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Very Large Array (VLA), New Mexico, USA

Image courtesy of NRAO/AUI
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Cygnus A at 6 cm

Image courtesy of NRAO/AUI
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Plane-Wave Solutions

Plane Vector Wave ansatz: ~E = ~E0ei(~k ·~x−ωt)

~k spatially and temporally constant wave vector
~k normal to surfaces of constant phase
|~k | wave number
~x spatial location
ω angular frequency (2π× frequency)
t time

~E0 a (generally complex) vector independent of time and space
real electric field vector given by real part of ~E

Scalar Wave

electric field at position ~r at time t is Ẽ(~r , t)
complex notation to easily express amplitude and phase
real part of complex quantity is the physical quantity
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Interference

Young’s Double Slit
Experiment

monochromatic wave
infinitely small holes (pinholes)
source S generates fields
Ẽ(~r1, t) ≡ Ẽ1(t) at S1 and
Ẽ(~r2, t) ≡ Ẽ2(t) at S2

two spherical waves from pinholes
interfere on screen
electrical field at P

ẼP(t) = C̃1Ẽ1(t − t1) + C̃2Ẽ2(t − t2)

t1 = r1/c, t2 = r2/c
r1, r2: path lengths from S1, S2 to P
propagators C̃1,2 = i

λ
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no tilt tilt by 0.5 λ/d

Change in Angle of Incoming Wave

phase of fringe pattern changes, but not fringe spacing
tilt of λ/d produces identical fringe pattern
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long wavelength short wavelength wavelength average

Change in Wavelength

fringe spacing changes, central fringe broadens
integral over 0.8 to 1.2 of central wavelength
intergral over wavelength makes fringe envelope
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Visibility
“quality” of fringes described by Visibility function

V =
Imax − Imin

Imax + Imin

Imax, Imin are maximum and adjacent minimum in fringe pattern

First Fringes from VLT Interferometer
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Coherence

Mutual Coherence
total field in point P

ẼP(t) = C̃1Ẽ1(t − t1) + C̃2Ẽ2(t − t2)

irradiance at P, averaged over time (expectation operator E)

I = E|ẼP(t)|2 = E
{

ẼP(t)Ẽ∗
P(t)

}
writing out all the terms

I = C̃1C̃∗
1E
{

Ẽ1(t − t1)Ẽ∗
1 (t − t1)

}
+ C̃2C̃∗

2E
{

Ẽ2(t − t2)Ẽ∗
2 (t − t2)

}
+C̃1C̃∗

2E
{

Ẽ1(t − t1)Ẽ∗
2 (t − t2)

}
+ C̃∗

1C̃2E
{

Ẽ∗
1 (t − t1)Ẽ2(t − t2)

}
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Mutual Coherence (continued)
as before

I = C̃1C̃∗
1E
{

Ẽ1(t − t1)Ẽ∗
1 (t − t1)

}
+ C̃2C̃∗

2E
{

Ẽ2(t − t2)Ẽ∗
2 (t − t2)

}
+C̃1C̃∗

2E
{

Ẽ1(t − t1)Ẽ∗
2 (t − t2)

}
+ C̃∗

1C̃2E
{

Ẽ∗
1 (t − t1)Ẽ2(t − t2)

}
stationary wave field, time average independent of absolute time

IS1 = E
{

Ẽ1(t)Ẽ∗
1 (t)

}
, IS2 = E

{
Ẽ2(t)Ẽ∗

2 (t)
}

irradiance at P is now

I = C̃1C̃∗
1 IS1 + C̃2C̃∗

2 IS2

+C̃1C̃∗
2E
{

Ẽ1(t − t1)Ẽ∗
2 (t − t2)

}
+ C̃∗

1C̃2E
{

Ẽ∗
1 (t − t1)Ẽ2(t − t2)

}
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Mutual Coherence (continued)
as before

I = C̃1C̃∗
1 IS1 + C̃2C̃∗

2 IS2

+C̃1C̃∗
2E
{

Ẽ1(t − t1)Ẽ∗
2 (t − t2)

}
+ C̃∗

1C̃2E
{

Ẽ∗
1 (t − t1)Ẽ2(t − t2)

}
time difference τ = t2 − t1 ⇒ last two terms become

C̃1C̃∗
2E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}
+ C̃∗

1C̃2E
{

Ẽ∗
1 (t + τ)Ẽ2(t)

}
equivalent to

2 Re
[
C̃1C̃∗

2E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}]
propagators C̃ purely imaginary: C̃1C̃∗

