Lecture 15: Adaptive Optics

Outline

- Seeing
- Concept of Adaptive Optics
- Wavefront Sensing
- Wavefront Correctors
- Adaptive Optics Control
- Laser Guide Stars
- Multi-Conjugate Adaptive Optics

Star with and without AO

http://cfao.ucolick.org/pgallery/stellar.php

Io with and without AO

http://cfao.ucolick.org/pgallery/io.php

• http://cfao.ucolick.org/ao/why.php

Seeing

surface of the Sun

Index of Refraction of Air

- Wavelength dependence of index of refraction about 1+10^-6/ λ^2
- 1 K temperature difference changes n by 1•10⁻⁶
- Temperature of atmosphere is not uniform
- Variation of 0.01K along path of 10km: 10⁴m * 10⁻⁸=10⁻⁴m=100 waves at 10um
- Air is 'achromatic'
- Refractive index of water vapour is less than that of air, moist air has smaller refractive index

The Source of the Problem

- Light from astronomical source travels in straight line through space
- Nonuniform refractive index fluctuation masses of warm or cold air refract light differently
- Different parts of wavefront interfere with each other in image plane
- on the ground, it looks like the astronomical object is at several places in the sky at the same time
- temperature fluctuations change about a hundred times per second
- blurred image when telescope could provide much better angular resolution

Distorted Wavefront

Atmospheric Disturbance Analysis

- Kolmogorov theory Strength of turbulence quantified with C_n^2 , the atmospheric structure constant
- Fried's parameter r_0 (limiting useful coherent aperture) varies with C_n^2 , the zenith angle, and the wavelength
- Wavefront can be considered flat over r₀
- Seeing limits resolution to lambda/ r_0
- Sources in different directions will not see the same aberrations unless they are within the isoplanatic patch

The Solution: Adaptive Optics

- wavefront sensor determines wavefront distortion after adaptive/ deformable mirror
- control system directs deformable mirror to compensate distortion
- repeated several hundred times per second

Tip-Tilt Correction

- Simplest correction only corrects image motion
- Center-of-gravity of cross-correlation with reference image to determine image motion (wavefront tilt)

Solar Limb-Tracking Performance

Wavefront Sensing

- Need to measure wavefront shape to control deformable mirror
- Most astronomical AO systems work with point sources

The Hartmann Array

- array of holes
- measure spot offsets to find the tilt of each individual beam
- •Wavefront information not passing through holes is lost - Shack-Hartmann uses lenslet array

Hartmann Mask

Hartmann Mask

CCD Array

Hartmann Wavefront Sensor

Shack-Hartmann Wavefront Sensor

- create a lot of small telescopes using an array of microlenses: subapertures
- measure the position of the star in each subaperture
- deviation from expected position corresponds to local tilt of wavefront distortion

Shack-Hartmann Wavefront Sensor

- Simple tilt measurement Observe beam in focal plane and record focal point offset with quadcell CCD
- Offset proportional to average derivative of wavefront function
- Shack-Hartmann breaks up beam with lenslet array and measures tilt of each part
- Computer control can use reconstruction techniques to find the wavefront that would produce the set of derivatives

Solar Wavefront Sensing

- Left: pupil plane
- Right: image plane of wavefront sensor with sunspot

Deconvolution from Wavefront Sensing

- deconvolution from wavefront sensing provides AO-like results
- 106 subapertures over 1m aperture at 950 nm at McMath-Pierce telescope

Wavefront Sensing

Sunspot wavefront sensor images

Correlating Shack-Hartmann Wavefront

Low-order Adaptive Optics

Deformable Mirrors (DM)

- Mirror with controllable surface shape provides achromatic wavefront correction
- Many technical approaches:
 - Piezo-electric and voice-coil actuators
 - Electrostatic membranes and MEMS
- Up to 4000 actuators

Membrane Deformable Mirror

- micromachined deformable mirror (OKOtech/Flexible Optics) with 37 actuators
- 600-nm thick, 15-mm diameter silicon nitride membrane
- electrostatic actuators

Summation Response

• Simple mirror response model relates shape of mirror to voltage distribution

• Mirror shape formed by combination of actuator voltages is the sum of responses due to each individual actuator

- Assumption breaks down when mirror reaches elastic limit:
 - At combinations of large voltages
 - When voltages vary greatly over spatial range (bumpy surface)

