Lecture 2: Electromagnetic Waves in Isotropic Media 1

Outline

- Electromagnetic Waves
(2) Quasi-Monochromatic Light
(Electromagnetic Waves Across Interfaces
(- Snell's law

Fundamentals of Polarized Light

Electromagnetic Waves in Matter

- Maxwell's equations \Rightarrow electromagnetic waves
optics: interaction of electromagnetic waves with matter as
described by material equations
- nolarization of alectromacnotic waves are integral part of optics

Fundamentals of Polarized Light

Electromagnetic Waves in Matter

- Maxwell's equations \Rightarrow electromagnetic waves
- optics: interaction of electromagnetic waves with matter as described by material equations

Fundamentals of Polarized Light

Electromagnetic Waves in Matter

- Maxwell's equations \Rightarrow electromagnetic waves
- optics: interaction of electromagnetic waves with matter as described by material equations
- polarization of electromagnetic waves are integral part of optics

Fundamentals of Polarized Light

Electromagnetic Waves in Matter

- Maxwell's equations \Rightarrow electromagnetic waves
- optics: interaction of electromagnetic waves with matter as described by material equations
- polarization of electromagnetic waves are integral part of optics

Maxwell's Equations in Matter

$$
\begin{aligned}
\nabla \cdot \vec{D} & =4 \pi \rho \\
\nabla \times \vec{H}-\frac{1}{c} \frac{\partial \vec{D}}{\partial t} & =\frac{4 \pi}{c} \vec{j} \\
\nabla \times \vec{E}+\frac{1}{c} \frac{\partial \vec{B}}{\partial t} & =0 \\
\nabla \cdot \vec{B} & =0
\end{aligned}
$$

Symbols

\vec{D} electric displacement
ρ electric charge density magnetic field
c speed of light in vacuum electric current density electric field
magnetic induction
t time

Linear Material Equations

$$
\begin{gathered}
\vec{D}=\epsilon \vec{E} \\
\vec{B}=\mu \vec{H} \\
\vec{j}=\sigma \vec{E}
\end{gathered}
$$

Symbols

ϵ dielectric constant
μ magnetic permeability σ electrical conductivity

Linear Material Equations

$$
\begin{gathered}
\vec{D}=\epsilon \vec{E} \\
\vec{B}=\mu \vec{H} \\
\vec{j}=\sigma \vec{E}
\end{gathered}
$$

Symbols

ϵ dielectric constant
μ magnetic permeability
σ electrical conductivity

Isotropic and Anisotropic Media

- isotropic media: ϵ and μ are scalars
- anisotropic media: ϵ and μ are tensors of rank 2
- isotropy of medium broken by
- anisotropy of material itself (e.g. crystals)
- external fields (e.g. Kerr effect)

Wave Equation in Matter

- for most materials: $\rho=0, \mu=1$
- combine Maxwell, material equations \Rightarrow differential equations for damped (vector) wave
- damping controlled by conductivity σ - \vec{E} and \vec{H} are equivalent \Rightarrow sufficient to consider \vec{E}

Wave Equation in Matter

- for most materials: $\rho=0, \mu=1$
- combine Maxwell, material equations \Rightarrow differential equations for damped (vector) wave

$$
\begin{aligned}
& \nabla^{2} \vec{E}-\frac{\epsilon}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}-\frac{4 \pi \sigma}{c^{2}} \frac{\partial \vec{E}}{\partial t}=0 \\
& \nabla^{2} \vec{H}-\frac{\epsilon}{c^{2}} \frac{\partial^{2} \vec{H}}{\partial t^{2}}-\frac{4 \pi \sigma}{c^{2}} \frac{\partial \vec{H}}{\partial t}=0
\end{aligned}
$$

Wave Equation in Matter

- combine Maxwell, material equations \Rightarrow differential equations for damped (vector) wave

$$
\begin{aligned}
& \nabla^{2} \vec{E}-\frac{\epsilon}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}-\frac{4 \pi \sigma}{c^{2}} \frac{\partial \vec{E}}{\partial t}=0 \\
& \nabla^{2} \vec{H}-\frac{\epsilon}{c^{2}} \frac{\partial^{2} \vec{H}}{\partial t^{2}}-\frac{4 \pi \sigma}{c^{2}} \frac{\partial \vec{H}}{\partial t}=0
\end{aligned}
$$

