Lecture 5: Interference, Diffraction and Fourier Theory

Outline

- **D** Interference
- ² Coherence
- **3** Fringes
- **4** Frauenhofer and Fresnel Diffraction
- **5** Fourier Optics
- **6** Transfer Functions

Very Large Array (VLA), New Mexico, USA

Image courtesy of NRAO/AUI

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl ATI 2010 Lecture 5: Interference, Diffraction and Fourier Theory 2

Cygnus A at 6 cm

Image courtesy of NRAO/AUI

Plane-Wave Solutions

Plane Vector Wave ansatz: $\vec{E} = \vec{E}_0 e^{i(\vec{K} \cdot \vec{x} - \omega t)}$

- \vec{k} spatially and temporally constant *wave vector*
- \overline{k} normal to surfaces of constant phase
- $|k|$ ~*k*| *wave number*
	- \vec{x} spatial location
- ω *angular frequency* (2π× frequency)
- *t* time
- \vec{E}_0 a (generally complex) vector independent of time and space
	- real electric field vector given by real part of \vec{E}

Scalar Wave

- e electric field at position \vec{r} at time *t* is $\vec{E}(\vec{r}, t)$
- complex notation to easily express amplitude and phase
- real part of complex quantity is the physical quantity

Interference

Young's Double Slit **Experiment**

- **o** monochromatic wave
- infinitely small holes (pinholes)
- source *S* generates fields $\tilde{\varphi}(\vec{r}_1,t)\equiv\tilde{\varphi}_1(t)$ at \mathcal{S}_1 and $\tilde{E}(\vec{r}_2,t)\equiv \tilde{E}_2(t)$ at S_2
- two spherical waves from pinholes interfere on screen
- electrical field at *P*

$$
\tilde{E}_P(t) = \tilde{C}_1 \tilde{E}_1(t-t_1) + \tilde{C}_2 \tilde{E}_2(t-t_2)
$$

•
$$
t_1 = r_1/c, t_2 = r_2/c
$$

• r_1 , r_2 : path lengths from S_1 , S_2 to P propagators $\tilde{\mathcal{C}}_{1,2} = \frac{i}{\lambda}$

Change in Angle of Incoming Wave

- phase of fringe pattern changes, but not fringe spacing
- \bullet tilt of λ/d produces identical fringe pattern

Change in Wavelength

- fringe spacing changes, central fringe broadens
- integral over 0.8 to 1.2 of central wavelength
- intergral over wavelength makes fringe envelope

Visibility

"quality" of fringes described by **Visibility function**

$$
V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}
$$

*I*max, *I*min are maximum and adjacent minimum in fringe pattern

First Fringes from VLT Interferometer

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl ATI 2010 Lecture 5: Interference, Diffraction and Fourier Theory

Mutual Coherence

total field in point *P*

$$
\tilde{E}_P(t) = \tilde{C}_1 \tilde{E}_1(t-t_1) + \tilde{C}_2 \tilde{E}_2(t-t_2)
$$

irradiance at *P*, averaged over time (expectation operator **E**)

$$
I = \mathbf{E} |\tilde{E}_P(t)|^2 = \mathbf{E} \left\{ \tilde{E}_P(t) \tilde{E}_P^*(t) \right\}
$$

• writing out all the terms

$$
I = \tilde{C}_1 \tilde{C}_1^* \mathbf{E} \left\{ \tilde{E}_1(t - t_1) \tilde{E}_1^*(t - t_1) \right\} + \tilde{C}_2 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_2(t - t_2) \tilde{E}_2^*(t - t_2) \right\} + \tilde{C}_1 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_1(t - t_1) \tilde{E}_2^*(t - t_2) \right\} + \tilde{C}_1^* \tilde{C}_2 \mathbf{E} \left\{ \tilde{E}_1^*(t - t_1) \tilde{E}_2(t - t_2) \right\}
$$

Mutual Coherence (continued)