Actuator $A = V_A$

Actuator $B = V_B$

Actuator $A = V_{A,}$ Actuator $B = V_B$

Linear/Voltage-Squared Response

- For individual actuators, mirror function is proportional to voltage squared (electrostatic force is proportional to voltage squared)
- Combining summation and linear/voltagesquared models, the response of the mirror is:

$$\varphi(x,y) = \sum_{k=1}^{37} a_k \varphi_k(x,y)$$

- Accurately describes OKO mirror except for:
 - Large voltages
 - Spatially varying distributions
 - Response near edge of mirror clamping effect introduces non-linear terms

Actuator $B = V_B$

Actuator $B = 4V_B$

Actuator $B = 9V_{R}$

TNO TU/e Deformable Mirror

AO Control

- Analyse wavefront sensor camera image and translate data into wavefront
- Calculate optimum mirror actuator positions
- Must operate at about 1kHz

Computer Control

•performs centroid (center of gravity) calculation on each spot:

- Program must know approximate spot location to avoid integrating over other spots only include spots in fixed integration areas
- Threshold clipping:
 - Only pixels above intensity threshold are integrated
 - Threshold subtracted from intensities to reduce background noise

Finding Spot Offsets

Mathematical Representation for 37 Actuators and 36 subapertures

- Save computation time by ignoring wavefront shape
- Derivatives of mirror surface *and* individual spot offsets are proportional to squared voltage
- Consider each spot's relationship to each actuator:

$$c_n = \sum_{k=1}^{37} a_k b_{nk}$$
 (For a single spot – x-offset or y-offset)

 Combine above equations for each spot offset n to form a matrix equation:

$$C = BA$$

- C = 72 element vector listing spot offsets
- A = Control Vector 37 element vector listing the squared voltages)
- B = Influence matrix 72 by 37 matrix describing the influence of specific actuator voltages on the spot offsets.

Measuring the Influence Matrix

• For AO, need to know voltages that will correct the given spot positions — must solve for A (control vector) given C (spot offsets)

• First find B (influence matrix), possible through direct measurement and experimentation:

• Step each actuator k through the possible voltages and measure the spot locations at each step

• For the k^{th} actuator and the n^{th} spot coordinate, the slope of the best fit line is the element (n, k) of the influence matrix B

Influence

 matrix gives the
 resulting spot
 offsets when
 multiplied by a
 control vector
 (list of squared
 voltages)

Actuator 1, Trial 1, Spot 17 (horizontal) r = .988

Solving for the Control Vector

- Influence matrix is known and C is given from wavefront sensor need to find A (control vector) to correct for the error wavefront
- Need to invert equation C = BA as follows:

 $A = B^{-1}C$

- Overdetermined system:
 - Need to map a 72 dimension space into a 37 dimension space
 - No exact solution A exists for any given set of spot offsets
 - No exact B⁻¹ exists (B is rectangular)
- Singular Value Decomposition: Generates approximate B⁻¹ that won't solve equation, but will represent best solution
- Permits well-behaved system

Solar AO = mostly GLAO

Solar Adaptive Optics Systems

Telescope / AO System	Subap.	Act.	Frequ.	Reconstructor	First light
76-cm DST / Lockheed	19	57	-	Analog	1989
76-cm DST / Low-Order AO	24	97	< 1.6 kHz	24 DSPs	1998
76-cm DST / AO76	76	97	2.5 kHz	40 DSPs	2002
70-cm VTT / KAOS	36	35	955 Hz	8x900MHz Sun	2002
48-cm SVST La Palma	19	19	955 Hz	566 MHz Alpha	1999
1.5-m McMath-Pierce	120-200	37	955 Hz	1 GHz PIII	2002
97-cm SST La Palma	37	37	955 Hz	1.4 GHz Athlon	2003
60-cm BBSO	76	97	2.5 kHz	40 DSPs	2005

\$25,000 AO at 1.5-m McMath-Pierce

- **Low-cost system for infrared 1-20 μm at world's largest solar telescope**
- □ 110-150 subapertures
- □ 37 actuator Okotech mirror
- PC/Linux based control system

Simple AO Setup

• Operating System Considerations • Regular Linux is good enough if soft-realtime scheduling is used


```
#include <sched.h> /* for sched_setscheduler soft-realtime behavior */
...
// variable for soft realtime scheduling
struct sched_param *p;
...
/* set soft real-time scheduling */
sched getparam(0,p);
p->sched priority = 50;
if (sched setscheduler(0,SCHED FIFO,p))
fprintf(stderr,"Could not change scheduler settings\n");
```

