Lecture 5: Crystal Optics

Outline

- Homogeneous, Anisotropic Media
(2) Crystals
(3) Plane Waves in Anisotropic Media
(9) Wave Propagation in Uniaxial Media
© Reflection and Transmission at Interfaces

Introduction

- material equations for homogeneous, anisotropic media

$$
\begin{aligned}
& \vec{D}=\epsilon \vec{E} \\
& \vec{B}=\mu \vec{H}
\end{aligned}
$$

- tensors of rank 2, written as 3 by 3 matrices
- ϵ : dielectric tensor
- μ : magnetic permeability tensor
- for the following, assume $\mu=1$
- examples:
- crystals, liquid crystals
- external electric, magnetic fields acting on isotropic materials (glass, fluids, gas)
- anisotropic mechanical forces acting on isotropic materials

Properties of Dielectric Tensor

- Maxwell equations imply symmetric dielectric tensor

$$
\epsilon=\epsilon^{T}=\left(\begin{array}{ccc}
\epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\
\epsilon_{12} & \epsilon_{22} & \epsilon_{23} \\
\epsilon_{13} & \epsilon_{23} & \epsilon_{33}
\end{array}\right)
$$

- symmetric tensor of rank $2 \Rightarrow$ coordinate system exists where tensor is diagonal
- orthogonal axes of this coordinate system: principal axes
- elements of diagonal tensor: principal dielectric constants
- 3 principal indices of refraction in coordinate system spanned by principal axes

$$
\vec{D}=\left(\begin{array}{ccc}
n_{x}^{2} & 0 & 0 \\
0 & n_{y}^{2} & 0 \\
0 & 0 & n_{z}^{2}
\end{array}\right) \vec{E}
$$

- x, y, z because principal axes form Cartesian coordinate system

Uniaxial Materials

- isotropic materials: $n_{x}=n_{y}=n_{z}$
- anisotropic materials:

$$
n_{x} \neq n_{y} \neq n_{z}
$$

- uniaxial materials: $n_{x}=n_{y} \neq n_{z}$
- ordinary index of refraction: $n_{o}=n_{x}=n_{y}$
- extraordinary index of refraction: $n_{e}=n_{z}$
- rotation of coordinate system around z has no effect
- most materials used in polarimetry are (almost) uniaxial

Crystals

Crystal Axes Terminology

- optic axis is the axis that has a different index of refraction
- also called cor crystallographic axis
- fast axis: axis with smallest index of refraction
- ray of light going through uniaxial crystal is (generally) split into two rays
- ordinary ray (o-ray) passes the crystal without any deviation
- extraordinary ray (e-ray) is deviated at air-crystal interface
- two emerging rays have orthogonal polarization states
- common to use indices of refraction for ordinary ray $\left(n_{o}\right)$ and extraordinary ray $\left(n_{e}\right)$ instead of indices of refraction in crystal coordinate system
- $n_{e}<n_{0}$: negative uniaxial crystal
- $n_{e}>n_{o}$: positive uniaxial crystal

Plane Waves in Anisotropic Media

Displacement and Electric Field Vectors

- plane-wave ansatz for $\vec{D}, \vec{E}, \vec{H}$

$$
\begin{aligned}
\vec{E} & =\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)} \\
\vec{D} & =\vec{D}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)} \\
\vec{H} & =\vec{H}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}
\end{aligned}
$$

- no net charges in medium $(\nabla \cdot \vec{D}=0)$

$$
\vec{D} \cdot \vec{k}=0
$$

\vec{D} perpendicular to \vec{k}

- \vec{D} and \vec{E} not parallel $\Rightarrow \vec{E}$ not perpendicular to \vec{k}
- wave normal $\vec{s}=\vec{k} /|\vec{k}|$, energy flow in different directions, at different speeds