2 = C̃∗
1C̃2 = |C̃1||C̃2|

cross-term becomes 2|C̃1||C̃2|Re
[
E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}]
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Mutual Coherence (continued)
irradiance at P

I = C̃1C̃∗
1 IS1 + C̃2C̃∗

2 IS2

+2|C̃1||C̃2|Re
[
E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}]
mutual coherence function of wave field at S1 and S2

Γ̃12(τ) = E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}
therefore I = |C̃1|2IS1 + |C̃2|2IS2 + 2|C̃1||C̃2| Re Γ̃12(τ)

I1 = |C̃1|2IS1 , I2 = |C̃2|2IS2 : irradiances at P from single aperture

I = I1 + I2 + 2|C̃1||C̃2| Re Γ̃12(τ)
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Self-Coherence
S1 = S2 ⇒ mutual coherence function = autocorrelation

Γ̃11(τ) = R̃1(τ) = E
{

Ẽ1(t + τ)Ẽ∗
1 (t)

}
Γ̃22(τ) = R̃2(τ) = E

{
Ẽ2(t + τ)Ẽ∗

2 (t)
}

autocorrelation functions are also called self-coherence functions
for τ = 0

IS1 = E
{

Ẽ1(t)Ẽ∗
1 (t)

}
= Γ11(0) = E

{
|Ẽ1(t)|2

}
IS2 = E

{
Ẽ2(t)Ẽ∗

2 (t)
}

= Γ22(0) = E
{
|Ẽ2(t)|2

}
autocorrelation function with zero lag (τ = 0) represent (average)
irradiance (power) of wave field at S1, S2
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Complex Degree of Coherence

using selfcoherence functions

|C̃1||C̃2| =

√
I1
√

I2√
Γ11(0)

√
Γ22(0)

normalized mutual coherence defines the complex degree of
coherence

γ̃12(τ) ≡ Γ̃12(τ)√
Γ11(0)Γ22(0)

=
E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}
√

E
{
|Ẽ1(t)|2

}
E
{
|Ẽ2(t)|2

}
irradiance in point P as general interference law for a partially
coherent radiation field

I = I1 + I2 + 2
√

I1I2 Re γ̃12(τ)
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Spatial and Temporal Coherence
complex degree of coherence

γ̃12(τ) ≡ Γ̃12(τ)√
Γ11(0)Γ22(0)

=
E
{

Ẽ1(t + τ)Ẽ∗
2 (t)

}
√

E
{
|Ẽ1(t)|2

}
E
{
|Ẽ2(t)|2

}
measures both

spatial coherence at S1 and S2
temporal coherence through time lag τ

γ̃12(τ) is a complex variable and can be written as:

γ̃12(τ) = |γ̃12(τ)|eiψ12(τ)

0 ≤ |γ̃12(τ)| ≤ 1
phase angle ψ12(τ) relates to

phase angle between fields at S1 and S2
phase angle difference in P resulting in time lag τ
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Coherence of Quasi-Monochromatic Light

quasi-monochromatic light, mean wavelength λ, frequency ν,
phase difference φ due to optical path difference:

φ =
2π
λ

(r2 − r1) =
2π
λ

c(t2 − t1) = 2πντ

with phase angle α12(τ) between fields at pinholes S1, S2

ψ12(τ) = α12(τ)− φ

and
Re γ̃12(τ) = |γ̃12(τ)| cos [α12(τ)− φ]

intensity in P becomes

I = I1 + I2 + 2
√

I1I2 |γ̃12(τ)| cos [α12(τ)− φ]
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Visibility of Quasi-Monochromatic, Partially Coherent Light
intensity in P

I = I1 + I2 + 2
√

I1I2 |γ̃12(τ)| cos [α12(τ)− φ]

maximum, minimum I for cos(...) = ±1
visibility V at position P

V =
2
√

I1
√

I2
I1 + I2

|γ̃12(τ)|

for I1 = I2 = I0

I = 2I0 {1 + |γ̃12(τ)| cos [α12(τ)− φ]}
V = |γ̃12(τ)|
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Interpretation of Visibility
for I1 = I2 = I0

I = 2I0 {1 + |γ̃12(τ)| cos [α12(τ)− φ]}
V = |γ̃12(τ)|

modulus of complex degree of coherence = visibility of fringes
modulus can therefore be measured
shift in location of central fringe (no optical path length
difference, φ = 0) is measure of α12(τ)

measurements of visibility and fringe position yield amplitude
and phase of complex degree of coherence
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Two-Element Interferometer