- damping controlled by conductivity σ
- \vec{E} and \vec{H} are equivalent \Rightarrow sufficient to consider \vec{E}

Wave Equation in Matter

- combine Maxwell, material equations \Rightarrow differential equations for damped (vector) wave

$$
\begin{aligned}
& \nabla^{2} \vec{E}-\frac{\epsilon}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}-\frac{4 \pi \sigma}{c^{2}} \frac{\partial \vec{E}}{\partial t}=0 \\
& \nabla^{2} \vec{H}-\frac{\epsilon}{c^{2}} \frac{\partial^{2} \vec{H}}{\partial t^{2}}-\frac{4 \pi \sigma}{c^{2}} \frac{\partial \vec{H}}{\partial t}=0
\end{aligned}
$$

- damping controlled by conductivity σ
- \vec{E} and \vec{H} are equivalent \Rightarrow sufficient to consider \vec{E}
- interaction with matter almost always through \vec{E}
- but: at interfaces, boundary conditions for \vec{H} are crucial

Plane-Wave Solutions

- Plane Vector Wave ansatz $\vec{E}=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$
\vec{k} spatially and temporally constant wave vector
\vec{k} normal to surfaces of constant phase
$|\vec{k}|$ wave number
\vec{x} spatial location
ω angular frequency ($2 \pi \times$ frequency)
t time
\vec{E}_{0} (generally complex) vector independent of time and space

Plane-Wave Solutions

- Plane Vector Wave ansatz $\vec{E}=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$
\vec{k} spatially and temporally constant wave vector
\vec{k} normal to surfaces of constant phase
$|\vec{k}|$ wave number
\vec{x} spatial location
ω angular frequency ($2 \pi \times$ frequency)
t time
\vec{E}_{0} (generally complex) vector independent of time and space
- could also use $\vec{E}=\vec{E}_{0} e^{-i(\vec{k} \cdot \vec{x}-\omega t)}$

Plane-Wave Solutions

- Plane Vector Wave ansatz $\vec{E}=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$
\vec{k} spatially and temporally constant wave vector
\vec{k} normal to surfaces of constant phase
$|\vec{k}|$ wave number
\vec{x} spatial location
ω angular frequency ($2 \pi \times$ frequency)
t time
\vec{E}_{0} (generally complex) vector independent of time and space
- could also use $\vec{E}=\vec{E}_{0} e^{-i(\vec{k} \cdot \vec{x}-\omega t)}$
- damping if \vec{k} is complex

Plane-Wave Solutions

- Plane Vector Wave ansatz $\vec{E}=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$
\vec{k} spatially and temporally constant wave vector
\vec{k} normal to surfaces of constant phase
$|\vec{k}|$ wave number
\vec{x} spatial location
ω angular frequency ($2 \pi \times$ frequency)
t time
\vec{E}_{0} (generally complex) vector independent of time and space
- could also use $\vec{E}=\vec{E}_{0} e^{-i(\vec{k} \cdot \vec{x}-\omega t)}$
- damping if \vec{k} is complex
- real electric field vector given by real part of \vec{E}

Complex Index of Refraction

- temporal derivatives \Rightarrow Helmholtz equation

$$
\nabla^{2} \vec{E}+\frac{\omega^{2}}{c^{2}}\left(\epsilon+i \frac{4 \pi \sigma}{\omega}\right) \vec{E}=0
$$

Complex Index of Refraction

- temporal derivatives \Rightarrow Helmholtz equation

$$
\nabla^{2} \vec{E}+\frac{\omega^{2}}{c^{2}}\left(\epsilon+i \frac{4 \pi \sigma}{\omega}\right) \vec{E}=0
$$

- dispersion relation between \vec{k} and ω

$$
\vec{k} \cdot \vec{k}=\frac{\omega^{2}}{c^{2}}\left(\epsilon+i \frac{4 \pi \sigma}{\omega}\right)
$$

