Lecture 2: Electromagnetic Waves in Isotropic Media 1

Outline

- Electromagnetic Waves
- Quasi-Monochromatic Light
- Electromagnetic Waves Across Interfaces
- Snell's law

Electromagnetic Waves in Matter

- *Maxwell's equations* ⇒ electromagnetic waves
- optics: interaction of electromagnetic waves with matter as described by *material equations*
- polarization of electromagnetic waves are integral part of optics

Electromagnetic Waves in Matter

- *Maxwell's equations* ⇒ electromagnetic waves
- optics: interaction of electromagnetic waves with matter as described by *material equations*

polarization of electromagnetic waves are integral part of optics

$\nabla \cdot \vec{D} = 4\pi\rho$ $\nabla \times \vec{H} - \frac{1}{c} \frac{\partial \vec{D}}{\partial t} = \frac{4\pi}{c} \vec{j}$ $\nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$ $\nabla \cdot \vec{B} = 0$	

Electromagnetic Waves in Matter

- *Maxwell's equations* ⇒ electromagnetic waves
- optics: interaction of electromagnetic waves with matter as described by material equations
- polarization of electromagnetic waves are integral part of optics

$\nabla \cdot \vec{D} = 4\pi\rho$ $\nabla \times \vec{H} - \frac{1}{c} \frac{\partial \vec{D}}{\partial t} = \frac{4\pi}{c} \vec{j}$ $\nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$ $\nabla \cdot \vec{B} = 0$	

Electromagnetic Waves in Matter

- *Maxwell's equations* ⇒ electromagnetic waves
- optics: interaction of electromagnetic waves with matter as described by material equations
- polarization of electromagnetic waves are integral part of optics

Maxwell's Equations in Matter	Symbols
$\nabla \cdot \vec{D} = 4\pi\rho$ $\nabla \times \vec{H} - \frac{1}{c} \frac{\partial \vec{D}}{\partial t} = \frac{4\pi}{c} \vec{j}$ $\nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0$ $\nabla \cdot \vec{B} = 0$	\vec{D} electric displacement ρ electric charge density \vec{H} magnetic field c speed of light in vacuum \vec{j} electric current density \vec{E} electric field \vec{B} magnetic induction t time

Linear Material Equations

$$\vec{D} = \epsilon \vec{E}$$
$$\vec{B} = \mu \vec{H}$$
$$\vec{j} = \sigma \vec{E}$$

Symbols

- € dielectric constant
- μ magnetic permeability
- σ electrical conductivity

Isotropic and Anisotropic Media

- isotropic media: ϵ and μ are scalars
- anisotropic media: ϵ and μ are tensors of rank 2
- isotropy of medium broken by
 - anisotropy of material itself (e.g. crystals)
 - external fields (e.g. Kerr effect)

Linear Material Equations

$$\vec{D} = \epsilon \vec{E}$$
$$\vec{B} = \mu \vec{H}$$
$$\vec{j} = \sigma \vec{E}$$

Symbols

- ϵ dielectric constant
- μ magnetic permeability
- σ electrical conductivity

Isotropic and Anisotropic Media

- isotropic media: ϵ and μ are scalars
- anisotropic media: ϵ and μ are tensors of rank 2
- isotropy of medium broken by
 - anisotropy of material itself (e.g. crystals)
 - external fields (e.g. Kerr effect)

• for most materials: $\rho = 0$, $\mu = 1$

 combine Maxwell, material equations ⇒ differential equations for damped (vector) wave

$$\nabla^2 \vec{E} - \frac{\epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} - \frac{4\pi\sigma}{c^2} \frac{\partial \vec{E}}{\partial t} = 0$$
$$\nabla^2 \vec{H} - \frac{\epsilon}{c^2} \frac{\partial^2 \vec{H}}{\partial t^2} - \frac{4\pi\sigma}{c^2} \frac{\partial \vec{H}}{\partial t} = 0$$

- damping controlled by conductivity σ
- \vec{E} and \vec{H} are equivalent \Rightarrow sufficient to consider \vec{E}
- interaction with matter almost always through \vec{E}
- but: at interfaces, boundary conditions for H
 are crucial

