Outline

- Polarimeters
- Rotating Waveplate Polarimeters
- Liquid Crystal Polarimeters
- ZIMPOL
- Concluding Remarks

Polarimeters: optical elements (e.g., retarders, polarizers) that change polarization state of incoming light in controlled way. Detectors always measure only intensities. Intensity measurements combined to retrieve polarization state of incoming light. Polarimeters vary by polarization modulation scheme. Polarimeter should also include polarization calibration optics.

Polarizing Beam-Splitter Polarimeter

- Simple linear polarimeter: polarizing beam-splitter producing 2 beams corresponding to 2 orthogonal linear polarization states.
- Full linear polarization information from rotating assembly.
- *Spatial modulation*: simultaneous measurements of two (or more) Stokes parameters.

Rotating Waveplate Polarimeter

- Rotating retarder, fixed linear polarizer.
- Measured intensity as function of retardance δ, position angle θ.

\[
I' = \frac{1}{2} \left(I + \frac{Q}{2} \left((1 + \cos \delta) + (1 - \cos \delta \cos 4\theta) \right) + \frac{U}{2} \left(1 - \cos \delta \sin 4\theta - V \sin \delta \sin 2\theta \right) \right)
\]

- Only terms in θ lead to modulated signal.
- Equal modulation amplitudes in Q, U, and V for $\delta = 127^\circ$.
- *Temporal modulation*: sequential measurements of $I\pm$ one or more Stokes parameters.

Temporal and Spatial Modulation

General Polarimeters: optical elements (e.g., retarders, polarizers) that change polarization state of incoming light in controlled way. Detectors always measure only intensities. Intensity measurements combined to retrieve polarization state of incoming light. Polarimeters vary by polarization modulation scheme. Polarimeter should also include polarization calibration optics.
Comparison of Temporal and Spatial Modulation Schemes

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>temporal</td>
<td>negligible effects of flat field and optical aberrations</td>
<td>influence of seeing if modulation is slow</td>
</tr>
<tr>
<td></td>
<td>potentially high polarimetric sensitivity</td>
<td>limited read-out rate of array detectors</td>
</tr>
<tr>
<td>spatial</td>
<td>off-the-shelf array detectors</td>
<td>requires up to four times larger sensor</td>
</tr>
<tr>
<td></td>
<td>high photon collection efficiency</td>
<td>influence of flat field</td>
</tr>
<tr>
<td></td>
<td>allows post-facto reconstruction</td>
<td>influence of differential aberrations</td>
</tr>
</tbody>
</table>

schemes rather complementary ⇒ modern, sensitive polarimeters use both to combine advantages and minimize disadvantages

Double-Ratio Technique
- combination of spatial and temporal modulation
- data reduction minimizes effects of many artifacts
- rotatable quarter-wave plate, polarizing beam-splitter
- consider case of circularly polarized light
- quarter-wave plate switches between +45° or -45° to polarizing beam-splitter
- both beams recorded simultaneously
- four measurements are combined to obtain estimate of Stokes V/I ratio largely free of effects from seeing and gain variations between different detector areas
- excellent if polarization signal is small
- frequently used in stellar polarimetry
- can be applied to any polarized Stokes parameter
- works very well for solar applications where the spectrum in the first and the second exposures are different

Rotating Waveplate Polarimeters

Fundamentals

\[I_1 = \frac{1}{2} \left(I + \frac{Q}{2} (1 + \cos \delta) + (1 - \cos \delta) \cos 4\theta \right) + \frac{U}{2} (1 - \cos \delta \sin 4\theta - V \sin \delta \sin 2\theta) \]

- Q, U modulated at twice the frequency of V
- phase shift in modulation between Q and U is 90° ⇒ measurements at 8 angles to determine all 4 Stokes parameters

Double-Ratio Technique (continued)
- measured intensities in two beams in first exposure

\[S_1' = g_l \alpha_1 (I_1 + V_1), \quad S_1' = g_r \alpha_1 (I_1 - V_1) \]

- subscript 1 indicates first exposure
- subscripts l, r indicate left and right beams of polarizing beam-splitter
- S: measured signal
- g: gain in particular beam
- \(\alpha \): average transmission of atmosphere and instrument for a given exposure
- second exposure

\[S_2' = g_l \alpha_2 (I_2 - V_2), \quad S_2' = g_r \alpha_2 (I_2 + V_2) \]

- incoming I and V in second exposure may be completely different from first exposure
- also includes beam-wobble induced by rotation of wave plate
Double-Ratio Technique (continued)

- combination of 4 measured intensities removes effect of transmission changes and differential gain variations of different detector areas

\[
\frac{1}{4} \left(\frac{S_1'}{S_2'} \frac{S_2}{S_1} - 1 \right) = \frac{1}{2} \frac{l_2 V_1 + l_1 V_2}{l_1 l_2 - l_2 V_1 - l_1 V_2 + V_1 V_2}
\]

- if \(V \ll I \)
 \[
 \frac{1}{2} \left(\frac{V_1}{l_1} + \frac{V_2}{l_2} \right)
 \]

- obtain average \(V/I \) signal of two exposures
- no spurious polarization signals are introduced