• as before

$$
I = \tilde{C}_1 \tilde{C}_1^* \mathbf{E} \left\{ \tilde{E}_1(t - t_1) \tilde{E}_1^*(t - t_1) \right\} + \tilde{C}_2 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_2(t - t_2) \tilde{E}_2^*(t - t_2) \right\} + \tilde{C}_1 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_1(t - t_1) \tilde{E}_2^*(t - t_2) \right\} + \tilde{C}_1^* \tilde{C}_2 \mathbf{E} \left\{ \tilde{E}_1^*(t - t_1) \tilde{E}_2(t - t_2) \right\}
$$

stationary wave field, time average independent of absolute time

$$
I_{S_1} = \mathbf{E}\left\{\tilde{E}_1(t)\tilde{E}_1^*(t)\right\}, \ I_{S_2} = \mathbf{E}\left\{\tilde{E}_2(t)\tilde{E}_2^*(t)\right\}
$$

 \bullet irradiance at *P* is now

$$
I = \tilde{C}_1 \tilde{C}_1^* I_{S_1} + \tilde{C}_2 \tilde{C}_2^* I_{S_2}
$$

$$
+ \tilde{C}_1 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_1(t - t_1) \tilde{E}_2^*(t - t_2) \right\} + \tilde{C}_1^* \tilde{C}_2 \mathbf{E} \left\{ \tilde{E}_1^*(t - t_1) \tilde{E}_2(t - t_2) \right\}
$$

Mutual Coherence (continued)

• as before

$$
I = \tilde{C}_1 \tilde{C}_1^* I_{S_1} + \tilde{C}_2 \tilde{C}_2^* I_{S_2}
$$

+
$$
\tilde{C}_1 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_1(t - t_1) \tilde{E}_2^*(t - t_2) \right\} + \tilde{C}_1^* \tilde{C}_2 \mathbf{E} \left\{ \tilde{E}_1^*(t - t_1) \tilde{E}_2(t - t_2) \right\}
$$

• time difference $\tau = t_2 - t_1 \Rightarrow$ last two terms become

$$
\tilde{C}_1 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_1(t+\tau) \tilde{E}_2^*(t) \right\} + \tilde{C}_1^* \tilde{C}_2 \mathbf{E} \left\{ \tilde{E}_1^*(t+\tau) \tilde{E}_2(t) \right\}
$$

• equivalent to

$$
2\,\text{Re}\left[\tilde{C}_1\tilde{C}_2^*\textbf{E}\left\{\tilde{E}_1(t+\tau)\tilde{E}_2^*(t)\right\}\right]
$$

propagators \tilde{C} purely imaginary: $\tilde{C}_1 \tilde{C}_2^* \ = \ \tilde{C}_1^* \tilde{C}_2 \ = \ |\tilde{C}_1||\tilde{C}_2|$ $\textsf{cross-term becomes } 2|\tilde{C}_1||\tilde{C}_2|Re\left[\mathbf{E}\left\{ \tilde{E}_1(t+\tau)\tilde{E}_2^*(t) \right\} \right],$

Mutual Coherence (continued)

irradiance at *P*

$$
I = \tilde{C}_1 \tilde{C}_1^* I_{S_1} + \tilde{C}_2 \tilde{C}_2^* I_{S_2}
$$

+2|\tilde{C}_1||\tilde{C}_2|Re $\left[\mathbf{E} \left\{ \tilde{E}_1(t+\tau) \tilde{E}_2^*(t) \right\} \right]$

o mutual coherence function of wave field at S_1 and S_2

$$
\tilde{\Gamma}_{12}(\tau) = \mathbf{E}\left\{\tilde{E}_1(t+\tau)\tilde{E}_2^*(t)\right\}
$$

- $\text{therefore } I = |\tilde{C}_1|^2 I_{S_1} + |\tilde{C}_2|^2 I_{S_2} + 2|\tilde{C}_1||\tilde{C}_2|$ *Re* $\tilde{\Gamma}_{12}(\tau)$
- $I_1 = |\tilde{C}_1|^2 I_{S_1}, I_2 = |\tilde{C}_2|^2 I_{S_2}$: irradiances at *P* from single aperture

$$
I = I_1 + I_2 + 2|\tilde{C}_1||\tilde{C}_2| \text{ Re } \tilde{\Gamma}_{12}(\tau)
$$