- for most materials: $\rho = 0, \mu = 1$
- combine Maxwell, material equations ⇒ differential equations for damped (vector) wave

$$\nabla^{2}\vec{E} - \frac{\epsilon}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}} - \frac{4\pi\sigma}{c^{2}}\frac{\partial\vec{E}}{\partial t} = 0$$
$$\nabla^{2}\vec{H} - \frac{\epsilon}{c^{2}}\frac{\partial^{2}\vec{H}}{\partial t^{2}} - \frac{4\pi\sigma}{c^{2}}\frac{\partial\vec{H}}{\partial t} = 0$$

- damping controlled by conductivity σ
- \vec{E} and \vec{H} are equivalent \Rightarrow sufficient to consider \vec{E}
- interaction with matter almost always through \vec{E}
- but: at interfaces, boundary conditions for \vec{H} are crucial

• for most materials: $\rho = 0$, $\mu = 1$

 combine Maxwell, material equations ⇒ differential equations for damped (vector) wave

$$\nabla^{2}\vec{E} - \frac{\epsilon}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}} - \frac{4\pi\sigma}{c^{2}}\frac{\partial\vec{E}}{\partial t} = 0$$
$$\nabla^{2}\vec{H} - \frac{\epsilon}{c^{2}}\frac{\partial^{2}\vec{H}}{\partial t^{2}} - \frac{4\pi\sigma}{c^{2}}\frac{\partial\vec{H}}{\partial t} = 0$$

- damping controlled by conductivity σ
- \vec{E} and \vec{H} are equivalent \Rightarrow sufficient to consider \vec{E}
- interaction with matter almost always through \vec{E}
- but: at interfaces, boundary conditions for H
 are crucial

• for most materials: $\rho = 0, \mu = 1$

 combine Maxwell, material equations ⇒ differential equations for damped (vector) wave

$$\nabla^{2}\vec{E} - \frac{\epsilon}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}} - \frac{4\pi\sigma}{c^{2}}\frac{\partial\vec{E}}{\partial t} = 0$$
$$\nabla^{2}\vec{H} - \frac{\epsilon}{c^{2}}\frac{\partial^{2}\vec{H}}{\partial t^{2}} - \frac{4\pi\sigma}{c^{2}}\frac{\partial\vec{H}}{\partial t} = 0$$

- damping controlled by conductivity σ
- \vec{E} and \vec{H} are equivalent \Rightarrow sufficient to consider \vec{E}
- interaction with matter almost always through \vec{E}
- but: at interfaces, boundary conditions for \vec{H} are crucial

- Plane Vector Wave ansatz $\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$
 - \vec{k} spatially and temporally constant wave vector
 - \vec{k} normal to surfaces of constant phase
 - \vec{k} wave number
 - \vec{x} spatial location
 - ω angular frequency (2 π × frequency)
 - t time
 - \vec{E}_0 (generally complex) vector independent of time and space
- could also use $ec{E}=ec{E}_0e^{-i\left(ec{k}\cdotec{x}-\omega t
 ight)}$
- damping if \vec{k} is complex
- real electric field vector given by real part of *E*

- Plane Vector Wave ansatz $\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$
 - \vec{k} spatially and temporally constant wave vector
 - \vec{k} normal to surfaces of constant phase
 - \vec{k} wave number
 - \vec{x} spatial location
 - ω angular frequency (2 π × frequency)
 - t time
 - \vec{E}_0 (generally complex) vector independent of time and space

• could also use
$$\vec{E} = \vec{E}_0 e^{-i(\vec{k}\cdot\vec{x}-\omega t)}$$

• damping if \vec{k} is complex

real electric field vector given by real part of *E*

- Plane Vector Wave ansatz $\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$
 - \vec{k} spatially and temporally constant wave vector
 - \vec{k} normal to surfaces of constant phase
 - \vec{k} wave number
 - \vec{x} spatial location
 - ω angular frequency (2 π × frequency)
 - t time
 - \vec{E}_0 (generally complex) vector independent of time and space
- could also use $\vec{E} = \vec{E}_0 e^{-i(\vec{k}\cdot\vec{x}-\omega t)}$
- damping if \vec{k} is complex

real electric field vector given by real part of É

- Plane Vector Wave ansatz $\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$
 - \vec{k} spatially and temporally constant wave vector
 - \vec{k} normal to surfaces of constant phase
 - \vec{k} wave number
 - \vec{x} spatial location
 - ω angular frequency (2 π × frequency)
 - t time
 - \vec{E}_0 (generally complex) vector independent of time and space
- could also use $\vec{E} = \vec{E}_0 e^{-i(\vec{k}\cdot\vec{x}-\omega t)}$
- damping if \vec{k} is complex
- real electric field vector given by real part of \vec{E}

temporal derivatives ⇒ Helmholtz equation

$$\nabla^2 \vec{E} + \frac{\omega^2}{c^2} \left(\epsilon + i \frac{4\pi\sigma}{\omega} \right) \vec{E} = 0$$