Liquid Crystal Polarimeters

Introduction

- many systems in operation
- variety of liquid crystal types and arrangements
- often combinations of variable liquid crystal retarders and fixed retarders

SOLIS Vector-Spectromagnetograph (VSM)

Introduction

- SOLIS = Synoptic Optical Long-term Investigations of the Sun
- 3 instruments: Vector SpectroMagnetograph, Full-Disk Patrol, and Integrated Sunlight Spectrometers (sun-as-a-star spectrometer) attached to single equatorial mount
- located on top of old Kitt Peak Vacuum Telescope
- solis.nso.edu
- VSM operates in four different observing modes at three different wavelengths:
 - photospheric full-disk longitudinal magnetograms in FeI 630.15 and 630.25 nm
 - photospheric full-disk vector-magnetograms in FeI 630.15 and FeI 630.25 nm
 - chromospheric full-disk magnetograms in CaII 854.2 nm
 - full-disk HeI 1083.0 nm line characteristics
Full-Disk Photospheric Magnetogram

Sun-as-a-Star Magnetic Field

Full-Disk Vector-Polarimetry
More Vector-Polarimetry

Field Vector, Filling Factor, and Helicity

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective pixel size</td>
<td>1 arcsec by 1 arcsec (1.125 by 1.125 arcsec initially)</td>
</tr>
<tr>
<td>Angular coverage</td>
<td>2048 arcsec by 2048 arcsec</td>
</tr>
<tr>
<td>Geometric accuracy</td>
<td>0.5 arcsec rms after data reduction</td>
</tr>
<tr>
<td>Scan rate</td>
<td>0.2 to 5.0 seconds/arcsec</td>
</tr>
<tr>
<td>Timing accuracy</td>
<td>Better than 1 second</td>
</tr>
<tr>
<td>Time stamping</td>
<td>Better than 1 ms</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>238,000 (at 630 nm)</td>
</tr>
<tr>
<td>Wavelengths</td>
<td>630 nm, 854 nm, 1083 nm</td>
</tr>
<tr>
<td>Polarimetry</td>
<td>• FeI 630.15 and FeI 630.25 nm: I, V, Q, U</td>
</tr>
<tr>
<td></td>
<td>• CaII 854 nm: I</td>
</tr>
<tr>
<td></td>
<td>• Hα 1083.0 nm: λ</td>
</tr>
<tr>
<td>Polarimetric sensitivity</td>
<td>0.0002 at 0.5 seconds/arcsec scanning rate</td>
</tr>
<tr>
<td>Polarimetric accuracy</td>
<td>Better than 0.001</td>
</tr>
</tbody>
</table>
Technical Challenges

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact instrument no longer than 2.5 m</td>
<td>Folded f/6.6 beam</td>
</tr>
<tr>
<td>Good and stable spatial resolution</td>
<td>Helium-filled, active M2</td>
</tr>
<tr>
<td>High guiding accuracy of better than 0.5 arcsec rms</td>
<td>Guider in slit plane, active secondary mirror</td>
</tr>
<tr>
<td>Low instrumental polarization of less than 1 x 10^{-3}</td>
<td>Axially symmetric design</td>
</tr>
<tr>
<td>Fixed image size, low distortion from 630 to 1090 nm</td>
<td>Quasi RC with correctors</td>
</tr>
<tr>
<td>Stable high spectral resolution of 200,000</td>
<td>Large, active grating</td>
</tr>
<tr>
<td>Highest possible throughput</td>
<td>Silver, multilayer coatings, CMOS hybrid cameras</td>
</tr>
<tr>
<td>Energy densities of up to 0.2 MW/m²</td>
<td>Copper-silicon carbide plate</td>
</tr>
<tr>
<td>High data rate of up to 320 Mbyte/s</td>
<td>DSP array, Storage Area Network</td>
</tr>
</tbody>
</table>

Telescope

- Helium-filled f/6.6 Ritchey-Chrétien with field corrector lenses
- Entrance window provides environmental protection
 - 6-mm thick oversized, fused silica to minimize edge effects
 - 'Flats' in RTV to minimize stress birefringence
- 575-mm f/1.4 ULE primary mirror
- Single crystal silicon secondary
 - 40 Hz tip/tilt closed-loop bandwidth piezo platform
 - Slow closed-loop focus control
 - Cooled by helium flow
Folded Littrow Spectrograph

- Grating
 - 79 lines/mm on 204 mm by 408 mm fused silica blank
 - Almost no instrumental polarization
 - Rotates for different wavelengths
 - Active adjustment in 2 axes to compensate for flexure

Littrow lens
- Air-spaced doublet
- Athermal design
- Moves to adjust for different wavelengths
- Dual Offner reimaging optics

CMOS Hybrid Cameras
- Interim replacement for cancelled PixelVision & SiTe CCD cameras
- Made by Rockwell Scientific
- 1024 by 1024 18 μm pixels
- 92 frames/s at 1024 by 256
- > 2,000,000 e- full well depth
- Silicon on CMOS multiplexer
- Quantum efficiency 85% at 630 and 854 nm, 5% at 1083 nm