Magnetic Field

- constant, scalar μ, vanishing current density $\Rightarrow \vec{H} \| \vec{B}$
- $\nabla \cdot \vec{H}=0 \Rightarrow \vec{H} \perp \vec{k}$
- $\nabla \times \vec{H}=\frac{1}{c} \frac{\partial \vec{D}}{\partial t} \Rightarrow \vec{H} \perp \vec{D}$
- $\nabla \times \vec{E}=-\frac{\mu}{c} \frac{\partial \vec{H}}{\partial t} \Rightarrow \vec{H} \perp \vec{E}$
- \vec{D}, \vec{E}, and \vec{k} all in one plane
- \vec{H}, \vec{B} perpendicular to that plane
- Poynting vector $\vec{S}=\frac{c}{4 \pi} \vec{E} \times \vec{H}$ perpendicular to \vec{E} and $\vec{H} \Rightarrow \vec{S}$ (in

H,B
 general) not parallel to \vec{k}

- energy (in general) not transported in direction of wave vector \vec{k}

Relation between \vec{D} and \vec{E}

- combine Maxwell, material equations in principal coordinate system

$$
D_{i}=\epsilon_{i} E_{i}=n^{2}\left(E_{i}-s_{i}(\vec{E} \cdot \vec{s})\right) \quad i=1 \cdots 3
$$

- $\vec{s}=\vec{k} /|\vec{k}|:$ unit vector in direction of wave vector \vec{k}
- n : refractive index associated with direction \vec{s}, i.e. $n=n(\vec{s})$
- 3 equations for 3 unknowns E_{i}
- eliminate \vec{E} assuming $\vec{E} \neq \overrightarrow{0} \Rightarrow$ Fresnel equation

$$
\frac{s_{x}^{2}}{n^{2}-\epsilon_{x}}+\frac{s_{y}^{2}}{n^{2}-\epsilon_{y}}+\frac{s_{z}^{2}}{n^{2}-\epsilon_{z}}=\frac{1}{n^{2}}
$$

- with $n_{i}^{2}=\epsilon_{i}$

$$
s_{x}^{2} n_{x}^{2}\left(n^{2}-n_{y}^{2}\right)\left(n^{2}-n_{z}^{2}\right)+s_{y}^{2} n_{y}^{2}\left(n^{2}-n_{x}^{2}\right)\left(n^{2}-n_{z}^{2}\right)+s_{z}^{2} n_{z}^{2}\left(n^{2}-n_{x}^{2}\right)\left(n^{2}-n_{y}^{2}\right)=0
$$

Electric Field in Anisotropic Material

- electric field can also be written as

$$
E_{k}=\frac{n^{2} s_{k}(\vec{E} \cdot \vec{s})}{n^{2}-\epsilon_{k}}
$$

- equivalent to (a a constant)

$$
\vec{E}=a\left(\begin{array}{c}
\frac{s_{x}}{n^{2}-n_{y}^{2}} \\
\frac{s_{y}}{n^{2}-n_{y}^{2}} \\
\frac{s_{z}}{n^{2}-n_{z}^{2}}
\end{array}\right)
$$

- quadratic equation in $n \Rightarrow$ generally two solutions for given direction \vec{s}
- system of 3 equations can be solved for E_{k}
- denominator vanishes if \vec{k} parallel to a principal axis \Rightarrow treat separately

Non-Absorbing, Non-Active, Anisotropic Materials

- \vec{k} not parallel to a principal axis \Rightarrow ratio of 2 electric field components k and $/$

$$
\frac{E_{k}}{E_{l}}=\frac{s_{k}\left(n^{2}-\epsilon_{l}\right)}{s_{l}\left(n^{2}-\epsilon_{k}\right)}
$$

- ratio is independent of electric field components
- n^{2} and ϵ_{i} real \Rightarrow ratios are real \Rightarrow electric field is linearly polarized
- in non-absorbing, non-active, anisotropic material, 2 waves propagate that have different linear polarization states and different directions of energy flows
- direction of vibration of \vec{D} corresponding to 2 solutions are orthogonal to each other (without proof)

$$
\vec{D}_{1} \cdot \vec{D}_{2}=0
$$

Wave Propagation in Uniaxial Media

Introduction

- uniaxial media \Rightarrow dielectric constants:

$$
\begin{aligned}
\epsilon_{X}=\epsilon_{y} & =n_{o}^{2} \\
\epsilon_{z} & =n_{e}^{2}
\end{aligned}
$$

