Lecture 3: Electromagnetic Waves in Isotropic Media 2

Outline

- Fresnel Equations
(2) Brewster Angle
© Total Internal Reflection

Fresnel Equations

Monochromatic Wave at Interface (from previous lecture)

- using $\vec{H}_{0}^{i, r, t}=\frac{c}{\omega} \vec{k}^{i, r, t} \times \vec{E}_{0}^{i, r, t}$
- tangential components of \vec{E}_{0} and \vec{H}_{0} are continuous:

$$
\begin{array}{r}
\left(\vec{E}_{0}^{i}+\vec{E}_{0}^{r}-\vec{E}_{0}^{t}\right) \times \vec{n}=0 \\
\left(\vec{k}^{i} \times \vec{E}_{0}^{i}+\vec{k}^{r} \times \vec{E}_{0}^{r}-\vec{k}^{t} \times \vec{E}_{0}^{t}\right) \times \vec{n}=0
\end{array}
$$

Electric Field Perpendicular to Plane of Incidence

- electric field also perpendicular to interface normal \vec{n}
- $\left(\vec{E}_{0}^{i}+\vec{E}_{0}^{r}-\vec{E}_{0}^{t}\right) \times \vec{n}=0$ becomes (with $E_{0}^{i, r, t}$ instead of $\vec{E}_{0}^{i, r, t}$)

$$
E_{0}^{i}+E_{0}^{r}-E_{0}^{t}=0
$$

- $\left(\vec{k}^{i} \times \vec{E}_{0}^{i}+\vec{k}^{r} \times \vec{E}_{0}^{r}-\vec{k}^{t} \times \vec{E}_{0}^{t}\right) \times \vec{n}=0$ becomes

$$
\tilde{n}_{1} E_{0}^{i} \cos \theta_{i}-\tilde{n}_{1} E_{0}^{r} \cos \theta_{r}-\tilde{n}_{2} E_{0}^{t} \cos \theta_{t}=0
$$

Electric Field Perpendicular to Plane of Incidence

- from previous slide:

$$
\tilde{n}_{1} E_{0}^{i} \cos \theta_{i}-\tilde{n}_{1} E_{0}^{r} \cos \theta_{r}-\tilde{n}_{2} E_{0}^{t} \cos \theta_{t}=0
$$

- $\vec{k}^{i, r, t} \times \vec{E}_{0}^{i, r, t}$ in direction of $\vec{H}_{0}^{i, r, t}$
- Poynting vector in same direction as wave vector \Rightarrow flip sign of tangential component of magnetic field vector of reflected wave
- reason for minus sign for reflected component in above equation
- $\cos \theta_{i, r, t}$ terms from projecting $\vec{k}^{i, r, t} \times \vec{E}_{0}^{i, r, t}$ onto interface plane

Electric Field Perpendicular to Plane of Incidence

- $\theta_{r}=\theta_{i}$
- ratios of reflected and transmitted to incident wave amplitudes

$$
\begin{aligned}
& r_{s}=\frac{E_{0}^{r}}{E_{0}^{\prime}}=\frac{\tilde{n}_{1} \cos \theta_{i}-\tilde{n}_{2} \cos \theta_{t}}{\tilde{n}_{1} \cos \theta_{i}+\tilde{n}_{2} \cos \theta_{t}} \\
& t_{s}=\frac{E_{0}^{t}}{E_{0}^{\prime}}=\frac{2 \tilde{n}_{1} \cos \theta_{i}}{\tilde{n}_{1} \cos \theta_{i}+\tilde{n}_{2} \cos \theta_{t}}
\end{aligned}
$$

Electric Field in Plane of Incidence

- $\left(\vec{E}_{0}^{i}+\vec{E}_{0}^{r}-\vec{E}_{0}^{t}\right) \times \vec{n}=0$ becomes

$$
E_{0}^{i} \cos \theta_{i}-E_{0}^{r} \cos \theta_{r}-E_{0}^{t} \cos \theta_{t}=0
$$

- flip tangential component of elecric field vector to align Poynting and wave vectors
- $\cos \theta_{i, r, t}$ terms are due to the cross products $\vec{E}_{0}^{i, r, t} \times \vec{n}$

Electric Field in Plane of Incidence

- $\left(\vec{k}^{i} \times \vec{E}_{0}^{i}+\vec{k}^{r} \times \vec{E}_{0}^{r}-\vec{k}^{t} \times \vec{E}_{0}^{t}\right) \times \vec{n}=0$ becomes

$$
\tilde{n}_{1} E_{0}^{i}+\tilde{n}_{1} E_{0}^{r}-\tilde{n}_{2} E_{0}^{t}=0
$$

- $\vec{k}^{i, r, t} \times \vec{E}_{0}^{i, r, t}$ is in direction of $\vec{H}_{0}^{i, r, t}$