Fringe Pattern

for I1 = I2 = I0

I = 2I0 {1 + |γ̃12(τ)| cos [α12(τ)− φ]} V = |γ̃12(τ)|

source S on central axis, fully coherent waves from two holes

I = 2I0(1 + cosφ) = 4I0 cos2 φ

2
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Fringe Pattern (continued)

I = 4I0 cos2 φ

2

φ =
2π
λ

(r2 − r1) = 2πντ

distance a between pinholes
distance s to observation plane ΣO, s � a
path difference (r2 − r1) in equation for φ in good approximation

r2 − r1 = aθ =
a
s

y

and therefore
I = 4I0 cos2 πay

sλ
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Interference Fringes from Monochromatic Point Source

irradiance as a function of the y -coordinate of the fringes in
observation plane ΣO

irradiance vs. distance distribution is Point-Spread Function
(PSF) of ideal two-element interferometer
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Diffraction

Huygens-Fresnel Principle

en.wikipedia.org/wiki/File:Refraction_on_an_aperture_-_Huygens-Fresnel_principle.svg

every unobstructed point of a wavefront at a given moment in
time serves as a source of spherical, secondary waves with the
same frequency as the primary wave
the amplitude of the optical field at any point beyond is the
coherent superposition of all these secondary, spherical waves

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl ATI 2010 Lecture 5: Interference, Diffraction and Fourier Theory 22

http://en.wikipedia.org/wiki/File:Refraction_on_an_aperture_-_Huygens-Fresnel_principle.svg


Diffraction

www.smkbud4.edu.my/Data/sites/vschool/phy/wave/diffraction.htm

if obstructing structures are small compared to the wavelength,
waves will spread out⇒ diffraction
really need to solve wave equation with boundary constraints⇒
riguorous solution for only a few special cases
various numerical ways to solve such problems (e.g. Rigorous
Coupled Wave Analysis)
Huygens-Fresnel is useful for most applications

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl ATI 2010 Lecture 5: Interference, Diffraction and Fourier Theory 23

http://www.smkbud4.edu.my/Data/sites/vschool/phy/wave/diffraction.htm


Fraunhofer and Fresnel Diffraction

en.wikipedia.org/wiki/File:Fraunhofer_diffraction_pattern_image.PNG

wave shape changes as it moves away from obstruction
Fresnel (or near-field) diffraction close to obstruction
em Fraunhofer (or far-field) diffraction far away from obstruction
rule of thumb: Frauenhofer diffraction for

R > a2/λ

a greatest width of obscuration
λ wavelength
R greater of distance between source/detector and obscuration
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Slit Diffraction

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html

diffraction of a plane wave on a slit aperture
Huygens-Fresnel: line of spherical wave sources
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Slit Diffraction

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html

with E0 the strength of each slit segment i at point P is

Ei(P) =
EL

ri
sin(kω − kri)∆yi

i segment index (1−M)
EL source strength per unit length
ri distance between segment and point P

∆yi small segment of slit
D length of slit
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Fraunhofer Diffraction at Single Slit
integrate along slit

E = EL

∫ D/2

−D/2

sinωt − kr
r

dy

express r as a function of y :

r = R − y sin θ +
y2

2R
cos2 θ + ...

R distance between center of slit and point P
substituting, integrating and squaring for intensity:

I(θ) = I(0)

(
sinβ
β

)2

β = (kD/2) sin θ
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Interpretation of Single Slit Diffraction

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html

assume infinite distance from aperture for source and
observation plane
equivalent to plane waves coming from aperture into different
directions
first minimum when phase delay at edge is exactly one wave
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Fraunhofer Diffraction at Circular Aperture
integrate over circular aperture with radius a

E =
EAei(ωt−kR)

R

∫ ∫
aperture

eik(Yy+Zz)/RdS

using polar coordinates in aperture and plane of observation and
Bessel functions

I(θ) = I(0)

(
2J1(ka sin θ)

ka sin θ

)2

J1 Bessel function of order 1
Airy function
first dark ring at 1.22Rλ

2a

images with perfect telescopes are convolution of Airy disk with
actual image
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Fourier Optics

Arbitrary Diffracting Aperture

from before forgetting common phase term and 1/R amplitude
drop-off

E(Y ,Z ) =

∫ ∫
aperture

A(y , z)eik(Yy+Zz)/RdS

complex aperture function A(y , z) describing non-uniform
absorption and phase delays
finite aperture⇒ change integration boundaries to infinity
with ky = kY/R and kz = kZ/R we obtain