- second form of Fresnel equation reduces to

$$
\left(n^{2}-n_{o}^{2}\right)\left[n_{o}^{2}\left(s_{x}^{2}+s_{y}^{2}\right)\left(n^{2}-n_{e}^{2}\right)+s_{z}^{2} n_{e}^{2}\left(n^{2}-n_{o}^{2}\right)\right]=0
$$

- two solutions n_{1}, n_{2} given by

$$
\begin{aligned}
n_{1}^{2} & =n_{o}^{2} \\
\frac{1}{n_{2}^{2}} & =\frac{s_{x}^{2}+s_{y}^{2}}{n_{e}^{2}}+\frac{s_{z}^{2}}{n_{o}^{2}}
\end{aligned}
$$

Propagation in General Direction

- (unit) wave vector direction in spherical coordinates

$$
\vec{s}=\left(\begin{array}{c}
s_{x} \\
s_{y} \\
s_{z}
\end{array}\right)=\left(\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta
\end{array}\right)
$$

- θ : angle between wave vector and optic axis
- ϕ : azimuth angle in plane perpendicular to optic axis

$$
\begin{aligned}
\frac{1}{n_{2}^{2}} & =\frac{\cos ^{2} \theta}{n_{o}^{2}}+\frac{\sin ^{2} \theta}{n_{e}^{2}} \\
n_{2}(\theta) & =\frac{n_{o} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}
\end{aligned}
$$

- take positive root, negative value corresponds to waves propagating in opposite direction

Ordinary and Extraordinary Rays

- from before

$$
\begin{aligned}
\frac{1}{n_{2}^{2}} & =\frac{\cos ^{2} \theta}{n_{o}^{2}}+\frac{\sin ^{2} \theta}{n_{e}^{2}} \\
n_{2}(\theta) & =\frac{n_{o} n_{e}}{\sqrt{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}
\end{aligned}
$$

- n_{2} varies between n_{o} for $\theta=0$ and n_{e} for $\theta=90^{\circ}$
- first solution propagates according to ordinary index of refraction, independent of direction \Rightarrow ordinary beam or ray
- second solution corresponds to extraordinary beam or ray
- index of refraction of extraordinary beam is (in general) not the extraordinary index of refraction

Ordinary Beam

- ordinary beam speed independent of wave vector direction
- for $D_{i}=\epsilon_{i} \vec{E}_{i}=n^{2}\left(\vec{E}_{i}-s_{i}(\vec{E} \cdot \vec{s})\right), i=1 \cdots 3$ to hold for any direction $\vec{s}, \vec{E}_{o} \cdot \vec{s}=0$ and $E_{o, z}=0$
- electric field vector of ordinary beam (with real constant $a_{0} \neq 0$)

$$
\vec{E}_{o}=a_{o}\left(\begin{array}{c}
\sin \phi \\
-\cos \phi \\
0
\end{array}\right)
$$

- ordinary beam is linearly polarized
- \vec{E}_{o} perpendicular to plane formed by
 wave vector \vec{k} and c-axis
- displacement vector $\vec{D}_{o}=n_{o} \vec{E}_{o} \| \vec{E}_{o}$
- Poynting vector $\vec{S}_{o} \| \vec{k}$

Extraordinary Ray

- since $\vec{D}_{e} \cdot \vec{k}=0$ and $\vec{D}_{e} \cdot \vec{D}_{o}=0 \Rightarrow$ unique solution (up to real constant a_{e})

$$
\vec{D}_{e}=a_{e}\left(\begin{array}{c}
\cos \theta \cos \phi \\
\cos \theta \sin \phi \\
-\sin \theta
\end{array}\right)
$$