• dispersion relation between k and ω

$$\vec{k} \cdot \vec{k} = rac{\omega^2}{c^2} \left(\epsilon + i rac{4\pi\sigma}{\omega}
ight)$$

complex index of refraction

$$\tilde{n}^2 = \epsilon + i \frac{4\pi\sigma}{\omega}, \ \vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \tilde{n}^2$$

 split into real (n: index of refraction) and imaginary parts (k: extinction coefficient)

$$\tilde{n} = n + ik$$

Christoph U. Keller, C.U.Keller@astro-uu.nl

temporal derivatives ⇒ Helmholtz equation

$$abla^2 ec{E} + rac{\omega^2}{c^2} \left(\epsilon + i rac{4\pi\sigma}{\omega}
ight) ec{E} = 0$$

• dispersion relation between \vec{k} and ω

$$\vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \left(\epsilon + i \frac{4\pi\sigma}{\omega} \right)$$

complex index of refraction

$$\tilde{n}^2 = \epsilon + i \frac{4\pi\sigma}{\omega}, \ \vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \tilde{n}^2$$

 split into real (n: index of refraction) and imaginary parts (k: extinction coefficient)

$$\tilde{n} = n + ik$$

temporal derivatives ⇒ Helmholtz equation

$$abla^2 ec{E} + rac{\omega^2}{c^2} \left(\epsilon + i rac{4\pi\sigma}{\omega}
ight) ec{E} = 0$$

• dispersion relation between \vec{k} and ω

$$\vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \left(\epsilon + i \frac{4\pi\sigma}{\omega} \right)$$

• complex index of refraction

$$\tilde{n}^2 = \epsilon + i \frac{4\pi\sigma}{\omega}, \ \vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \tilde{n}^2$$

 split into real (n: index of refraction) and imaginary parts (k: extinction coefficient)

$$\tilde{n} = n + ik$$

temporal derivatives ⇒ Helmholtz equation

$$abla^2 ec{E} + rac{\omega^2}{c^2} \left(\epsilon + i rac{4\pi\sigma}{\omega}\right) ec{E} = 0$$

• dispersion relation between \vec{k} and ω

$$\vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \left(\epsilon + i \frac{4\pi\sigma}{\omega} \right)$$

• complex index of refraction

$$\tilde{n}^2 = \epsilon + i \frac{4\pi\sigma}{\omega}, \ \vec{k} \cdot \vec{k} = \frac{\omega^2}{c^2} \tilde{n}^2$$

 split into real (n: index of refraction) and imaginary parts (k: extinction coefficient)

$$\tilde{n} = n + ik$$

plane-wave solution must also fulfill Maxwell's equations

$$ec{E}_0\cdotec{k}=0,\ ec{H}_0\cdotec{k}=0,\ ec{H}_0=ec{n}rac{ec{k}}{ec{k}ec{k}} imesec{E}_0$$

 isotropic media: electric, magnetic field vectors normal to wave vector ⇒ transverse waves

• \vec{E}_0 , \vec{H}_0 , and \vec{k} orthogonal to each other, right-handed vector-triple

- conductive medium \Rightarrow complex \tilde{n} , E_0 and H_0 out of phase
- E_0 and H_0 have constant relationship \Rightarrow consider only E

plane-wave solution must also fulfill Maxwell's equations

$$ec{E}_0\cdotec{k}=0,\ ec{H}_0\cdotec{k}=0,\ ec{H}_0=ec{n}rac{ec{k}}{ec{k}ec{k}} imesec{E}_0$$

 isotropic media: electric, magnetic field vectors normal to wave vector ⇒ transverse waves

• E_0 , H_0 , and k orthogonal to each other, right-handed vector-triple • conductive medium \Rightarrow complex \tilde{n} , \vec{E}_0 and \vec{H}_0 out of phase