Electric Field in Plane of Incidence

- ratios of reflected and transmitted to incident wave amplitudes

$$
\begin{aligned}
& r_{p}=\frac{E_{0}^{r}}{E_{0}^{\prime}}=\frac{\tilde{n}_{2} \cos \theta_{i}-\tilde{n}_{1} \cos \theta_{t}}{\tilde{n}_{2} \cos \theta_{i}+\tilde{n}_{1} \cos \theta_{t}} \\
& t_{p}=\frac{E_{0}^{t}}{E_{0}^{\prime}}=\frac{2 \tilde{n}_{1} \cos \theta_{i}}{\tilde{n}_{2} \cos \theta_{i}+\tilde{n}_{1} \cos \theta_{t}}
\end{aligned}
$$

Summary of Fresnel Equations

- eliminate θ_{t} using Snell's law $\tilde{n}_{2} \cos \theta_{t}=\sqrt{\tilde{n}_{2}^{2}-\tilde{n}_{1}^{2} \sin ^{2} \theta_{i}}$
- electric field amplitude transmission $t_{s, p}$, reflection $r_{s, p}$

$$
\begin{aligned}
& t_{s}=\frac{2 \tilde{n}_{1} \cos \theta_{i}}{\tilde{n}_{1} \cos \theta_{i}+\sqrt{\tilde{n}_{2}^{2}-\tilde{n}_{1}^{2} \sin ^{2} \theta_{i}}} \\
& t_{p}=\frac{2 \tilde{n}_{1} \tilde{n}_{2} \cos \theta_{i}}{\tilde{n}_{2}^{2} \cos \theta_{i}+\tilde{n}_{1} \sqrt{\tilde{n}_{2}^{2}-\tilde{n}_{1}^{2} \sin ^{2} \theta_{i}}} \\
& r_{s}=\frac{\tilde{n}_{1} \cos \theta_{i}-\sqrt{\tilde{n}_{2}^{2}-\tilde{n}_{1}^{2} \sin ^{2} \theta_{i}}}{\tilde{n}_{1} \cos \theta_{i}+\sqrt{\tilde{n}_{2}^{2}-\tilde{n}_{1}^{2} \sin ^{2} \theta_{i}}} \\
& r_{p}=\frac{\tilde{n}_{2}^{2} \cos \theta_{i}-\tilde{n}_{1} \sqrt{\tilde{n}_{2}^{2}-\tilde{n}_{1}^{2} \sin ^{2} \theta_{i}}}{\tilde{n}_{2}^{2} \cos \theta_{i}+\tilde{n}_{1} \sqrt{\tilde{n}_{2}^{2}-\tilde{n}_{1}^{2} \sin ^{2} \theta_{i}}}
\end{aligned}
$$

Consequences of Fresnel Equations

- complex index of refraction $\Rightarrow t_{s}, t_{p}, r_{s}, r_{p}$ (generally) complex
- real indices \Rightarrow argument of square root in Snell's law $\tilde{n}_{2} \cos \theta_{t}=\sqrt{\tilde{n}_{2}^{2}-\tilde{n}_{1}^{2} \sin ^{2} \theta_{i}}$ can still be negative \Rightarrow complex t_{s}, t_{p}, r_{s}, r_{p}
- real indices, arguments of square roots positive (e.g. dielectric without total internal reflection)
- therefore $t_{s, p} \geq 0$, real \Rightarrow incident and transmitted waves will have same phase
- therefore $r_{s, p}$ real, but become negative when $n_{2}>n_{1} \Rightarrow$ negative ratios indicate phase change by 180° on reflection by medium with larger index of refraction

Other Form of Fresnel Equations

- using trigonometric identities

$$
\begin{array}{lc}
t_{s}= & \frac{2 \sin \theta_{t} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{i}\right)} \\
t_{p}= & \frac{2 \sin \theta_{t} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right) \cos \left(\theta_{i}-\theta_{t}\right)} \\
r_{s}= & -\frac{\sin \left(\theta_{i}-\theta_{t}\right)}{\sin \left(\theta_{i}+\theta_{t}\right)} \\
r_{p}= & \frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)}
\end{array}
$$