- since $E_{e} \cdot D_{o}=0, D_{e}=\epsilon \vec{E}_{e}$

$$
\vec{E}_{e}=a\left(\begin{array}{c}
n_{e}^{2} \cos \theta \cos \phi \\
n_{e}^{2} \cos \theta \sin \phi \\
-n_{o}^{2} \sin \theta
\end{array}\right)
$$

- uniaxial medium $\Rightarrow \vec{E}_{o} \cdot \vec{E}_{e}=0$
- however, $\vec{E}_{e} \cdot \vec{k} \neq 0$

Dispersion Angle

- angle between \vec{k} and Poynting vector $\vec{S}=$ angle between \vec{E} and \vec{D} = dispersion angle

$$
\tan \alpha=\frac{\left|\vec{E}_{e} \times \vec{D}_{e}\right|}{\vec{E}_{e} \cdot \vec{D}_{e}}=\frac{\left(n_{e}^{2}-n_{o}^{2}\right) \tan \theta}{n_{e}^{2}+n_{o}^{2} \tan ^{2} \theta}=\frac{\sin 2 \theta}{2} \frac{\left(n_{e}^{2}-n_{o}^{2}\right)}{n_{o}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}
$$

- equivalent expression

$$
\alpha=\theta-\arctan \left(\frac{n_{o}^{2}}{n_{e}^{2}} \tan \theta\right)
$$

- for given \vec{k} in principal axis system, α fully determines direction of energy propagation in uniaxial medium
- for θ approaching $\pi / 2, \alpha=0$
- for $\theta=0, \alpha=0$

Propagation Direction of Extraordinary Beam

- angle θ^{\prime} between Poynting vector \vec{S} and optic axis

$$
\tan \theta^{\prime}=\frac{n_{o}^{2}}{n_{e}^{2}} \tan \theta
$$

- ordinary and extraordinary wave do (in general) not travel at the same speed
- phase difference in radians between the two waves given by

$$
\frac{\omega}{c}\left(n_{2}(\theta) d_{e}-n_{o} d_{o}\right)
$$

- $d_{0, e}$: geometrical distances traveled by ordinary and extraordinary rays

Propagation Along c Axis

- plane wave propagating along c-axis $\Rightarrow \theta=0$
- ordinary and extraordinary beams propagate at same speed $\frac{c}{n_{0}}$
- electric field vectors are perpendicular to c-axis and only depend on azimuth ϕ
- ordinary and extraordinary rays are indistinguishable
- uniaxial medium behaves like an isotropic medium
- example: "c-cut" sapphire windows

Propagation Perpendicular to c Axis

- plane wave propagating perpendicular to c-axis $\Rightarrow \theta=\pi / 2$

$$
\vec{E}_{o}=\left(\begin{array}{c}
\sin \phi \\
-\cos \phi \\
0
\end{array}\right)
$$

- \vec{E}_{o} perpendicular to plane formed by \vec{k} and c-axis
- electric field vector of extraordinary wave

$$
\vec{E}_{e}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

- \vec{E}_{e} parallel to c-axis
- direction of energy propagation of extraordinary wave parallel to \vec{k} since $\vec{E}_{e} \| \vec{D}_{e}$

Phase Delay between Ordinary and Extraordinary Rays

- ordinary and extraordinary wave propagate in same direction
- ordinary ray propagates with speed $\frac{c}{n_{0}}$
- extraordinary beam propagates at different speed $\frac{c}{n_{e}}$
- \vec{E}_{o}, \vec{E}_{e} perpendicular to each other \Rightarrow plane wave with arbitrary polarization can be (coherently) decomposed into components parallel to \vec{E}_{o} and \vec{E}_{e}
- 2 components will travel at different speeds
- (coherently) superposing 2 components after distance $d \Rightarrow$ phase difference between 2 components $\frac{\omega}{c}\left(n_{e}-n_{o}\right) d$ radians
- phase difference \Rightarrow change in polarization state
- basis for constructing linear retarders