• E_0 and H_0 have constant relationship \Rightarrow consider only E

plane-wave solution must also fulfill Maxwell's equations

$$ec{E}_0\cdotec{k}=0,\ ec{H}_0\cdotec{k}=0,\ ec{H}_0=ec{n}rac{ec{k}}{ec{k}ec{k}} imesec{E}_0$$

 isotropic media: electric, magnetic field vectors normal to wave vector ⇒ transverse waves

• \vec{E}_0 , \vec{H}_0 , and \vec{k} orthogonal to each other, right-handed vector-triple

• conductive medium \Rightarrow complex \tilde{n} , E_0 and H_0 out of phase

• E_0 and H_0 have constant relationship \Rightarrow consider only E

plane-wave solution must also fulfill Maxwell's equations

$$ec{E}_0\cdotec{k}=0,\ ec{H}_0\cdotec{k}=0,\ ec{H}_0=ec{n}rac{ec{k}}{ec{k}ec{k}} imesec{E}_0$$

 isotropic media: electric, magnetic field vectors normal to wave vector ⇒ transverse waves

• \vec{E}_0 , \vec{H}_0 , and \vec{k} orthogonal to each other, right-handed vector-triple

• conductive medium \Rightarrow complex \tilde{n} , \vec{E}_0 and \vec{H}_0 out of phase

• \vec{E}_0 and \vec{H}_0 have constant relationship \Rightarrow consider only \vec{E}

plane-wave solution must also fulfill Maxwell's equations

$$ec{E}_0 \cdot ec{k} = 0, \ ec{H}_0 \cdot ec{k} = 0, \ ec{H}_0 = ec{n} rac{ec{k}}{ec{k} ec{k}} imes ec{E}_0$$

 isotropic media: electric, magnetic field vectors normal to wave vector ⇒ transverse waves

• \vec{E}_0 , \vec{H}_0 , and \vec{k} orthogonal to each other, right-handed vector-triple

- conductive medium \Rightarrow complex \tilde{n} , \vec{E}_0 and \vec{H}_0 out of phase
- \vec{E}_0 and \vec{H}_0 have constant relationship \Rightarrow consider only \vec{E}

Poynting vector

$$ec{S}=rac{c}{4\pi}\left(ec{E} imesec{H}
ight)$$

• $|\vec{S}|$: energy through unit area perpendicular to \vec{S} per unit time

- direction of S is direction of energy flow
- time-averaged Poynting vector given by

$$\left\langle ec{S} \right
angle = rac{c}{8\pi} \mathrm{Re} \left(ec{E}_0 imes ec{H}_0^*
ight)$$

Re real part of complex expression

- * complex conjugate
- (.) time average

• energy flow parallel to wave vector (in isotropic media)

$$\left\langle ec{S} \right
angle = rac{c}{8\pi} \left| ec{n} \right| \left| E_0 \right|^2 rac{ec{k}}{\left| ec{k} \right|}$$

Poynting vector

$$ec{S} = rac{m{c}}{m{4}\pi} \left(ec{m{E}} imes ec{m{H}}
ight)$$

- $|\vec{S}|$: energy through unit area perpendicular to \vec{S} per unit time
- direction of \vec{S} is direction of energy flow
- time-averaged Poynting vector given by

$$\left\langle ec{S} \right
angle = rac{c}{8\pi} \mathrm{Re} \left(ec{E}_0 imes ec{H}_0^*
ight)$$

- Re real part of complex expression
 - * complex conjugate
 - (.) time average
- energy flow parallel to wave vector (in isotropic media)

$$\left\langle ec{S} \right
angle = rac{c}{8\pi} \left| ec{n} \right| \left| E_0 \right|^2 rac{ec{k}}{\left| ec{k} \right|}$$

Poynting vector

$$ec{S}=rac{c}{4\pi}\left(ec{E} imesec{H}
ight)$$

- $|\vec{S}|$: energy through unit area perpendicular to \vec{S} per unit time • direction of \vec{S} is direction of energy flow
- time-averaged Poynting vector given by

$$\left\langle ec{S}
ight
angle = rac{c}{8\pi} {
m Re} \left(ec{E}_0 imes ec{H}_0^st
ight)$$