Wavefront Sensor Adjustment

In the second se		- D X	Transmission, 957 & 677 75
255 132 39 0 190 253 107 255 255 255 255 255 255 255 255 100 91 211 74 99 144 142 250 190 ras subspecture shifts 0 290000 0 291072	163 217 255 0 156 171 255 110 101 141 178 194 245	0 168 2	
255 132 39 0 198 253 187 255 255 255 255 255 255 255 255 255 25	183 217 255 0 156 171 255 110 101 141 178 194 345	0 188	
255 132 39 0 198 253 187 255 255 255 255 255 255 255 255 188 91 211 74 99 144 142 250 198	103 217 255 0 156 171 255 110 101 141 178 194 245	0 100	
255 132 39 0 198 253 187 255 255 255 255 255 255 255 255 188 91 211 74 99 144 142 250 19	183 217 255 0 156 171 255 110 101 141 170 194 245	0 199	
rms subaperture shifts 0.298889 0.293872 255 132 39 0 198 253 187 255 255 255 255 255 255 188 91 211 74 99 144 142 250 198	183 217 255 0 156 171 255 110 101 141 178 194 245	0 189	
ras subspecture shifts 0.290889 0.293872 255 132 39 0 198 253 187 255 255 255 255 255 255 188 91 211 74 99 144 142 250 198	183 217 255 0 156 171 255 110 101 141 178 194 245	0 188	
rms subaperture shifts 0.296889 0.293872 255 132 39 0 198 253 187 255 255 255 255 255 255 188 91 211 74 99 144 142 250 196	183 217 255 0 156 171 255 110 101 141 178 194 245	0 188	
ras subspecture shifts 0.298899 0.293872 255 132 39 0 198 253 187 255 255 255 255 255 255 188 91 211 74 99 144 142 250 199 0	183 217 255 0 156 171 255 110 101 141 178 194 245	0 189	
wooddformed - Animal Andrew Statistics			roct@rap1_/roct
<pre>>> V current wideo source is 0, sources are: raw data 0 calibrated dats 1 enter new source 0 current display brightness is 0, enter new w ourrent display contrast is 1, enter new w >> M current sode is 0, modes are defined as: adjust wavefront sensor comers 0 select subspectures or comers 1 pishele wavefront sensor calibration 2 deformable mirror influence function 3 normal wavefront operation 4 enter new mode 4</pre>	value. 0 alus 2	2	[keller@irmol ~]\$ xwd > xdD

Subaperture Selection

Toot@vao1. /home/kellen/bfg/wysbaff	- E X	Frames/sec. 352.4 (877.7)
rms subsperture shifts 0 290809 0.293672 255 132 39 0 198 253 187 255 255 255 255 183 217 255 0 156 171 255 255 255 188 91 211 74 99 144 142 250 198 110 101 141 178 194 245 tiltx-0 7272 tilty-0 3520 int-17 3, max= 89, rms-10 2057, minese=4251 109 subspertures, 109 useful	0 168 2	
ras subspecture shifts 0.298899 0.291870 255 132 39 0 198 253 187 255 255 255 183 217 255 0 156 171 255 255 255 188 91 211 74 99 144 142 250 198 110 101 141 178 194 245 tiltz=0.7272, tilty=0.3520, int=17.3, max= 90, rms=10 2067, minase=4287 109 subspectures, 109 useful	0 100	
The subspecture shifts 0 290809 0 201877 255 132 39 0 198 253 187 255 255 255 255 183 217 255 0 156 171 255 255 255 188 91 211 74 99 144 142 250 198 110 101 141 178 194 245 tiltx-0 7272, tilty-0 3520, int-17 1, max- 89, rms-10 2057, minsae-4273 109 subspectures, 109 useful	0 189	
255 132 39 0 198 253 107 255 255 255 183 217 255 0 156 171 255 255 132 39 0 198 253 107 255 255 255 183 217 255 0 156 171 255 255 255 188 91 211 74 99 144 142 250 198 110 101 141 178 194 245 tiltz=0 7272, tilty=0 3520, int=16 8, max= 89, rms=10 2057, minase=4207 109 subspectures, 109 useful	0 168	
255 132 39 0 198 253 187 255 255 255 183 217 255 0 156 171 255 255 255 188 91 211 74 99 144 142 250 198 110 101 141 178 194 245 0	0 169	
👼 root@raot. /howe/keler/ofg/systat	_ = ×	root@iraol:/root
current mode is 0. modes are defined as adjust wavefront sensor camera: 0 select subspertures: or camera: 1 pinhals wavefront sensor calibration 2 deformable mirror influence function 3 mormal wavefront sensor camera 4 > > M current mode is 4. modes are defined as adjust wavefront sensor camera 0 select subspertures: or camera 1 pinhals wavefront sensor calibration 2 deformable mirror influence function 3 mormal wavefront sensor camera 4 enter new mode 0 > > M current mode is 0. modes are defined as adjust wavefront sensor camera 1 pinhals wavefront sensor camera 4 enter new mode 4 > > M current new mode 4 > > M	4	<pre>[keller@irsol ~]5 xwd > xd2 [keller@irsol ~]5 xwd > xd2</pre>

