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Fundamentals of Polarized Light

Electromagnetic Waves in Matter
Maxwell’s equations⇒ electromagnetic waves
optics: interaction of electromagnetic waves with matter as
described by material equations
polarization of electromagnetic waves are integral part of optics

Maxwell’s Equations in Matter

∇ · ~D = 4πρ

∇× ~H − 1
c
∂~D
∂t

=
4π
c
~j

∇× ~E +
1
c
∂~B
∂t

= 0

∇ · ~B = 0

Symbols
~D electric displacement
ρ electric charge density
~H magnetic field
c speed of light in vacuum
~j electric current density
~E electric field
~B magnetic induction
t time
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Linear Material Equations

~D = ε~E
~B = µ~H
~j = σ~E

Symbols
ε dielectric constant
µ magnetic permeability
σ electrical conductivity

Isotropic and Anisotropic Media
isotropic media: ε and µ are scalars
anisotropic media: ε and µ are tensors of rank 2
isotropy of medium broken by

anisotropy of material itself (e.g. crystals)
external fields (e.g. Kerr effect)
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Wave Equation in Matter
for most materials: ρ = 0, µ = 1
combine Maxwell, material equations⇒ differential equations for
damped (vector) wave

∇2~E − ε

c2
∂2~E
∂t2 −

4πσ
c2

∂~E
∂t

= 0

∇2~H − ε

c2
∂2~H
∂t2 −

4πσ
c2

∂~H
∂t

= 0

damping controlled by conductivity σ
~E and ~H are equivalent⇒ sufficient to consider ~E
interaction with matter almost always through ~E
but: at interfaces, boundary conditions for ~H are crucial
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Plane-Wave Solutions

Plane Vector Wave ansatz ~E = ~E0ei(~k ·~x−ωt)

~k spatially and temporally constant wave vector
~k normal to surfaces of constant phase
|~k | wave number
~x spatial location
ω angular frequency (2π× frequency)
t time

~E0 (generally complex) vector independent of time and space

could also use ~E = ~E0e−i(~k ·~x−ωt)

damping if ~k is complex
real electric field vector given by real part of ~E
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Complex Index of Refraction
temporal derivatives⇒ Helmholtz equation

∇2~E +
ω2

c2

(
ε+ i

4πσ
ω

)
~E = 0

dispersion relation between ~k and ω

~k · ~k =
ω2

c2

(
ε+ i

4πσ
ω

)
complex index of refraction

ñ2 = ε+ i
4πσ
ω

, ~k · ~k =
ω2

c2 ñ2

split into real (n: index of refraction) and imaginary parts (k :
extinction coefficient)

ñ = n + ik
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Transverse Waves

plane-wave solution must also fulfill Maxwell’s equations

~E0 · ~k = 0, ~H0 · ~k = 0, ~H0 = ñ
~k

|~k |
× ~E0

isotropic media: electric, magnetic field vectors normal to wave
vector⇒ transverse waves
~E0, ~H0, and ~k orthogonal to each other, right-handed vector-triple
conductive medium⇒ complex ñ, ~E0 and ~H0 out of phase
~E0 and ~H0 have constant relationship⇒ consider only ~E
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Energy Propagation in Isotropic Media
Poynting vector

~S =
c

4π

(
~E × ~H

)
|~S|: energy through unit area perpendicular to ~S per unit time
direction of ~S is direction of energy flow
time-averaged Poynting vector given by〈

~S
〉

=
c

8π
Re
(
~E0 × ~H∗0

)
Re real part of complex expression
∗ complex conjugate
〈.〉 time average

energy flow parallel to wave vector (in isotropic media)

〈
~S
〉

=
c

8π
|ñ| |E0|2

~k

|~k |

Christoph U. Keller, C.U.Keller@astro-uu.nl Lecture 2: Electromagnetic Waves in Isotropic Media 1 8



Energy Propagation in Isotropic Media
Poynting vector

~S =
c

4π

(
~E × ~H

)
|~S|: energy through unit area perpendicular to ~S per unit time
direction of ~S is direction of energy flow
time-averaged Poynting vector given by〈

~S
〉

=
c

8π
Re
(
~E0 × ~H∗0

)
Re real part of complex expression
∗ complex conjugate
〈.〉 time average

energy flow parallel to wave vector (in isotropic media)

〈
~S
〉

=
c

8π
|ñ| |E0|2

~k

|~k |

Christoph U. Keller, C.U.Keller@astro-uu.nl Lecture 2: Electromagnetic Waves in Isotropic Media 1 8



Energy Propagation in Isotropic Media
Poynting vector

~S =
c

4π

(
~E × ~H

)
|~S|: energy through unit area perpendicular to ~S per unit time
direction of ~S is direction of energy flow
time-averaged Poynting vector given by〈

~S
〉

=
c

8π
Re
(
~E0 × ~H∗0

)
Re real part of complex expression
∗ complex conjugate
〈.〉 time average

energy flow parallel to wave vector (in isotropic media)