Complex Index of Refraction

- temporal derivatives \Rightarrow Helmholtz equation

$$
\nabla^{2} \vec{E}+\frac{\omega^{2}}{c^{2}}\left(\epsilon+i \frac{4 \pi \sigma}{\omega}\right) \vec{E}=0
$$

- dispersion relation between \vec{k} and ω

$$
\vec{k} \cdot \vec{k}=\frac{\omega^{2}}{c^{2}}\left(\epsilon+i \frac{4 \pi \sigma}{\omega}\right)
$$

- complex index of refraction

$$
\tilde{n}^{2}=\epsilon+i \frac{4 \pi \sigma}{\omega}, \vec{k} \cdot \vec{k}=\frac{\omega^{2}}{c^{2}} \tilde{n}^{2}
$$

Complex Index of Refraction

- temporal derivatives \Rightarrow Helmholtz equation

$$
\nabla^{2} \vec{E}+\frac{\omega^{2}}{c^{2}}\left(\epsilon+i \frac{4 \pi \sigma}{\omega}\right) \vec{E}=0
$$

- dispersion relation between \vec{k} and ω

$$
\vec{k} \cdot \vec{k}=\frac{\omega^{2}}{c^{2}}\left(\epsilon+i \frac{4 \pi \sigma}{\omega}\right)
$$

- complex index of refraction

$$
\tilde{n}^{2}=\epsilon+i \frac{4 \pi \sigma}{\omega}, \vec{k} \cdot \vec{k}=\frac{\omega^{2}}{c^{2}} \tilde{n}^{2}
$$

- split into real (n : index of refraction) and imaginary parts (k : extinction coefficient)

$$
\tilde{n}=n+i k
$$

Transverse Waves

${ }^{1}{ }^{1}$ A A An

- plane-wave solution must also fulfill Maxwell's equations

$$
\vec{E}_{0} \cdot \vec{k}=0, \quad \vec{H}_{0} \cdot \vec{k}=0, \quad \vec{H}_{0}=\tilde{n} \frac{\vec{k}}{|\vec{k}|} \times \vec{E}_{0}
$$

- isotropic media: electric, magnetic field vectors normal to wave
vector \Rightarrow transverse waves
- \vec{E}_{0}, \vec{H}_{0}, and \vec{k} orthogonal to each other, right-handed vector-triple

Transverse Waves

Linvind

- plane-wave solution must also fulfill Maxwell's equations

$$
\vec{E}_{0} \cdot \vec{k}=0, \quad \vec{H}_{0} \cdot \vec{k}=0, \quad \vec{H}_{0}=\tilde{n} \frac{\vec{k}}{|\vec{k}|} \times \vec{E}_{0}
$$

- isotropic media: electric, magnetic field vectors normal to wave vector \Rightarrow transverse waves
- \vec{E}_{0}, \vec{H}_{0}, and \vec{k} orthogonal to each other, right-handed vector-triple - conductive medium \Rightarrow complex \tilde{n}, E_{0} and H_{0} out of phase

Transverse Waves

- plane-wave solution must also fulfill Maxwell's equations

$$
\vec{E}_{0} \cdot \vec{k}=0, \quad \vec{H}_{0} \cdot \vec{k}=0, \quad \vec{H}_{0}=\tilde{n} \frac{\vec{k}}{|\vec{k}|} \times \vec{E}_{0}
$$

- isotropic media: electric, magnetic field vectors normal to wave vector \Rightarrow transverse waves
- \vec{E}_{0}, \vec{H}_{0}, and \vec{k} orthogonal to each other, right-handed vector-triple

Transverse Waves

- plane-wave solution must also fulfill Maxwell's equations

$$
\vec{E}_{0} \cdot \vec{k}=0, \quad \vec{H}_{0} \cdot \vec{k}=0, \quad \vec{H}_{0}=\tilde{n} \frac{\vec{k}}{|\vec{k}|} \times \vec{E}_{0}
$$

- isotropic media: electric, magnetic field vectors normal to wave vector \Rightarrow transverse waves
- \vec{E}_{0}, \vec{H}_{0}, and \vec{k} orthogonal to each other, right-handed vector-triple
- conductive medium \Rightarrow complex \tilde{n}, \vec{E}_{0} and \vec{H}_{0} out of phase