Self-Coherence

• $S_1 = S_2 \Rightarrow$ mutual coherence function = autocorrelation

$$
\tilde{\Gamma}_{11}(\tau) = \tilde{B}_1(\tau) = \mathbf{E} \left\{ \tilde{E}_1(t + \tau) \tilde{E}_1^*(t) \right\}
$$
\n
$$
\tilde{\Gamma}_{22}(\tau) = \tilde{B}_2(\tau) = \mathbf{E} \left\{ \tilde{E}_2(t + \tau) \tilde{E}_2^*(t) \right\}
$$

autocorrelation functions are also called *self-coherence functions* **•** for $\tau = 0$

$$
I_{S_1} = \mathbf{E} \left\{ \tilde{E}_1(t) \tilde{E}_1^*(t) \right\} = \Gamma_{11}(0) = \mathbf{E} \left\{ |\tilde{E}_1(t)|^2 \right\}
$$

$$
I_{S_2} = \mathbf{E} \left\{ \tilde{E}_2(t) \tilde{E}_2^*(t) \right\} = \Gamma_{22}(0) = \mathbf{E} \left\{ |\tilde{E}_2(t)|^2 \right\}
$$

• autocorrelation function with zero lag ($\tau = 0$) represent (average) irradiance (power) of wave field at S_1 , S_2

Complex Degree of Coherence

using selfcoherence functions

$$
|\tilde{C}_1||\tilde{C}_2| \ = \ \frac{\sqrt{I_1}\sqrt{I_2}}{\sqrt{\Gamma_{11}(0)}\sqrt{\Gamma_{22}(0)}}
$$

normalized mutual coherence defines the **complex degree of coherence**

$$
\tilde{\gamma}_{12}(\tau) = \frac{\tilde{\Gamma}_{12}(\tau)}{\sqrt{\Gamma_{11}(0)\Gamma_{22}(0)}} = \frac{\mathbf{E}\left\{\tilde{E}_1(t+\tau)\tilde{E}_2^*(t)\right\}}{\sqrt{\mathbf{E}\left\{|\tilde{E}_1(t)|^2\right\}\mathbf{E}\left\{|\tilde{E}_2(t)|^2\right\}}}
$$

• irradiance in point *P* as *general interference law for a partially coherent radiation field*

$$
I = I_1 + I_2 + 2\sqrt{I_1I_2} \text{ Re } \tilde{\gamma}_{12}(\tau)
$$

Spatial and Temporal Coherence

• complex degree of coherence

$$
\tilde{\gamma}_{12}(\tau) = \frac{\tilde{\Gamma}_{12}(\tau)}{\sqrt{\Gamma_{11}(0)\Gamma_{22}(0)}} = \frac{\mathbf{E}\left\{\tilde{E}_1(t+\tau)\tilde{E}_2^*(t)\right\}}{\sqrt{\mathbf{E}\left\{|\tilde{E}_1(t)|^2\right\}\mathbf{E}\left\{|\tilde{E}_2(t)|^2\right\}}}
$$

• measures both

- *spatial coherence* at S_1 and S_2
- **•** *temporal coherence* through time lag *τ*
- δ $\tilde{\gamma}_{12}(\tau)$ is a complex variable and can be written as:

$$
\tilde{\gamma}_{12}(\tau) = |\tilde{\gamma}_{12}(\tau)|e^{i\psi_{12}(\tau)}
$$

- \bullet 0 \leq $|\tilde{\gamma}_{12}(\tau)| \leq 1$
- phase angle $\psi_{12}(\tau)$ relates to
	- \bullet phase angle between fields at S_1 and S_2
	- **•** phase angle difference in *P* resulting in time lag τ

Coherence of Quasi-Monochromatic Light

• quasi-monochromatic light, mean wavelength $\overline{\lambda}$, frequency $\overline{\nu}$, phase difference ϕ due to optical path difference:

$$
\phi = \frac{2\pi}{\overline{\lambda}}(r_2 - r_1) = \frac{2\pi}{\overline{\lambda}}c(t_2 - t_1) = 2\pi\overline{\nu}\tau
$$