Code Snippet

movq	(%1), %%mm1
psadbw	(%2), %%mm1
movq	8(%1), %%mm0
psadbw	8(%2), %%mm0
paddw	%% mm0, %% mm1
movq	16(%1), %%mm0
psadbw	16(%2), %%mm0

- movq instruction moves 8 pixels simultaneously into MMX register
- **psadbw:** sum of absolute differences of 8 pixels with 8 pixels of reference, every 2.5 clock cycles
- But Pentium III can only load 1 byte per clock cycle (on average)
- Performance is limited by I/O limit, not by processing power!

Jan. 22, 2003, First Thermal IR Light

- Median seeing conditions
- 4.8 µm imaging of sunspot close to limb, 0.8 arcsec diffraction limit
- Wavefront sensing at 900 nm
- 955 Hz update rate, 107 subapertures

- Below median seeing conditions
- 4.8 µm spectra of CO emission at limb, 0.8 arcsec diffraction limit
- Wavefront sensing at 900 nm
- 955 Hz update rate, 100 subapertures
- Integrated over 30 frames, about 20 seconds in time

Solar AO Used at Night: Vega

Keller and Plymate, 2 March 2005

• FWHM reduced from 0.7 to 0.17 arcsec

Mercury During the Day

Keller and Plymate, 9 March 2005

- requires sky background subtraction
- consistent high resolution, ideal for integral field spectroscopy
- two Mercury space missions

AO76 at Dunn Solar Telescope

Rimmele and Richards

KAOS at 70-cm VTT in Tenerife

1-m Swedish Solar Telescope

G-Band, 15 July 2002, Swedish 1-m Solar Telescope

00:00:00

distance in units of 1000 kilometers Scharmer, Gudiksen, Kiselman, Löfdahl, Rouppe van der Voort

Laser Guide Star

- Isoplanatic patch is relatively small (~10 arcsec)
- Most areas on the sky do not have adequately bright guide star within isoplanatic patch
- Artificial stars:
 - Excite sodium layer at about 90 km
 - Rayleigh scattering in first few km

Wavefront Estimates

- Reconstruction occurs on small segments
- Segment size comparable to isoplanatic patch
- Wavefront is estimated for each segment
- Object estimates of segment are combined into a single image

Isoplanatic Patch Size

MCAO at the National Solar Observatory

- Proof of concept experiment in 2004
- □ 3 guide structures, tomographic approach
- □ Uses existing AO76 hardware (97 actuator Xinetics mirror, 76 subapertures)
 - ^r 2 DMs at 0 km, 2 km
 - Flexible WFS camera accommodates multiple fields per subaperture (fewer subapertures, 24 MCAO vs. 76 conv. AO)

Rimmele et al.

Results of NSO/DST Tests

Residual image motion roughly measures AO correction in FOV (~90")

Rimmele et al.

- □ MCAO control loop needs work far from optimal
- □ 2nd DM at a higher conjugate (>10km) re-work optical setup
- □ More detailed performance analysis comparison to model predictions
- Excellent test-bed for MCAO development

Kiepenheuer Institute for Solar Physics MCAO

focus

- Conventional AO with 35 actuator LaPlacian Optics
- Permanent MCAO setup in Optics Lab with 2 DMs
- 0, 12 km conjugate
- High Order WFS:
 - 36 subapertures
 - single 12" field
 - 35 cross correlations
 - 70 shift values
- Low Order WFS:
 - 7 subapertures, 20["] fields
 - 19 subfields per subaperture
 - 133 cross correlations pupil
 - 266 shift values
- Loop closed in 2003
- Moving shadows discovered

Berkefeld et al.

KIS MCAO Performance

Subfield image jitter

MCAO off : rms = 0.2 arcsec

MCAO on : rms = 0.09 arcsec

Low-order AO Properties

- 76-cm telescope aperture
- median seeing: 7 cm at 600 nm
- 24 subaperture Shack-Hartmann
- 80 by 80 PixelVision camera
- 1600 Hz frame/update rate
- 97-element Xinetics mirror

With AO

Without AO