- Re real part of complex expression
 - * complex conjugate
- $\langle . \rangle$ time average

energy flow parallel to wave vector (in isotropic media)

$$\left\langle ec{S}
ight
angle = rac{c}{8\pi} \left| ec{n}
ight| \left| E_0
ight|^2 rac{ec{k}}{\left| ec{k}
ight|}$$

Poynting vector

$\vec{S} = rac{c}{4\pi} \left(\vec{E} imes \vec{H} ight)$

- $|\vec{S}|$: energy through unit area perpendicular to \vec{S} per unit time • direction of \vec{S} is direction of energy flow
- time-averaged Poynting vector given by

$$\left< ec{S} \right> = rac{c}{8\pi} {
m Re} \left(ec{E}_0 imes ec{H}_0^*
ight)$$

Re real part of complex expression

- * complex conjugate
- $\langle . \rangle \,$ time average

energy flow parallel to wave vector (in isotropic media)

$$\left\langle ec{S}
ight
angle = rac{c}{8\pi} \left| ec{n}
ight| \left| E_0
ight|^2 rac{ec{k}}{\left| ec{k}
ight|}$$

- monochromatic light: purely theoretical concept
- monochromatic light wave always fully polarized
- real life: light includes range of wavelengths ⇒ quasi-monochromatic light
- quasi-monochromatic: superposition of mutually incoherent monochromatic light beams whose wavelengths vary in narrow range $\delta\lambda$ around central wavelength λ_0

$$\frac{\delta\lambda}{\lambda} \ll 1$$

 measurement of quasi-monochromatic light: integral over measurement time t_m

• amplitude, phase (slow) functions of time for given spatial location

• *slow*: variations occur on time scales much longer than the mean period of the wave

- monochromatic light: purely theoretical concept
- monochromatic light wave always fully polarized
- real life: light includes range of wavelengths ⇒ quasi-monochromatic light
- quasi-monochromatic: superposition of mutually incoherent monochromatic light beams whose wavelengths vary in narrow range $\delta\lambda$ around central wavelength λ_0

$$\frac{\delta\lambda}{\lambda} \ll 1$$

- measurement of quasi-monochromatic light: integral over measurement time t_m
- amplitude, phase (slow) functions of time for given spatial location
- *slow*: variations occur on time scales much longer than the mean period of the wave

- monochromatic light: purely theoretical conceptmonochromatic light wave always fully polarized
- real life: light includes range of wavelengths ⇒ quasi-monochromatic light
- quasi-monochromatic: superposition of mutually incoherent monochromatic light beams whose wavelengths vary in narrow range $\delta\lambda$ around central wavelength λ_0

$$\frac{\delta\lambda}{\lambda} \ll 1$$

 measurement of quasi-monochromatic light: integral over measurement time t_m

• amplitude, phase (slow) functions of time for given spatial location

• *slow*: variations occur on time scales much longer than the mean period of the wave

- monochromatic light: purely theoretical concept
- monochromatic light wave always fully polarized
- real life: light includes range of wavelengths ⇒ quasi-monochromatic light
- quasi-monochromatic: superposition of mutually incoherent monochromatic light beams whose wavelengths vary in narrow range $\delta\lambda$ around central wavelength λ_0

$$\frac{\delta\lambda}{\lambda}\ll$$
 1

- measurement of quasi-monochromatic light: integral over measurement time t_m
- amplitude, phase (slow) functions of time for given spatial location
- slow: variations occur on time scales much longer than the mean period of the wave

Polarization of Quasi-Monochromatic Light

 electric field vector for quasi-monochromatic plane wave is sum of electric field vectors of all monochromatic beams

$$\vec{E}(t) = \vec{E}_0(t) e^{i\left(\vec{k}\cdot\vec{x}-\omega t\right)}$$

• can write this way because $\delta\lambda\ll\lambda_0$

measured intensity of quasi-monochromatic beam

$$\left\langle \vec{E}_{x}\vec{E}_{x}^{*}
ight
angle +\left\langle \vec{E}_{y}\vec{E}_{y}^{*}
ight
angle =\lim_{t_{m}\rightarrow\infty}rac{1}{t_{m}}\int_{-t_{m/2}}^{t_{m/2}}\vec{E}_{x}(t)\vec{E}_{x}^{*}(t)+\vec{E}_{y}(t)\vec{E}_{y}^{*}(t)dt$$