Summary: Wave Propagation in Uniaxial Media

- ordinary ray propagates like in an isotropic medium with index n_{0}
- extraordinary ray sees direction-dependent index of refraction

$$
n_{2}(\theta)=\frac{n_{0} n_{e}}{\sqrt{n_{0}^{2} \sin ^{2} \theta+n_{e}^{2} \cos ^{2} \theta}}
$$

n_{2} direction-dependent index of refraction of the extraordinary ray
n_{0} ordinary index of refraction
n_{e} extraordinary index of refraction
θ angle between extraordinary wave vector and optic axis

- extraordinary ray is not parallel to its wave vector
- angle between the two is dispersion angle

$$
\tan \alpha=\frac{\left(n_{e}^{2}-n_{o}^{2}\right) \tan \theta}{n_{e}^{2}+n_{o}^{2} \tan ^{2} \theta}
$$

Reflection and Transmission at Uniaxial Interfaces

General case

- from isotropic medium $\left(n_{l}\right)$ into uniaxial medium $\left(n_{0}, n_{e}\right)$
- θ_{l} : angle between surface normal and \vec{k}_{l} for incoming beam
- $\theta_{1,2}$: angles between surface normal and wave vectors of (refracted) ordinary wave \vec{k}_{1} and extraordinary wave \vec{k}_{2}
- phase matching at interface requires

$$
\vec{k}_{I} \cdot \vec{x}=\vec{k}_{1} \cdot \vec{x}=\vec{k}_{2} \cdot \vec{x}
$$

- \vec{x} : position vector of a point on interface surface

$$
n_{l} \sin \theta_{l}=n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

- $n_{1}=n_{0}$: index of refraction of ordinary wave
- n_{2} : index of refraction of extraordinary wave

Ordinary and Extraordinary Rays

- ordinary wave \Rightarrow Snell's law

$$
\sin \theta_{1}=\frac{n_{l}}{n_{1}} \sin \theta_{l}
$$

- law for extraordinary ray not trivial

$$
n_{l} \sin \theta_{l}=n_{2}\left(\theta\left(\theta_{2}\right)\right) \sin \theta_{2}
$$

- (in general) θ_{2} and therefore \vec{k}_{2} will not determine direction of extraordinary beam since Poynting vector (in general) not parallel to wave vector
- solve for $\theta_{2} \Rightarrow$ determine direction of Poynting vector
- special cases reduce complexity of equations

Extraordinary Ray Refraction for General Case

$$
\cot \theta_{2}=\frac{c_{x} c_{y}\left(n_{o}^{2}-n_{e}^{2}\right) \pm n_{o}}{\frac{n_{o}^{2} n_{e}^{2}+n_{e}^{2} c_{x}^{2}\left(n_{e}^{2}-n_{o}^{2}\right)}{\sin ^{2} \theta_{l}}-n_{o}^{2}-\left(n_{e}^{2}-n_{o}^{2}\right)\left(c_{x}^{2}+c_{y}^{2}\right)}
$$

propagation vector of extraordinary ray

$$
\begin{aligned}
& S_{x}=\cos \alpha \cos \theta_{2}+\frac{\sin \alpha \sin \theta_{2}\left(c_{x} \sin \theta_{2}-c_{y} \cos \theta_{2}\right)}{\sqrt{c_{z}^{2}+\left(c_{x} \sin \theta_{2}-c_{y} \cos \theta_{2}\right)^{2}}} \\
& S_{y}=\cos \alpha \sin \theta_{2}-\frac{\sin \alpha \cos \theta_{2}\left(c_{x} \sin \theta_{2}-c_{y} \cos \theta_{2}\right)}{\sqrt{c_{z}^{2}+\left(c_{x} \sin \theta_{2}-c_{y} \cos \theta_{2}\right)^{2}}} \\
& S_{z}=c_{z} * \frac{\sin \alpha}{\sqrt{c_{z}^{2}+\left(c_{x} \sin \theta_{2}-c_{y} \cos \theta_{2}\right)^{2}}}
\end{aligned}
$$