- refractive indices "hidden" in angle of transmitted wave, θ_{t}
- can always rework Fresnel equations such that only ratio of refractive indices appears
- \Rightarrow Fresnel equations do not depend on absolute values of indices
- can arbitrarily set index of air to 1 ; then only use indices of media measured relative to air

Relative Amplitudes for Arbitrary Polarization

- electric field vector of incident wave \vec{E}_{0}^{i}, length E_{0}^{i}, at angle α to plane of incidence
- decompose into 2 components: parallel and perpendicular to interface

$$
E_{0, p}^{i}=E_{0}^{i} \cos \alpha, \quad E_{0, s}^{i}=E_{0}^{i} \sin \alpha
$$

- use Fresnel equations to obtain corresponding (complex) amplitudes of reflected and transmitted waves

$$
E_{0, p}^{r, t}=\left(r_{p}, t_{p}\right) E_{0}^{j} \cos \alpha, \quad E_{0, s}^{r, t}=\left(r_{s}, t_{s}\right) E_{0}^{j} \sin \alpha
$$

Reflectivity

- Fresnel equations apply to electric field amplitude
- need to determine equations for intensity of waves
- time-averaged Poynting vector $\langle\vec{S}\rangle=\frac{c}{8 \pi} \frac{|\tilde{n}|}{\mu}\left|E_{0}\right|^{2} \frac{\vec{k}}{|\vec{k}|}$
- absolute value of complex index of refraction enters
- energy along wave vector and not along interface normal
- each wave propagates in different direction \Rightarrow consider energy of each wave passing through unit surface area on interface
- does not matter for reflected wave \Rightarrow ratio of reflected and incident intensities is independent of these two effects
- relative intensity of reflected wave (reflectivity)

$$
R=\frac{\left|E_{0}^{r}\right|^{2}}{\left|E_{0}^{i}\right|^{2}}
$$

Transmissivity

- transmitted intensity: multiplying amplitude squared ratios with
- ratios of indices of refraction
- projected area on interface
- relative intensity of transmitted wave (transmissivity)

$$
T=\frac{\left|\tilde{n}_{2}\right| \cos \theta_{t}\left|E_{0}^{t}\right|^{2}}{\left|\tilde{n}_{1}\right| \cos \theta_{i}\left|E_{0}^{i}\right|^{2}}
$$

- arbitrarily polarized light with \vec{E}_{0}^{i} at angle α to plane of incidence

$$
\begin{aligned}
R & =\left|r_{p}\right|^{2} \cos ^{2} \alpha+\left|r_{s}\right|^{2} \sin ^{2} \alpha \\
T & =\frac{\left|\tilde{n}_{2}\right| \cos \theta_{t}}{\left|\tilde{n}_{1}\right| \cos \theta_{i}}\left(\left|t_{p}\right|^{2} \cos ^{2} \alpha+\left|t_{s}\right|^{2} \sin ^{2} \alpha\right)
\end{aligned}
$$

- $R+T=1$ for dielectrics, not for conducting, absorbing materials

Brewster Angle

- $r_{p}=\frac{\tan \left(\theta_{i}-\theta_{t}\right)}{\tan \left(\theta_{i}+\theta_{t}\right)}=0$ when $\theta_{i}+\theta_{t}=\frac{\pi}{2}$
- corresponds to Brewster angle of incidence of $\tan \theta_{B}=\frac{n_{2}}{n_{1}}$
- occurs when reflected wave is perpendicular to transmitted wave
- reflected light is completely s-polarized
- transmitted light is moderately polarized

Total Internal Reflection (TIR)

- Snell's law: $\sin \theta_{t}=\frac{n_{1}}{n_{2}} \sin \theta_{i}$
- wave from high-index medium into lower index medium (e.g. glass to air): $n_{1} / n_{2}>1$
- right-hand side >1 for $\sin \theta_{i}>\frac{n_{2}}{n_{1}}$
- all light is reflected in high-index medium \Rightarrow total internal reflection
- transmitted wave has complex phase angle \Rightarrow damped wave along interface

Phase Change on Total Internal Reflection (TIR)

- TIR induces phase change that depends on polarization
- complex ratios: $r_{s, p}=\left|r_{s, p}\right| e^{i \delta_{s, p}}$
- phase change $\delta=\delta_{s}-\delta_{p}$

$$
\tan \frac{\delta}{2}=\frac{\cos \theta_{i} \sqrt{\sin ^{2} \theta_{i}-\left(\frac{n_{2}}{n_{1}}\right)^{2}}}{\sin ^{2} \theta_{i}}
$$

- relation valid between critical angle and grazing incidence

- for angles up to critical angle and grazing incidence, phase difference is zero