 $\langle \cdots \rangle$: averaging over measurement time t_m

- measured intensity independent of time
- quasi-monochromatic: frequency-dependent material properties (e.g. index of refraction) are constant within $\Delta \lambda$

Polarization of Quasi-Monochromatic Light

 electric field vector for quasi-monochromatic plane wave is sum of electric field vectors of all monochromatic beams

$$\vec{E}(t) = \vec{E}_0(t) e^{i\left(\vec{k}\cdot\vec{x}-\omega t\right)}$$

- can write this way because $\delta\lambda \ll \lambda_0$
- measured intensity of quasi-monochromatic beam

$$\left\langle ec{E}_xec{E}_x^*
ight
angle + \left\langle ec{E}_yec{E}_y^*
ight
angle = \lim_{t_m \to \infty} rac{1}{t_m}\int_{-t_m/2}^{t_m/2}ec{E}_x(t)ec{E}_x^*(t) + ec{E}_y(t)ec{E}_y^*(t)dt$$

 $\langle \cdots \rangle$: averaging over measurement time t_m

- measured intensity independent of time
- quasi-monochromatic: frequency-dependent material properties (e.g. index of refraction) are constant within Δλ

Polychromatic Light or White Light

- wavelength range comparable wavelength $(\frac{\delta\lambda}{\lambda} \sim 1)$
- incoherent sum of quasi-monochromatic beams that have large variations in wavelength
- cannot write electric field vector in a plane-wave form
- must take into account frequency-dependent material characteristics
- intensity of polychromatic light is given by sum of intensities of constituting quasi-monochromatic beams

Polychromatic Light or White Light

- wavelength range comparable wavelength $(\frac{\delta\lambda}{\lambda} \sim 1)$
- incoherent sum of quasi-monochromatic beams that have large variations in wavelength
- cannot write electric field vector in a plane-wave form
- must take into account frequency-dependent material characteristics
- intensity of polychromatic light is given by sum of intensities of constituting quasi-monochromatic beams

Polychromatic Light or White Light

- wavelength range comparable wavelength $(\frac{\delta\lambda}{\lambda} \sim 1)$
- incoherent sum of quasi-monochromatic beams that have large variations in wavelength
- cannot write electric field vector in a plane-wave form
- must take into account frequency-dependent material characteristics
- intensity of polychromatic light is given by sum of intensities of constituting quasi-monochromatic beams

Polychromatic Light or White Light

- wavelength range comparable wavelength $(\frac{\delta\lambda}{\lambda} \sim 1)$
- incoherent sum of quasi-monochromatic beams that have large variations in wavelength
- cannot write electric field vector in a plane-wave form
- must take into account frequency-dependent material characteristics
- intensity of polychromatic light is given by sum of intensities of constituting quasi-monochromatic beams

Electromagnetic Waves Across Interfaces

Fields at Interfaces

- classical optics due to interfaces between 2 different media
- from Maxwell's equations in integral form at interface from medium 1 to medium 2

$$\begin{pmatrix} \vec{D}_2 - \vec{D}_1 \end{pmatrix} \cdot \vec{n} = 0 \begin{pmatrix} \vec{B}_2 - \vec{B}_1 \end{pmatrix} \cdot \vec{n} = 0 \begin{pmatrix} \vec{E}_2 - \vec{E}_1 \end{pmatrix} \times \vec{n} = 0 \begin{pmatrix} \vec{H}_2 - \vec{H}_1 \end{pmatrix} \times \vec{n} = 0$$

normal on interface, points from medium 1 to medium 2
 normal components of *D* and *B* are continuous across interface
 tangential components of *E* and *H* are continuous across interface

Electromagnetic Waves Across Interfaces

Fields at Interfaces

- classical optics due to interfaces between 2 different media
- from Maxwell's equations in integral form at interface from medium 1 to medium 2

$$\begin{pmatrix} \vec{D}_2 - \vec{D}_1 \end{pmatrix} \cdot \vec{n} = 0 \begin{pmatrix} \vec{B}_2 - \vec{B}_1 \end{pmatrix} \cdot \vec{n} = 0 \begin{pmatrix} \vec{E}_2 - \vec{E}_1 \end{pmatrix} \times \vec{n} = 0 \begin{pmatrix} \vec{H}_2 - \vec{H}_1 \end{pmatrix} \times \vec{n} = 0$$