Transverse Waves

- plane-wave solution must also fulfill Maxwell's equations

$$
\vec{E}_{0} \cdot \vec{k}=0, \quad \vec{H}_{0} \cdot \vec{k}=0, \quad \vec{H}_{0}=\tilde{n} \frac{\vec{k}}{|\vec{k}|} \times \vec{E}_{0}
$$

- isotropic media: electric, magnetic field vectors normal to wave vector \Rightarrow transverse waves
- \vec{E}_{0}, \vec{H}_{0}, and \vec{k} orthogonal to each other, right-handed vector-triple
- conductive medium \Rightarrow complex \tilde{n}, \vec{E}_{0} and \vec{H}_{0} out of phase
- \vec{E}_{0} and \vec{H}_{0} have constant relationship \Rightarrow consider only \vec{E}

Energy Propagation in Isotropic Media

- Poynting vector

$$
\vec{S}=\frac{c}{4 \pi}(\vec{E} \times \vec{H})
$$

Energy Propagation in Isotropic Media

- Poynting vector

$$
\vec{S}=\frac{c}{4 \pi}(\vec{E} \times \vec{H})
$$

- $|\vec{S}|$: energy through unit area perpendicular to \vec{S} per unit time
- direction of \vec{S} is direction of energy flow
\square

Energy Propagation in Isotropic Media

- Poynting vector

$$
\vec{S}=\frac{c}{4 \pi}(\vec{E} \times \vec{H})
$$

- |S|: energy through unit area perpendic

$$
\langle\vec{S}\rangle=\frac{c}{8 \pi} \operatorname{Re}\left(\vec{E}_{0} \times \vec{H}_{0}^{*}\right)
$$

Re real part of complex expression

* complex conjugate

〈.) time average

- energy flow parallel to wave vector (in isotropic media)

Energy Propagation in Isotropic Media

- $|\vec{S}|$: energy through unit area perpendicular to \vec{S} per unit time
- time-averaged Poynting vector given by

$$
\langle\vec{S}\rangle=\frac{c}{8 \pi} \operatorname{Re}\left(\vec{E}_{0} \times \vec{H}_{0}^{*}\right)
$$

Re real part of complex expression

* complex conjugate

〈.) time average

- energy flow parallel to wave vector (in isotropic media)

$$
\langle\vec{S}\rangle=\frac{c}{8 \pi}|\tilde{n}|\left|E_{0}\right|^{2} \frac{\vec{k}}{|\vec{k}|}
$$

Quasi-Monochromatic Light

- monochromatic light: purely theoretical concept
- monochromatic light wave always fully polarized

quasi-monochromatic light

Quasi-Monochromatic Light

- monochromatic light: purely theoretical concept
- monochromatic light wave always fully polarized
- real life: light includes range of wavelengths \Rightarrow quasi-monochromatic light

Quasi-Monochromatic Light

- real life: light includes range of wavelengths \Rightarrow quasi-monochromatic light
- quasi-monochromatic: superposition of mutually incoherent monochromatic light beams whose wavelengths vary in narrow range $\delta \lambda$ around central wavelength λ_{0}

$$
\frac{\delta \lambda}{\lambda} \ll 1
$$

measurement of quasi-monochromatic light: integral over measurement time t_{m}
amplitude. phase (slow) functions of time for given spatial locatior slow: variations occur on time scales much longer than the mean

Quasi-Monochromatic Light

- quasi-monochromatic: superposition of mutually incoherent monochromatic light beams whose wavelengths vary in narrow range $\delta \lambda$ around central wavelength λ_{0}

$$
\frac{\delta \lambda}{\lambda} \ll 1
$$

- measurement of quasi-monochromatic light: integral over measurement time t_{m}
- amplitude, phase (slow) functions of time for given spatial location
- slow: variations occur on time scales much longer than the mean period of the wave