E(ky , kz) =

∫ ∫
aperture

A(y , z)ei(ky y+kzz)dy dz

field distribution in Fraunhofer diffraction pattern is Fourier
transform of field distribution across aperture
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Transfer Functions

Introduction
linear black box system
measure response to delta function input (transfer function)
express output as convolution between input signal and transfer
function

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl ATI 2010 Lecture 5: Interference, Diffraction and Fourier Theory 31



Point-Spread Function
intensity is modulus squared of field distribution⇒ point-spread
function
image of a point source: Point Spread Function (PSF)
image of arbitrary object is a convolution of object with PSF

i = o ∗ s

i observed image
o true object, constant in time
s point spread function
∗ convolution
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Optical Transfer Function
after Fourier transformation:

I = O · S

Fourier transformed
I Fourier transform of image

O Fourier transform of object
S Optical Transfer Function (OTF)

OTF is Fourier transform of PSF and vice versa
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Modulation Transfer Function (MTF)
is the absolute value of the optical transfer function
describes the amplitude reduction of a sinusoidal source
is the autocorrelation of the aperture function A
OTF = FT−1(PSF) = FT−1(|FT(A)|2) = FT−1(FT(A)·FT(A)∗) = A∗A
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2 pinholes 2 small holes 2 large holes

Finite Hole Diameter
fringe spacing only depends on separation of holes and
wavelength
the smaller the hole, the larger the ’illuminated’ area
fringe envelope is Airy pattern (diffraction pattern of a single
hole)
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Interferometer with Finite Apertures
non-ideal two-element interferometer with finite apertures using
pupil function concept (Observational Astrophysics 1)
optical transfer function (OTF)

OTF = 2
(
λ

R

)2 [
δ(~ζ ) +

1
2
δ
(
~ζ − ~s/λ

)
+

1
2
δ
(
~ζ + ~s/λ

)]
pair of pinholes transmits three spatial frequencies

DC-component δ(~0)
two high frequencies related to length of baseline vector ~s at ±~s/λ

3 spatial frequencies represent three-point sampling of the
uv-plane in 2-d spatial frequency space
complete sampling of uv-plane provides sufficient information to
completely reconstruct original brightness distribution
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Point-Spread Function (PSF)
PSF is Fourier Transform of OTF

δ(~ζ ) ⇔ 1

δ
(
~ζ − ~s/λ

)
⇔ ei2π~θ·~s/λ

δ
(
~ζ + ~s/λ

)
⇔ e−i2π~θ·~s/λ

Point-Spread Function of 2-element interferometer(
λ

R

)2 [
2(1 + cos 2π~θ · ~s/λ)

]
= 4

(
λ

R

)2

cos2 π~θ · ~s/λ

~θ: 2-d angular coordinate vector
attenuation factor (λ/R)2 from spherical expansion
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2-d Brightness Distribution

PSF of single circular aperture PSF of two-element
interferometer, aperture diameter
d = 25 m, length of baseline
vector |~s| = 144 m

double beam interference fringes showing modulation effect of
diffraction by aperture of a single pinhole
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Modulation Effect of Aperture

typical one-dimensional cross-section along uy = 0 of the central
part of the interferogram
visibilities are equal to one, because Imin = 0
|γ̃12(τ)| = 1 for all values of τ and any pair of spatial points, if
and only if the radiation field is strictly monochromatic
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Van Cittert-Zernike Theorem

The Problem

relates brightness distribution of extended source and phase
correlation between two points in radiation field
extended source S incoherent, quasi-monochromatic
positions P1 and P2 in observers plane Σ

Ẽ1(t)Ẽ∗
2 (t) = E{Ẽ1(t)Ẽ∗

2 (t)} = Γ̃12(0)
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The Solution

I(~Ω) is intensity distribution of extended source as function of unit
direction vector ~Ω as seen from observation plane Σ

Γ̃(~r) is coherence function in Σ-plane
vector ~r represents arbitrary baseline
van Cittert-Zernike theorem

Γ̃(~r) =

∫ ∫
source

I(~Ω)e
2πi~Ω.~r
λ d~Ω

I(~Ω) = λ−2
∫ ∫

Σ-plane

Γ̃(~r)e−
2πi~Ω.~r
λ d~r

Γ̃(~r) and I(~Ω) are linked through Fourier transform, except for
scaling with wavelength λ
"true" Fourier transform with conjugate variables ~Ω, ~r/λ,
Fourier pair: I(~Ω) ⇔ Γ̃(~r/λ)
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