normal on interface, points from medium 1 to medium 2
 normal components of D
 and B
 are continuous across interface

 tangential components of E
 and H
 are continuous across interface

Electromagnetic Waves Across Interfaces

Fields at Interfaces

- classical optics due to interfaces between 2 different media
- from Maxwell's equations in integral form at interface from medium 1 to medium 2

$$\begin{pmatrix} \vec{D}_2 - \vec{D}_1 \end{pmatrix} \cdot \vec{n} = 0 \begin{pmatrix} \vec{B}_2 - \vec{B}_1 \end{pmatrix} \cdot \vec{n} = 0 \begin{pmatrix} \vec{E}_2 - \vec{E}_1 \end{pmatrix} \times \vec{n} = 0 \begin{pmatrix} \vec{H}_2 - \vec{H}_1 \end{pmatrix} \times \vec{n} = 0$$

- \vec{n} normal on interface, points from medium 1 to medium 2
- normal components of \vec{D} and \vec{B} are continuous across interface
- tangential components of \vec{E} and \vec{H} are continuous across interface

Plane of Incidence

- plane wave onto interface
- incident (ⁱ), reflected (^r), and transmitted (^t) waves

$$\vec{E}^{i,r,t} = \vec{E}_0^{i,r,t} e^{i(\vec{k}^{i,r,t}\cdot\vec{x}-\omega t)}$$
$$\vec{H}^{i,r,t} = \frac{c}{\omega}\vec{k}^{i,r,t}\times\vec{E}^{i,r,t}$$

• interface normal $\vec{n} \parallel z$ -axis

spatial, temporal behavior at interface the same for all 3 waves

$$(\vec{k}^i \cdot \vec{x})_{z=0} = (\vec{k}^r \cdot \vec{x})_{z=0} = (\vec{k}^t \cdot \vec{x})_{z=0}$$

• valid for all \vec{x} in interface \Rightarrow all 3 wave vectors in one plane, *plane* of incidence

Plane of Incidence

- plane wave onto interface
- incident (ⁱ), reflected (^r), and transmitted (^t) waves

$$\vec{E}^{i,r,t} = \vec{E}_0^{i,r,t} e^{i(\vec{k}^{i,r,t}\cdot\vec{x}-\omega t)}$$
$$\vec{H}^{i,r,t} = \frac{c}{\omega}\vec{k}^{i,r,t} \times \vec{E}^{i,r,t}$$

- interface normal $\vec{n} \parallel z$ -axis
- spatial, temporal behavior at interface the same for all 3 waves

$$(ec{k}^i \cdot ec{x})_{z=0} = (ec{k}^r \cdot ec{x})_{z=0} = (ec{k}^t \cdot ec{x})_{z=0}$$

• valid for all \vec{x} in interface \Rightarrow all 3 wave vectors in one plane, *plane* of incidence

Plane of Incidence

- plane wave onto interface
- incident (ⁱ), reflected (^r), and transmitted (^t) waves

$$\vec{E}^{i,r,t} = \vec{E}_0^{i,r,t} e^{i(\vec{k}^{i,r,t}\cdot\vec{x}-\omega t)}$$
$$\vec{H}^{i,r,t} = \frac{c}{\omega}\vec{k}^{i,r,t} \times \vec{E}^{i,r,t}$$

- interface normal $\vec{n} \parallel z$ -axis
- spatial, temporal behavior at interface the same for all 3 waves

$$(ec{k}^i \cdot ec{x})_{z=0} = (ec{k}^r \cdot ec{x})_{z=0} = (ec{k}^t \cdot ec{x})_{z=0}$$

• valid for all \vec{x} in interface \Rightarrow all 3 wave vectors in one plane, *plane* of incidence

interface

plane of incidence

Snell's Law

 spatial, temporal behavior the same for all three waves

$$(\vec{k}^i \cdot \vec{x})_{z=0} = (\vec{k}^r \cdot \vec{x})_{z=0} = (\vec{k}^t \cdot \vec{x})_{z=0}$$

•
$$\left| \vec{k} \right| = \frac{\omega}{c} \tilde{n}$$

ω, c the same for all 3 waves
Snell's law

$$\tilde{n}_1 \sin \theta_i = \tilde{n}_1 \sin \theta_r = \tilde{n}_2 \sin \theta_t$$