Polarization of Quasi-Monochromatic Light

- electric field vector for quasi-monochromatic plane wave is sum of electric field vectors of all monochromatic beams

$$
\vec{E}(t)=\vec{E}_{0}(t) e^{i(\vec{k} \cdot \vec{x}-\omega t)}
$$

- can write this way because $\delta \lambda \ll \lambda_{0}$
- measured intensity of quasi-monochromatic beam

$$
\text { averaging over measurement time } t_{m}
$$

Polarization of Quasi-Monochromatic Light

- electric field vector for quasi-monochromatic plane wave is sum of electric field vectors of all monochromatic beams

$$
\vec{E}(t)=\vec{E}_{0}(t) e^{i(\vec{k} \cdot \vec{x}-\omega t)}
$$

- can write this way because $\delta \lambda \ll \lambda_{0}$
- measured intensity of quasi-monochromatic beam

$$
\left\langle\vec{E}_{x} \vec{E}_{x}^{*}\right\rangle+\left\langle\vec{E}_{y} \vec{E}_{y}^{*}\right\rangle=\lim _{t_{m} \rightarrow>\infty} \frac{1}{t_{m}} \int_{-t_{m} / 2}^{t_{m} / 2} \vec{E}_{x}(t) \vec{E}_{x}^{*}(t)+\vec{E}_{y}(t) \vec{E}_{y}^{*}(t) d t
$$

$\langle\cdots\rangle$: averaging over measurement time t_{m}

- measured intensity independent of time
- quasi-monochromatic: frequency-dependent material properties (e.g. index of refraction) are constant within $\Delta \lambda$

Polychromatic Light or White Light

- wavelength range comparable wavelength ($\frac{\delta \lambda}{\lambda} \sim 1$)
- incoherent sum of quasi-monochromatic beams that have large variations in wavelength
cannot write electric field vector in a plane-wave form
must take into account frequency-dependent material
characteristics

Polychromatic Light or White Light

- wavelength range comparable wavelength ($\frac{\delta \lambda}{\lambda} \sim 1$)
- incoherent sum of quasi-monochromatic beams that have large variations in wavelength
- cannot write electric field vector in a plane-wave form
must take into account frequency-dependent material
characteristics
intensity of polych omatic light is given by sum of intensities of constituting quasi-monochromatic beams

Polychromatic Light or White Light

- wavelength range comparable wavelength ($\frac{\delta \lambda}{\lambda} \sim 1$)
- incoherent sum of quasi-monochromatic beams that have large variations in wavelength
- cannot write electric field vector in a plane-wave form
- must take into account frequency-dependent material characteristics
intensity of polychromatic light is given by sum of intensities of

Polychromatic Light or White Light

- wavelength range comparable wavelength $\left(\frac{\delta \lambda}{\lambda} \sim 1\right)$
- cannot write electric field vector in a plane-wave form
- must take into account frequency-dependent material characteristics
- intensity of polychromatic light is given by sum of intensities of constituting quasi-monochromatic beams

Electromagnetic Waves Across Interfaces

Fields at Interfaces

- classical optics due to interfaces between 2 different media
medium 1 to medium 2

Electromagnetic Waves Across Interfaces

Fields at Interfaces

- from Maxwell's equations in integral form at interface from medium 1 to medium 2

$$
\begin{aligned}
\left(\vec{D}_{2}-\vec{D}_{1}\right) \cdot \vec{n} & =0 \\
\left(\vec{B}_{2}-\vec{B}_{1}\right) \cdot \vec{n} & =0 \\
\left(\vec{E}_{2}-\vec{E}_{1}\right) \times \vec{n} & =0 \\
\left(\vec{H}_{2}-\vec{H}_{1}\right) \times \vec{n} & =0
\end{aligned}
$$

\vec{n} normal on interface, points from medium 1 to medium 2 - normal components of D and B are continuous across interface - tangential components of E and H are continuous across interface

Electromagnetic Waves Across Interfaces

Fields at Interfaces

- from Maxwell's equations in integral form at interface from medium 1 to medium 2

$$
\begin{array}{r}
\left(\vec{D}_{2}-\vec{D}_{1}\right) \cdot \vec{n}=0 \\
\left(\vec{B}_{2}-\vec{B}_{1}\right) \cdot \vec{n}=0 \\
\left(\vec{E}_{2}-\vec{E}_{1}\right) \times \vec{n}=0 \\
\left(\vec{H}_{2}-\vec{H}_{1}\right) \times \vec{n}=0
\end{array}
$$

