direction⇒ ordinary beam or ray
second solution corresponds to extraordinary beam or ray
index of refraction of extraordinary beam is (in general) not the
extraordinary index of refraction
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Ordinary Beam
ordinary beam speed independent of wave vector direction

for Di = εi ~Ei = n2
(
~Ei − si

(
~E · ~s

))
, i = 1 · · · 3 to hold for any

direction ~s, ~Eo · ~s = 0 and Eo,z = 0

electric field vector of ordinary beam
(with real constant ao 6= 0)

~Eo = ao

 sinφ
− cosφ

0


ordinary beam is linearly polarized
~Eo perpendicular to plane formed by
wave vector ~k and c-axis
displacement vector ~Do = no~Eo ‖ ~Eo

Poynting vector ~So ‖ ~k
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Extraordinary Ray

since ~De · ~k = 0 and ~De · ~Do = 0⇒ unique solution (up to real
constant ae)

~De = ae

 cos θ cosφ
cos θ sinφ
− sin θ


since Ee · Do = 0, De = ε~Ee

~Ee = a

 n2
e cos θ cosφ

n2
e cos θ sinφ
−n2

o sin θ


uniaxial medium⇒ ~Eo · ~Ee = 0
however, ~Ee · ~k 6= 0
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Dispersion Angle

angle between ~k and Poynting vector ~S = angle between ~E and ~D
= dispersion angle

tanα =

∣∣∣~Ee × ~De

∣∣∣
~Ee · ~De

=
(n2

e − n2
o) tan θ

n2
e + n2

o tan2 θ
=

sin 2θ
2

(
n2

e − n2
o
)

n2
o sin2 θ + n2

e cos2 θ

equivalent expression

α = θ − arctan
(

n2
o

n2
e

tan θ
)

for given ~k in principal axis system, α fully determines direction of
energy propagation in uniaxial medium
for θ approaching π/2, α = 0
for θ = 0, α = 0
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Propagation Direction of Extraordinary Beam

angle θ′ between Poynting vector ~S and optic axis

tan θ′ =
n2

o

n2
e

tan θ

ordinary and extraordinary wave do (in general) not travel at the
same speed
phase difference in radians between the two waves given by

ω

c
(n2(θ)de − nodo)

do,e: geometrical distances traveled by ordinary and extraordinary
rays
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Propagation Along c Axis
plane wave propagating along c-axis⇒ θ = 0
ordinary and extraordinary beams propagate at same speed c

no

electric field vectors are perpendicular to c-axis and only depend
on azimuth φ
ordinary and extraordinary rays are indistinguishable
uniaxial medium behaves like an isotropic medium
example: “c-cut” sapphire windows
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Propagation Perpendicular to c Axis

plane wave propagating perpendicular to c-axis⇒ θ = π/2

~Eo =

 sinφ
− cosφ

0


~Eo perpendicular to plane formed by ~k and c-axis
electric field vector of extraordinary wave

~Ee =

 0
0
1


~Ee parallel to c-axis
direction of energy propagation of extraordinary wave parallel to ~k
since ~Ee ‖ ~De

Christoph U. Keller, C.U.Keller@astro-uu.nl Lecture 5: Crystal Optics 19



Phase Delay between Ordinary and Extraordinary Rays
ordinary and extraordinary wave propagate in same direction
ordinary ray propagates with speed c

no

extraordinary beam propagates at different speed c
ne

~Eo, ~Ee perpendicular to each other⇒ plane wave with arbitrary
polarization can be (coherently) decomposed into components
parallel to ~Eo and ~Ee

2 components will travel at different speeds
(coherently) superposing 2 components after distance d ⇒ phase
difference between 2 components ω

c (ne − no)d radians
phase difference⇒ change in polarization state
basis for constructing linear retarders
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Summary: Wave Propagation in Uniaxial Media
ordinary ray propagates like in an isotropic medium with index no

extraordinary ray sees direction-dependent index of refraction

n2 (θ) =
none√

n2
o sin2 θ + n2

e cos2 θ

n2 direction-dependent index of refraction of the extraordinary ray
no ordinary index of refraction
ne extraordinary index of refraction
θ angle between extraordinary wave vector and optic axis

extraordinary ray is not parallel to its wave vector
angle between the two is dispersion angle

tanα =
(n2

e − n2
o) tan θ

n2
e + n2

o tan2 θ
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Reflection and Transmission at Uniaxial Interfaces