• with phase angle $\alpha_{12}(\tau)$ between fields at pinholes S_1 , S_2

$$
\psi_{12}(\tau)=\alpha_{12}(\tau)-\phi
$$

and

$$
\textit{Re } \tilde{\gamma}_{12}(\tau) = |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi]
$$

• intensity in *P* becomes

$$
I = I_1 + I_2 + 2\sqrt{I_1 I_2} |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi]
$$

Visibility of Quasi-Monochromatic, Partially Coherent Light

• intensity in P

$$
I = I_1 + I_2 + 2\sqrt{I_1I_2} |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi]
$$

- maximum, minimum *I* for $cos(...) = \pm 1$
- visibility *V* at position *P*

$$
V=\frac{2\sqrt{l_1}\sqrt{l_2}}{l_1+l_2}|\tilde{\gamma}_{12}(\tau)|
$$

• for $I_1 = I_2 = I_0$ *I* = $2I_0 \{1 + |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi] \}$ *V* = $|\tilde{\gamma}_{12}(\tau)|$

Interpretation of Visibility

• for $I_1 = I_2 = I_0$

$$
I = 2I_0 \{1 + |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi] \}
$$

$$
V = |\tilde{\gamma}_{12}(\tau)|
$$

- *modulus of complex degree of coherence = visibility of fringes*
- **o** modulus can therefore be measured
- shift in location of central fringe (no optical path length difference, $\phi = 0$) is measure of $\alpha_{12}(\tau)$
- measurements of visibility and fringe position yield amplitude and phase of complex degree of coherence

Two-Element Interferometer

Fringe Pattern

• for $I_1 = I_2 = I_0$

$$
I = 2I_0 \{ 1 + |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi] \} \quad V = |\tilde{\gamma}_{12}(\tau)|
$$

source *S* on central axis, fully coherent waves from two holes

$$
I = 2I_0(1 + \cos \phi) = 4I_0 \cos^2 \frac{\phi}{2}
$$

Fringe Pattern (continued)

- **o** distance *a* between pinholes
- \bullet distance *s* to observation plane Σ_O , $s \gg a$
- path difference $(r_2 r_1)$ in equation for ϕ in good approximation

$$
r_2 - r_1 = a\theta = \frac{a}{s} y
$$

• and therefore

$$
I = 4I_0 \cos^2 \frac{\pi a y}{s \overline{\lambda}}
$$

Interference Fringes from Monochromatic Point Source

- **•** irradiance as a function of the *y*-coordinate of the fringes in observation plane Σ*^O*
- **•** irradiance vs. distance distribution is Point-Spread Function (PSF) of ideal two-element interferometer

Huygens-Fresnel Principle

en.wikipedia.org/wiki/File:Refraction_on_an_aperture_-_Huygens-Fresnel_principle.svg

- every unobstructed point of a wavefront at a given moment in time serves as a source of spherical, secondary waves with the same frequency as the primary wave
- the amplitude of the optical field at any point beyond is the coherent superposition of all these secondary, spherical waves

Diffraction

www.smkbud4.edu.my/Data/sites/vschool/phy/wave/diffraction.htm

- if obstructing structures are small compared to the wavelength, waves will spread out ⇒ diffraction
- really need to solve wave equation with boundary constraints \Rightarrow riguorous solution for only a few special cases
- various numerical ways to solve such problems (e.g. Rigorous Coupled Wave Analysis)
- Huygens-Fresnel is useful for most applications

Fraunhofer and Fresnel Diffraction

en.wikipedia.org/wiki/File:Fraunhofer_diffraction_pattern_image.PNG

- wave shape changes as it moves away from obstruction
- *Fresnel* (or near-field) diffraction close to obstruction
- **e** em Fraunhofer (or far-field) diffraction far away from obstruction
- rule of thumb: Frauenhofer diffraction for

$$
R > a^2/\lambda
$$

Slit Diffraction

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html

- diffraction of a plane wave on a slit aperture
- Huygens-Fresnel: line of spherical wave sources