Polarization Calibration

- 'Polarization-free' optics before polarization calibration
- Polarization calibration occurs as early as possible
- Interference filters to limit solar flux
- Rotating polarizers and retarders at 630 nm, fixed at 854 nm

Vector-Calibration

<table>
<thead>
<tr>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Separation of Polarization Modulation and Polarizer

- FLC and retarders located behind spectrograph entrance slit
- Polarizing beamsplitters located in front of cameras
- Spectrograph and associated optics built to minimize instrumental polarization between modulators and polarizing beam splitters
- Advantages of VSM approach: no moving parts for polarization analysis, switching of polarization states can occur rapidly, and both polarization states are detected simultaneously after having passed through the same optics

Instrumental Polarization

- Only entrance window, primary and secondary mirrors not calibrated
- All other optical elements after polarization calibration optics
- Still try to minimize polarization introduced because coupling of instrumental polarization and non-linearities camera read-out electronics are difficult to calibrate
- Static birefringence of window due to remaining stress from the annealing process, measured at less than 2 nm
- Telescope design is axially symmetric and therefore 'polarization free', but symmetry only valid optical axis
- Simulation at 0.25° (solar limb) shows I to Q cross talk of 4·10^{-5} and a V to Q cross talk of 8·10^{-5}
Zurich Imaging Polarimeters (ZIMPOL)

CCD Array as Fast Demodulator

- ZIMPOL I polarization modulator consists of 2 PEMs and a polarizer (single beam)
- modulation according to
 \[I'(t) = \frac{1}{2} (I + Q + V \sqrt{2} J_0(A) \cos(2\Omega_1 t) + U \sqrt{2} J_2(A) \cos(2\Omega_2 t) + V \sqrt{2} J_1(A) \sin(\Omega_1 t)) \]
 - frequencies of PEMs given by \(\Omega_1, \Omega_2 \)
 - amplitudes of both PEMs, \(A \), chosen such that \(J_0(A) = 0 \)
 - for vector polarimetry: 3 synchronous demodulators, each sensitive to one of \(2\Omega_1, 2\Omega_2, \Omega_1 \)
 - development of demodulating CCD by Povel and coworkers about 20 years ago
 - fractional polarization free of flat-field effects
 - no seeing effects due to high modulation frequency

Zurich Imaging Polarimeters I, II

- Developed at ETH Zurich, Switzerland starting in the late 1980’s by Povel, Egger, Steiner, Aebersold, Keller, Bernasconi, Gandorfer, Stenflo et al.
- Works with Piezo-Elastic Modulators (PEM) at 20-100kHz
- Synchronous demodulation with specially masked CCDs
- Up to 10 frames per second and up to 4 cameras simultaneously
- No effects due to seeing, flat-field, optical aberrations
- Capable of detecting polarization below the \(1 \times 10^{-8} \) level
- Works well with adaptive optics and image reconstruction techniques

Scattering Polarization
Scattering Polarization

Abundance of elements without detectable absorption lines: Lithium lines at 671 nm are resonance lines that exhibit resonance scattering polarization.

![Graph showing linear polarization intensity vs wavelength](image)

Turbulent background field revealed by Hanle effect:
The differential variation of scattering polarization in various lines can be explained by a spatially varying, turbulent background field.

![Graph showing differential variation](image)

Polarimetry and Adaptive Optics

- 0.0 mm white light
- Calf 6103Å line wing
- Magnetogram

Phase-diverse speckle imaging uses in-focus and out-of-focus image sequences to completely remove the aberrations due to the Earth's atmosphere and the telescope over a field of view that is much larger than the isoplanatic patch.

With R. Paxman, J. Seldin, D. Carrara, T. Rimmele

ZIMPOL II

- ZIMPOL I requires three separate CCD cameras for full Stokes polarimetry
- ZIMPOL I mask reduces efficiency by a factor of 2
- Beam-splitting for 3 cameras reduces efficiency by an additional factor of 3
- ZIMPOL II: 3 out of 4 rows masked for simultaneous measurement of all Stokes parameters
Scattering Polarization Atlas

ZIMPOL II Issues

- UV ZIMPOL II with e2v open-electrode CCD works very well down to 300 nm
- Microlenses to avoid loss on mask never worked well for various reasons
- Quantum efficiency limited by front-side illuminated CCD
- Required mask placement accuracy cannot be achieved with commercial backside processing
- No useful extension to infrared detector technology

CMOS Hybrid Concept

- Well-known concept used for infrared arrays
- CMOS readout 'multiplexer'
- IR-sensitive material (e.g. HgCdTe, InSb) connected with indium bumps
- Silicon for visible spectrum (HyViSI from Rockwell Scientific, see talk by Jack Harvey)
- Combines versatility and speed of CMOS sensors with high QE and fill-factor of backside-illuminated, deep-depletion CCDs
- CMOS hybrids work from 200 nm to 20,000 nm

C³Po Pixel

- 8 capacitors per pixel; transistors to demodulate 4 states while previous images are read out
- 18 µm pixel has 6 mio. electron capacity
- Multiplexers with up to 27 transistors per pixel have been built