General case
from isotropic medium (nI) into uniaxial medium (no, ne)
θI : angle between surface normal and ~kI for incoming beam
θ1,2: angles between surface normal and wave vectors of
(refracted) ordinary wave ~k1 and extraordinary wave ~k2

phase matching at interface requires

~kI · ~x = ~k1 · ~x = ~k2 · ~x

~x : position vector of a point on interface surface

nI sin θI = n1 sin θ1 = n2 sin θ2

n1 = no: index of refraction of ordinary wave
n2: index of refraction of extraordinary wave
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Ordinary and Extraordinary Rays
ordinary wave⇒ Snell’s law

sin θ1 =
nI

n1
sin θI

law for extraordinary ray not trivial

nI sin θI = n2 (θ(θ2)) sin θ2

(in general) θ2 and therefore ~k2 will not determine direction of
extraordinary beam since Poynting vector (in general) not parallel
to wave vector
solve for θ2 ⇒ determine direction of Poynting vector
special cases reduce complexity of equations
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Extraordinary Ray Refraction for General Case

cot θ2 =

cx cy
“

n2
o − n2

e

”
± no

s
n2

on2
e+n2

ec2
x
“

n2
e−n2

o
”

sin2 θI
− n2

o −
“

n2
e − n2

o

” “
c2

x + c2
y

”
n2

o + c2
x

“
n2

e − n2
o

”
propagation vector of extraordinary ray

Sx = cos α cos θ2 +
sin α sin θ2

`
cx sin θ2 − cy cos θ2

´q
c2

z +
`
cx sin θ2 − cy cos θ2

´2

Sy = cos α sin θ2 −
sin α cos θ2

`
cx sin θ2 − cy cos θ2

´q
c2

z +
`
cx sin θ2 − cy cos θ2

´2

Sz = cz ∗
sin αq

c2
z +

`
cx sin θ2 − cy cos θ2

´2

~c optic axis vector ~c = (cx , cy , cz)
T

~S propagation direction of extraordinary ray ~S = (Sx ,Sy ,Sz)
T

θI angle between ~kI and interface normal
θ2 angle between ~ke and interface normal
α dispersion angle
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Normal Incidence

normal incidence⇒ θI = 0, θ1 = θ2 = 0
choose plane formed by surface normal and crystal axis
both wave vectors and ordinary ray not refracted
extraordinary ray refracted by dispersion angle α

α = θ − arctan
(

n2
o

n2
e

tan θ
)
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Optic Axis in Plane of Incidence and Plane of Interface

θ + θ2 = π/2⇒ cot θ2 = ne
no

cot θ1

θ1: angle between surface normal and ordinary ray or wave vector
(sin θI = no sin θ1)
extraordinary wave sees equivalent refractive index

ny =

√
n2

e + sin2 θI

(
1− n2

e

n2
o

)
direction of Poynting vector

Sx = cos(θ2 + α)

Sy = sin(θ2 + α)

Sz = 0

determine dispersion angle α and add to θ2 to obtain direction of
extraordinary ray
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Optic Axis Perpendicular to Plane of Incidence

c-axis perpendicular to plane of incidence⇒ θ = π
2 , n2

(
π
2

)
= ne

nI sin θI = ne sin θ2

extraordinary wave vector obeys Snell’s law with index ne

θ = π
2 ⇒ dispersion angle α = 0

Poynting vector ‖ wave vector, extraordinary beam itself obeys
Snell’s law with ne

double refraction only for non-normal incidence
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Interface from Uniaxial Medium to Isotropic Medium
ordinary ray follows Snell’s law
transmitted extraordinary wave vector and ray coincide
exit of extraordinary wave on interface defined by extraordinary ray
extraordinary wave vector follows Snell’s law with index n2 (θ)

nI sin θE = n2 sin θU

nI index of isotropic medium
θE angle of wave/ray vector with surface normal in isotropic medium
n2, θU corresponding values for extraordinary wave vector in
uniaxial medium

n2 is function of θ normally already known from beam propagation
in uniaxial medium
θU is function of geometry of interface,
plane-parallel slab of uniaxial medium, θE = θI , (in general)
extraordinary beam displaced on exit
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Total Internal Reflection (TIR)

TIR also in anisotropic media
no 6= ne ⇒ one beam may be totally
reflected while other is transmitted
principal of most crystal polarizers
example: calcite prism, normal incidence,
optic axis parallel to first interface, exit face
inclined by 40◦

⇒ extraordinary ray not refracted, two rays
propagate according to indices no,ne

at second interface rays (and wave vectors)
at 40◦ to surface
632.8 nm: no = 1.6558, ne = 1.4852
requirement for total reflection nU

nI
sin θU > 1

with nI = 1⇒ extraordinary ray transmitted,
ordinary ray undergoes TIR

n
o
, n

e

e

o

40°

40°

c
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