\vec{n} normal on interface, points from medium 1 to medium 2

- normal components of \vec{D} and \vec{B} are continuous across interface
- tangential components of \vec{E} and \vec{H} are continuous across interface

Plane of Incidence

- plane wave onto interface
- incident (${ }^{(}$), reflected $\left({ }^{r}\right)$, and transmitted $\left({ }^{t}\right)$ waves

$$
\begin{aligned}
& \vec{E}^{i, r, t}=\vec{E}_{0}^{i, r, t} e^{i\left(\vec{k}^{i} r, t, \vec{x}-\omega t\right)} \\
& \vec{H}^{i, r, t}=\frac{c}{\omega} \vec{k}^{i, r, t} \times \vec{E}^{i, r, t}
\end{aligned}
$$

- interface normal $\vec{n}|\mid z$-axis

- spatial, temporal behavior at interface the same for all 3 waves - valid for all \vec{x} in interface \Rightarrow all 3 wave vectors in one plane, plane of incidence

Plane of Incidence

- plane wave onto interface
- incident $\left({ }^{i}\right)$, reflected $\left({ }^{r}\right)$, and transmitted $\left({ }^{t}\right)$ waves

$$
\begin{aligned}
\vec{E}^{i, r, t} & =\vec{E}_{0}^{i, r, t} e^{i\left(\vec{k}^{i}, r, t, \vec{x}-\omega t\right)} \\
\vec{H}^{i, r, t} & =\frac{c}{\omega} \vec{k}^{i, r, t} \times \vec{E}^{i, r, r}
\end{aligned}
$$

- interface normal $\vec{n}|\mid z$-axis

- spatial, temporal behavior at interface the same for all 3 waves

$$
\left(\vec{k}^{i} \cdot \vec{x}\right)_{z=0}=\left(\vec{k}^{r} \cdot \vec{x}\right)_{z=0}=\left(\vec{k}^{t} \cdot \vec{x}\right)_{z=0}
$$

valid for all \vec{x} in interface \Rightarrow all 3 wave vectors in one plane, plane

Plane of Incidence

- plane wave onto interface
- incident $\left({ }^{(}\right)$, reflected $\left({ }^{r}\right)$, and transmitted $\left({ }^{t}\right)$ waves

$$
\begin{aligned}
\vec{E}^{i, r, t} & =\vec{E}_{0}^{i, r, t} e^{i\left(\vec{k}^{i} r, t, \vec{x}-\omega t\right)} \\
\vec{H}^{i, r, t} & =\frac{c}{\omega} \vec{k}^{i, r, t} \times \vec{E}^{i, r, t}
\end{aligned}
$$

- interface normal $\vec{n}|\mid z$-axis

- spatial, temporal behavior at interface the same for all 3 waves

$$
\left(\vec{k}^{i} \cdot \vec{x}\right)_{z=0}=\left(\vec{k}^{r} \cdot \vec{x}\right)_{z=0}=\left(\vec{k}^{t} \cdot \vec{x}\right)_{z=0}
$$

- valid for all \vec{x} in interface \Rightarrow all 3 wave vectors in one plane, plane of incidence

Snell's Law

- spatial, temporal behavior the same for all three waves
$\left(\vec{k}^{i} \cdot \vec{x}\right)_{z=0}=\left(\vec{k}^{r} \cdot \vec{x}\right)_{z=0}=\left(\vec{k}^{t} \cdot \vec{x}\right)_{z=0}$
- $|\vec{k}|=\frac{\omega}{c} \tilde{n}$
- ω, c the same for all 3 waves
- Snell's law

Snell's Law

- spatial, temporal behavior the same for all three waves
$\left(\vec{k}^{i} \cdot \vec{x}\right)_{z=0}=\left(\vec{k}^{r} \cdot \vec{x}\right)_{z=0}=\left(\vec{k}^{t} \cdot \vec{x}\right)_{z=0}$
- $|\vec{k}|=\frac{\omega}{c} \tilde{n}$
- ω, c the same for all 3 waves Snell's law $\tilde{n}_{1} \sin \theta_{i}=\tilde{n}_{1} \sin \theta_{r}=\tilde{n}_{2} \sin \theta_{t}$