〈
~S
〉

=
c

8π
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Quasi-Monochromatic Light
monochromatic light: purely theoretical concept
monochromatic light wave always fully polarized
real life: light includes range of wavelengths⇒
quasi-monochromatic light
quasi-monochromatic: superposition of mutually incoherent
monochromatic light beams whose wavelengths vary in narrow
range δλ around central wavelength λ0

δλ

λ
� 1

measurement of quasi-monochromatic light: integral over
measurement time tm
amplitude, phase (slow) functions of time for given spatial location
slow: variations occur on time scales much longer than the mean
period of the wave
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Polarization of Quasi-Monochromatic Light

electric field vector for quasi-monochromatic plane wave is sum of
electric field vectors of all monochromatic beams

~E (t) = ~E0 (t) ei(~k ·~x−ωt)

can write this way because δλ� λ0

measured intensity of quasi-monochromatic beam〈
~Ex ~E∗x

〉
+
〈
~Ey ~E∗y

〉
= lim

tm−>∞

1
tm

∫ tm/2

−tm/2

~Ex (t)~E∗x (t) + ~Ey (t)~E∗y (t)dt

〈· · · 〉: averaging over measurement time tm
measured intensity independent of time
quasi-monochromatic: frequency-dependent material properties
(e.g. index of refraction) are constant within ∆λ
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Polychromatic Light or White Light

wavelength range comparable wavelength ( δλλ ∼ 1)
incoherent sum of quasi-monochromatic beams that have large
variations in wavelength
cannot write electric field vector in a plane-wave form
must take into account frequency-dependent material
characteristics
intensity of polychromatic light is given by sum of intensities of
constituting quasi-monochromatic beams
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Electromagnetic Waves Across Interfaces

Fields at Interfaces
classical optics due to interfaces between 2 different media
from Maxwell’s equations in integral form at interface from
medium 1 to medium 2(

~D2 − ~D1

)
· ~n = 0(

~B2 − ~B1

)
· ~n = 0(

~E2 − ~E1

)
× ~n = 0(

~H2 − ~H1

)
× ~n = 0

~n normal on interface, points from medium 1 to medium 2

normal components of ~D and ~B are continuous across interface
tangential components of ~E and ~H are continuous across interface
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Plane of Incidence

plane wave onto interface
incident (i ), reflected (r ), and
transmitted (t ) waves

~E i,r ,t = ~E i,r ,t
0 ei(~k i,r,t ·~x−ωt)

~H i,r ,t =
c
ω
~k i,r ,t × ~E i,r ,t

interface normal ~n ‖ z-axis

spatial, temporal behavior at interface the same for all 3 waves

(~k i · ~x)z=0 = (~k r · ~x)z=0 = (~k t · ~x)z=0

valid for all ~x in interface⇒ all 3 wave vectors in one plane, plane
of incidence
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Plane of Incidence

plane wave onto interface
incident (i ), reflected (r ), and
transmitted (t ) waves

~E i,r ,t = ~E i,r ,t
0 ei(~k i,r,t ·~x−ωt)
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c
ω
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Snell’s Law

spatial, temporal behavior the
same for all three waves

(~k i ·~x)z=0 = (~k r ·~x)z=0 = (~k t ·~x)z=0∣∣∣~k ∣∣∣ = ω
c ñ

ω, c the same for all 3 waves
Snell’s law

ñ1 sin θi = ñ1 sin θr = ñ2 sin θt

Christoph U. Keller, C.U.Keller@astro-uu.nl Lecture 2: Electromagnetic Waves in Isotropic Media 1 14



Snell’s Law

spatial, temporal behavior the
same for all three waves

(~k i ·~x)z=0 = (~k r ·~x)z=0 = (~k t ·~x)z=0∣∣∣~k ∣∣∣ = ω
c ñ
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Monochromatic Wave at Interface

~H i,r ,t
0 =

c
ω
~k i,r ,t × ~E i,r ,t

0 , ~Bi,r ,t
0 =

c
ω
~k i,r ,t × ~E i,r ,t

0

boundary conditions for monochromatic plane wave:

(
ñ2

1
~E i

0 + ñ2
1
~E r

0 − ñ2
2
~E t

0

)
· ~n = 0(

~k i × ~E i
0 + ~k r × ~E r

0 − ~k t × ~E t
0

)
· ~n = 0(

~E i
0 + ~E r

0 − ~E t
0

)
× ~n = 0(

~k i × ~E i
0 + ~k r × ~E r

0 − ~k t × ~E t
0

)
× ~n = 0

4 equations are not independent
only need to consider last two equations (tangential components
of ~E0 and ~H0 are continuous)
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Two Special Cases

TM, p TE, s

1 electric field parallel to plane of incidence⇒ magnetic field is
transverse to plane of incidence (TM)

2 electric field particular (German: senkrecht) or transverse to plane
of incidence (TE)

general solution as (coherent) superposition of two cases
choose direction of magnetic field vector such that Poynting vector
parallel, same direction as corresponding wave vector
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