\vec{c} optic axis vector $\vec{c}=\left(c_{x}, c_{y}, c_{z}\right)^{T}$
\vec{S} propagation direction of extraordinary ray $\vec{S}=\left(S_{x}, S_{y}, S_{z}\right)^{T}$
θ_{l} angle between \vec{k}_{l} and interface normal
θ_{2} angle between \vec{k}_{e} and interface normal
α dispersion angle

Normal Incidence

- normal incidence $\Rightarrow \theta_{l}=0, \theta_{1}=\theta_{2}=0$
- choose plane formed by surface normal and crystal axis
- both wave vectors and ordinary ray not refracted
- extraordinary ray refracted by dispersion angle α

$$
\alpha=\theta-\arctan \left(\frac{n_{o}^{2}}{n_{e}^{2}} \tan \theta\right)
$$

Optic Axis in Plane of Incidence and Plane of Interface

- $\theta+\theta_{2}=\pi / 2 \Rightarrow \cot \theta_{2}=\frac{n_{e}}{n_{o}} \cot \theta_{1}$
- θ_{1} : angle between surface normal and ordinary ray or wave vector $\left(\sin \theta_{I}=n_{o} \sin \theta_{1}\right)$
- extraordinary wave sees equivalent refractive index

$$
n_{y}=\sqrt{n_{e}^{2}+\sin ^{2} \theta_{l}\left(1-\frac{n_{e}^{2}}{n_{o}^{2}}\right)}
$$

- direction of Poynting vector

$$
\begin{aligned}
& S_{x}=\cos \left(\theta_{2}+\alpha\right) \\
& S_{y}=\sin \left(\theta_{2}+\alpha\right) \\
& S_{z}=0
\end{aligned}
$$

- determine dispersion angle α and add to θ_{2} to obtain direction of extraordinary ray

Optic Axis Perpendicular to Plane of Incidence

- c-axis perpendicular to plane of incidence $\Rightarrow \theta=\frac{\pi}{2}, n_{2}\left(\frac{\pi}{2}\right)=n_{e}$

$$
n_{l} \sin \theta_{l}=n_{e} \sin \theta_{2}
$$

- extraordinary wave vector obeys Snell's law with index n_{e}
- $\theta=\frac{\pi}{2} \Rightarrow$ dispersion angle $\alpha=0$
- Poynting vector \|| wave vector, extraordinary beam itself obeys Snell's law with n_{e}
- double refraction only for non-normal incidence

Interface from Uniaxial Medium to Isotropic Medium

- ordinary ray follows Snell's law
- transmitted extraordinary wave vector and ray coincide
- exit of extraordinary wave on interface defined by extraordinary ray
- extraordinary wave vector follows Snell's law with index $n_{2}(\theta)$

$$
n_{l} \sin \theta_{E}=n_{2} \sin \theta_{U}
$$

- n_{l} index of isotropic medium
- θ_{E} angle of wave/ray vector with surface normal in isotropic medium
- n_{2}, θ_{U} corresponding values for extraordinary wave vector in uniaxial medium
- n_{2} is function of θ normally already known from beam propagation in uniaxial medium
- θ_{u} is function of geometry of interface,
- plane-parallel slab of uniaxial medium, $\theta_{E}=\theta_{l}$, (in general) extraordinary beam displaced on exit

Total Internal Reflection (TIR)

- TIR also in anisotropic media
- $n_{o} \neq n_{e} \Rightarrow$ one beam may be totally reflected while other is transmitted
- principal of most crystal polarizers
- example: calcite prism, normal incidence, optic axis parallel to first interface, exit face inclined by 40°
- \Rightarrow extraordinary ray not refracted, two rays propagate according to indices n_{0}, n_{e}
- at second interface rays (and wave vectors) at 40° to surface
- $632.8 \mathrm{~nm}: n_{o}=1.6558, n_{e}=1.4852$
- requirement for total reflection $\frac{n_{u}}{n_{l}} \sin \theta_{u}>1$
- with $n_{l}=1 \Rightarrow$ extraordinary ray transmitted, ordinary ray undergoes TIR