Slit Diffraction

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html

with *E*⁰ the strength of each slit segment *i* at point *P* is

$$
E_i(P)=\frac{E_L}{r_i}\sin(k\omega-kr_i)\Delta y_i
$$

- *i* segment index (1 − *M*)
- *E^L* source strength per unit length
	- *rⁱ* distance between segment and point *P*
- ∆*yⁱ* small segment of slit
	-

D length of slit Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Fraunhofer Diffraction at Single Slit

• integrate along slit

$$
E = E_L \int_{-D/2}^{D/2} \frac{\sin \omega t - kr}{r} dy
$$

express *r* as a function of *y*:

$$
r = R - y \sin \theta + \frac{y^2}{2R} \cos^2 \theta + \dots
$$

R distance between center of slit and point *P*

• substituting, integrating and squaring for intensity:

$$
I(\theta) = I(0) \left(\frac{\sin \beta}{\beta} \right)^2
$$

 $\theta = (kD/2) \sin \theta$

Interpretation of Single Slit Diffraction

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html

- assume infinite distance from aperture for source and observation plane
- equivalent to plane waves coming from aperture into different directions
- **•** first minimum when phase delay at edge is exactly one wave

Fraunhofer Diffraction at Circular Aperture

integrate over circular aperture with radius *a*

$$
E = \frac{E_A e^{i(\omega t - kR)}}{R} \int \int_{\text{aperture}} e^{ik(Yy + Zz)/R} dS
$$

using polar coordinates in aperture and plane of observation and Bessel functions

$$
I(\theta) = I(0) \left(\frac{2J_1(ka\sin\theta)}{ka\sin\theta} \right)^2
$$

- *J*¹ Bessel function of order 1
- Airy function
- first dark ring at 1.22 *^R*^λ 2*a*
- images with perfect telescopes are convolution of Airy disk with actual image

Arbitrary Diffracting Aperture

• from before forgetting common phase term and $1/R$ amplitude drop-off

$$
E(Y,Z) = \int \int_{\text{aperture}} A(y,z) e^{ik(Yy+Zz)/R} dS
$$

- complex aperture function *A*(*y*, *z*) describing non-uniform absorption and phase delays
- finite aperture \Rightarrow change integration boundaries to infinity
- with $k_y = kY/R$ and $k_z = kZ/R$ we obtain

$$
E(k_y, k_z) = \int \int_{\text{aperture}} A(y, z) e^{i(k_y y + k_z z)} dy dz
$$

• field distribution in Fraunhofer diffraction pattern is Fourier transform of field distribution across aperture

Introduction

- **o** linear black box system
- measure response to delta function input (transfer function) \bullet
- express output as convolution between input signal and transfer function

Point-Spread Function

- intensity is modulus squared of field distribution ⇒ point-spread function
- image of a point source: *Point Spread Function (PSF)*
- image of arbitrary object is a convolution of object with PSF

$$
i = o * s
$$

- *i* observed image
- *o* true object, constant in time
- *s* point spread function
- ∗ convolution

Optical Transfer Function

• after Fourier transformation:

$$
\mathit{I} = O \cdot S
$$

• Fourier transformed

- *I* Fourier transform of image
- *O* Fourier transform of object
- *S* Optical Transfer Function (OTF)
- **OTF** is Fourier transform of PSF and vice versa

Modulation Transfer Function (MTF)

- is the absolute value of the optical transfer function
- describes the amplitude reduction of a sinusoidal source
- is the autocorrelation of the aperture function A
- $\mathsf{OTF}=\mathsf{FT}^{-1}(\mathsf{PSF})=\mathsf{FT}^{-1}(|\mathsf{FT}(\mathsf{A})|^2)=\mathsf{FT}^{-1}(\mathsf{FT}(\mathsf{A})\cdot\mathsf{FT}(\mathsf{A})^*)=\mathsf{A}*\mathsf{A}$

Finite Hole Diameter

- fringe spacing only depends on separation of holes and wavelength
- the smaller the hole, the larger the 'illuminated' area
- **•** fringe envelope is Airy pattern (diffraction pattern of a single hole)

Interferometer with Finite Apertures

non-ideal two-element interferometer with finite apertures using *pupil function* concept (Observational Astrophysics 1)