Snell's Law

• spatial, temporal behavior the same for all three waves

$$(\vec{k}^i \cdot \vec{x})_{z=0} = (\vec{k}^r \cdot \vec{x})_{z=0} = (\vec{k}^t \cdot \vec{x})_{z=0}$$

•
$$\left|\vec{k}\right| = \frac{\omega}{c}\tilde{n}$$

ω, c the same for all 3 waves
 Spall's law

$$\tilde{n}_1 \sin \theta_i = \tilde{n}_1 \sin \theta_r = \tilde{n}_2 \sin \theta_t$$

Snell's Law

• spatial, temporal behavior the same for all three waves

$$(\vec{k}^i \cdot \vec{x})_{z=0} = (\vec{k}^r \cdot \vec{x})_{z=0} = (\vec{k}^t \cdot \vec{x})_{z=0}$$

•
$$\left|\vec{k}\right| = \frac{\omega}{c}\tilde{n}$$

• ω , *c* the same for all 3 waves

Snell's law

$$\tilde{n}_1 \sin \theta_i = \tilde{n}_1 \sin \theta_r = \tilde{n}_2 \sin \theta_t$$

Monochromatic Wave at Interface

$\vec{H}_0^{i,r,t} = \frac{c}{\omega} \vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}, \quad \vec{B}_0^{i,r,t} = \frac{c}{\omega} \vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}$

• boundary conditions for monochromatic plane wave:

• 4 equations are not independent

• only need to consider last two equations (tangential components of \vec{E}_0 and \vec{H}_0 are continuous)

Monochromatic Wave at Interface

 $\vec{H}_0^{i,r,t} = \frac{c}{\omega} \vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}, \quad \vec{B}_0^{i,r,t} = \frac{c}{\omega} \vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}$

• boundary conditions for monochromatic plane wave:

$$\begin{pmatrix} \tilde{n}_1^2 \vec{E}_0^i + \tilde{n}_1^2 \vec{E}_0^r - \tilde{n}_2^2 \vec{E}_0^t \end{pmatrix} \cdot \vec{n} = 0 \\ \begin{pmatrix} \vec{k}^i \times \vec{E}_0^i + \vec{k}^r \times \vec{E}_0^r - \vec{k}^t \times \vec{E}_0^t \end{pmatrix} \cdot \vec{n} = 0 \\ \begin{pmatrix} \vec{E}_0^i + \vec{E}_0^r - \vec{E}_0^t \end{pmatrix} \times \vec{n} = 0 \\ \begin{pmatrix} \vec{k}^i \times \vec{E}_0^i + \vec{k}^r \times \vec{E}_0^r - \vec{k}^t \times \vec{E}_0^t \end{pmatrix} \times \vec{n} = 0$$

4 equations are not independent

• only need to consider last two equations (tangential components of \vec{E}_0 and \vec{H}_0 are continuous)

Monochromatic Wave at Interface

 $\vec{H}_0^{i,r,t} = \frac{c}{\omega} \vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}, \quad \vec{B}_0^{i,r,t} = \frac{c}{\omega} \vec{k}^{i,r,t} \times \vec{E}_0^{i,r,t}$

• boundary conditions for monochromatic plane wave:

$$\left(\vec{E}_0^i + \vec{E}_0^r - \vec{E}_0^t\right) \times \vec{n} = 0$$
$$\left(\vec{k}^i \times \vec{E}_0^i + \vec{k}^r \times \vec{E}_0^r - \vec{k}^t \times \vec{E}_0^t\right) \times \vec{n} = 0$$

- 4 equations are not independent
- only need to consider last two equations (tangential components of *E*₀ and *H*₀ are continuous)

Two Special Cases

- electric field parallel to plane of incidence ⇒ magnetic field is transverse to plane of incidence (TM)
- electric field particular (German: senkrecht) or transverse to plane of incidence (TE)
 - general solution as (coherent) superposition of two cases
 choose direction of magnetic field vector such that Poynting vector parallel, same direction as corresponding wave vector

Two Special Cases

- electric field parallel to plane of incidence ⇒ magnetic field is transverse to plane of incidence (TM)
- electric field particular (German: senkrecht) or transverse to plane of incidence (TE)
 - general solution as (coherent) superposition of two cases
 - choose direction of magnetic field vector such that Poynting vector parallel, same direction as corresponding wave vector