Snell's Law

- spatial, temporal behavior the same for all three waves
$\left(\vec{k}^{i} \cdot \vec{x}\right)_{z=0}=\left(\vec{k}^{r} \cdot \vec{x}\right)_{z=0}=\left(\vec{k}^{t} \cdot \vec{x}\right)_{z=0}$
- $|\vec{k}|=\frac{\omega}{c} \tilde{n}$
- Snell's law

$$
\tilde{n}_{1} \sin \theta_{i}=\tilde{n}_{1} \sin \theta_{r}=\tilde{n}_{2} \sin \theta_{t}
$$

Monochromatic Wave at Interface

$$
\vec{H}_{0}^{i, r, t}=\frac{c}{\omega} \vec{k}^{i, r, t} \times \vec{E}_{0}^{i, r, t}, \quad \vec{B}_{0}^{i, r, t}=\frac{c}{\omega} \vec{k}^{i, r, t} \times \vec{E}_{0}^{i, r, t}
$$

- 4 equations are not independent

Monochromatic Wave at Interface

$$
\vec{H}_{0}^{i, r, t}=\frac{c}{\omega} \vec{k}^{i, r, t} \times \vec{E}_{0}^{i, r, t}, \quad \vec{B}_{0}^{i, r, t}=\frac{c}{\omega} \vec{k}^{i, r, t} \times \vec{E}_{0}^{i, r, t}
$$

- boundary conditions for monochromatic plane wave:

$$
\begin{array}{r}
\left(\tilde{n}_{1}^{2} \vec{E}_{0}^{i}+\tilde{n}_{1}^{2} \vec{E}_{0}^{r}-\tilde{n}_{2}^{2} \vec{E}_{0}^{t}\right) \cdot \vec{n}=0 \\
\left(\vec{k}^{i} \times \vec{E}_{0}^{i}+\vec{k}^{r} \times \vec{E}_{0}^{r}-\vec{k}^{t} \times \vec{E}_{0}^{t}\right) \cdot \vec{n}=0 \\
\left(\vec{E}_{0}^{i}+\vec{E}_{0}^{r}-\vec{E}_{0}^{t}\right) \times \vec{n}=0 \\
\left(\vec{k}^{i} \times \vec{E}_{0}^{i}+\vec{k}^{r} \times \vec{E}_{0}^{r}-\vec{k}^{t} \times \vec{E}_{0}^{t}\right) \times \vec{n}=0
\end{array}
$$

Monochromatic Wave at Interface

$$
\vec{H}_{0}^{i, r, t}=\frac{c}{\omega} \vec{k}^{i, r, t} \times \vec{E}_{0}^{i, r, t}, \quad \vec{B}_{0}^{i, r, t}=\frac{c}{\omega} \vec{k}^{i, r, t} \times \vec{E}_{0}^{i, r, t}
$$

- boundary conditions for monochromatic plane wave:

$$
\begin{array}{r}
\left(\vec{E}_{0}^{i}+\vec{E}_{0}^{r}-\vec{E}_{0}^{t}\right) \times \vec{n}=0 \\
\left(\vec{k}^{i} \times \vec{E}_{0}^{i}+\vec{k}^{r} \times \vec{E}_{0}^{r}-\vec{k}^{t} \times \vec{E}_{0}^{t}\right) \times \vec{n}=0
\end{array}
$$

- 4 equations are not independent
- only need to consider last two equations (tangential components of \vec{E}_{0} and \vec{H}_{0} are continuous)

Two Special Cases

(1) electric field parallel to plane of incidence \Rightarrow magnetic field is transverse to plane of incidence (TM)
(2) electric field particular (German: senkrecht) or transverse to plane of incidence (TE)

- general solution as (coherent) superposition of two cases
- choose direction of magnetic field vector such that Poynting vector
parallel, same direction as corresponding wave vector

Two Special Cases

(1) electric field parallel to plane of incidence \Rightarrow magnetic field is transverse to plane of incidence (TM)
(2) electric field particular (German: senkrecht) or transverse to plane of incidence (TE)

- general solution as (coherent) superposition of two cases
- choose direction of magnetic field vector such that Poynting vector parallel, same direction as corresponding wave vector