• optical transfer function (OTF)

$$
\textit{OTF }= 2 \left(\frac{\lambda}{R} \right)^2 \left[\delta(\vec{\zeta}) + \frac{1}{2} \delta\left(\vec{\zeta} - \vec{s}/\lambda \right) + \frac{1}{2} \delta\left(\vec{\zeta} + \vec{s}/\lambda \right) \right]
$$

• pair of pinholes transmits three spatial frequencies

- DC-component $\delta(\vec{0})$
- two high frequencies related to length of baseline vector \vec{s} at $\pm \vec{s}/\lambda$
- 3 spatial frequencies represent three-point sampling of the **uv-plane** in 2-d spatial frequency space
- complete sampling of uv-plane provides sufficient information to completely reconstruct original brightness distribution

Point-Spread Function (PSF)

PSF is Fourier Transform of OTF

$$
\delta(\vec{\zeta}) \Leftrightarrow 1
$$
\n
$$
\delta(\vec{\zeta} - \vec{s}/\lambda) \Leftrightarrow e^{i2\pi \vec{\theta} \cdot \vec{s}/\lambda}
$$
\n
$$
\delta(\vec{\zeta} + \vec{s}/\lambda) \Leftrightarrow e^{-i2\pi \vec{\theta} \cdot \vec{s}/\lambda}
$$

● Point-Spread Function of 2-element interferometer

$$
\left(\frac{\lambda}{R}\right)^2 \left[2(1+\cos 2\pi \vec{\theta}\cdot \vec{s}/\lambda)\right] \,=\, 4\left(\frac{\lambda}{R}\right)^2 \cos^2 \pi \vec{\theta}\cdot \vec{s}/\lambda
$$

 $\vec{\theta}$: 2-d angular coordinate vector

attenuation factor $(\lambda/R)^2$ from spherical expansion

2-d Brightness Distribution

PSF of single circular aperture PSF of two-element

interferometer, aperture diameter $d = 25$ m, length of baseline vector $|\vec{s}| = 144$ m

• double beam interference fringes showing modulation effect of diffraction by aperture of a single pinhole

Modulation Effect of Aperture

- typical one-dimensional cross-section along $u_y = 0$ of the central part of the interferogram
- visibilities are equal to one, because $I_{min} = 0$
- $|\tilde{\gamma}_{12}(\tau)| = 1$ for all values of τ and any pair of spatial points, if and only if the radiation field is *strictly monochromatic*

Van Cittert-Zernike Theorem

The Problem

- relates brightness distribution of extended source and phase correlation between two points in radiation field
- extended source *S* incoherent, quasi-monochromatic
- **•** positions P_1 and P_2 in observers plane Σ

$$
\tilde{E}_1(t)\tilde{E}_2^*(t) = \mathbf{E}\{\tilde{E}_1(t)\tilde{E}_2^*(t)\} = \tilde{\Gamma}_{12}(0)
$$

The Solution

- \bullet $I(\vec{\Omega})$ is intensity distribution of extended source as function of unit direction vector $\vec{\Omega}$ as seen from observation plane Σ
- $\tilde{\Gamma}(\vec{r})$ is coherence function in Σ-plane
- \bullet vector \vec{r} represents arbitrary baseline
- van Cittert-Zernike theorem

$$
\tilde{\Gamma}(\vec{r}) = \int \int_{\text{source}} I(\vec{\Omega}) e^{\frac{2\pi i \vec{\Omega} \cdot \vec{r}}{\lambda}} d\vec{\Omega}
$$

$$
I(\vec{\Omega}) = \lambda^{-2} \int \int_{\sum_{\text{plane}}} \tilde{\Gamma}(\vec{r}) e^{-\frac{2\pi i \vec{\Omega} \cdot \vec{r}}{\lambda}} d\vec{r}
$$

- \bullet Γ(\vec{r}) and *I*($\vec{Ω}$) are linked through Fourier transform, except for scaling with wavelength λ
- "true" Fourier transform with *conjugate variables* Ω , \vec{r}/λ ,

• Fourier pair:
$$
I(\vec{\Omega}) \Leftrightarrow \tilde{\Gamma}(\vec{r}/\lambda)
$$