Outline

- Polarized Light in the Universe
- Brewster Angle and Total Internal Reflection
- Obscriptions of Polarized Light
- Polarizers
- Retarders

Polarized Light in the Universe

Polarization indicates *anisotropy* \Rightarrow not all directions are equal

Typical anisotropies introduced by

- geometry (not everything is spherically symmetric)
- temperature gradients
- magnetic fields
- electrical fields

Polarized Light from the Big Bang

- Cosmic Microwave Background (CMB) is red-shifted radiation from Big Bang 14×10^9 years ago
- age, geometry, density, of universe from CMB intensity pattern
- first 0.1 seconds from polarization pattern of CMB
- inflation \Rightarrow gravitational waves \Rightarrow polarization signals
- polarization expected at (or below) 10⁻⁶ of intensity

13.7 billion year old temperature fluctuations from WMAP

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Unified Model of Active Galactic Nuclei

Protoplanetary Disk in Scattered Light

ExPo observation of AB Aurigae @ WHT - 825nm filter

Solar Magnetic Field Maps from Longitudinal Zeeman Effect

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Planetary Scattered Light

- solar-system planets show scattering polarization
- much depends on cloud height
- can be used to study exoplanets
- ExPo and EPICS developments at UU

Polarization

- Plane Vector Wave ansatz $\vec{E} = \vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}$
- spatially, temporally constant vector \vec{E}_0 lays in plane perpendicular to propagation direction \vec{k}
- represent \vec{E}_0 in 2-D basis, unit vectors \vec{e}_1 and \vec{e}_2 , both perpendicular to \vec{k}

$$\vec{E}_0 = E_1 \vec{e}_1 + E_2 \vec{e}_2.$$

 E_1, E_2 : arbitrary complex scalars

- damped plane-wave solution with given ω , \vec{k} has 4 degrees of freedom (two complex scalars)
- additional property is called *polarization*
- many ways to represent these four quantities
- if E_1 and E_2 have identical phases, \vec{E} oscillates in fixed plane

Summary of Fresnel Equations

• electric field amplitude transmission $t_{s,p}$, reflection $r_{s,p}$

$$t_{s} = \frac{2\tilde{n}_{1}\cos\theta_{i}}{\tilde{n}_{1}\cos\theta_{i} + \sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}$$

$$t_{p} = \frac{2\tilde{n}_{1}\tilde{n}_{2}\cos\theta_{i}}{\tilde{n}_{2}^{2}\cos\theta_{i} + \tilde{n}_{1}\sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}$$

$$r_{s} = \frac{\tilde{n}_{1}\cos\theta_{i} - \sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}{\tilde{n}_{1}\cos\theta_{i} + \sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}$$

$$r_{p} = \frac{\tilde{n}_{2}^{2}\cos\theta_{i} - \tilde{n}_{1}\sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}{\tilde{n}_{2}^{2}\cos\theta_{i} + \tilde{n}_{1}\sqrt{\tilde{n}_{2}^{2} - \tilde{n}_{1}^{2}\sin^{2}\theta_{i}}}$$

• reflectivity: $R = |r_{s,\rho}|^2$, transmissivity: $T = \frac{|\tilde{n}_2|\cos\theta_t}{|\tilde{n}_1|\cos\theta_t} |t_{s,\rho}|^2$

Brewster Angle

•
$$r_{p} = \frac{\tan(\theta_{i} - \theta_{t})}{\tan(\theta_{i} + \theta_{t})} = 0$$
 when $\theta_{i} + \theta_{t} = \frac{\pi}{2}$

- corresponds to *Brewster angle* of incidence of $\tan \theta_B = \frac{n_2}{n_1}$
- occurs when reflected wave is perpendicular to transmitted wave
- reflected light is completely s-polarized
- transmitted light is moderately polarized

Total Internal Reflection (TIR)

- Snell's law: $\sin \theta_t = \frac{n_1}{n_2} \sin \theta_i$
- wave from high-index medium into lower index medium (e.g. glass to air): n₁/n₂ > 1
- right-hand side > 1 for $\sin \theta_i > \frac{n_2}{n_1}$
- all light is reflected in high-index medium ⇒ total internal reflection
- $\bullet\,$ transmitted wave has complex phase angle $\Rightarrow\,$ damped wave along interface

Phase Change on Total Internal Reflection (TIR)

- TIR induces phase change that depends on polarization
- o complex ratios:
 - $r_{s,p} = |r_{s,p}|e^{i\delta_{s,p}}$
- phase change $\delta = \delta_s \delta_p$

$$\tan \frac{\delta}{2} = \frac{\cos \theta_i \sqrt{\sin^2 \theta_i - \left(\frac{n_2}{n_1}\right)^2}}{\sin^2 \theta_i}$$

- relation valid between critical angle and grazing incidence
- for critical angle and grazing incidence, phase difference is zero

Polarization Ellipse

Polarization

 $ec{E}\left(t
ight)=ec{E}_{0}e^{i\left(ec{k}\cdotec{x}-\omega t
ight)}$

$$\vec{E}_0 = E_1 e^{i\delta_1} \vec{e}_x + E_2 e^{i\delta_2} \vec{e}_y$$

- wave vector in *z*-direction
- \vec{e}_x , \vec{e}_y : unit vectors in x, y
- *E*₁, *E*₂: (real) amplitudes
- $\delta_{1,2}$: (real) phases

Polarization Description

- 2 complex scalars not the most useful description
- at given \vec{x} , time evolution of \vec{E} described by *polarization ellipse*
- ellipse described by axes \pmb{a}, \pmb{b} , orientation ψ

Jones Formalism

Jones Vectors

$$ec{E}_0 = E_x ec{e}_x + E_y ec{e}_y$$

- beam in z-direction
- \vec{e}_x , \vec{e}_y unit vectors in x, y-direction
- complex scalars $E_{x,y}$
- Jones vector

$$\vec{e} = \left(\begin{array}{c} E_x \\ E_y \end{array}
ight)$$

- phase difference between *E_x*, *E_y* multiple of π, electric field vector oscillates in a fixed plane ⇒ *linear polarization*
- phase difference $\pm \frac{\pi}{2} \Rightarrow$ *circular polarization*

Summing and Measuring Jones Vectors

$$ec{ar{f E}}_0 = E_X ec{m e}_X + E_Y ec{m e}_Y$$
 $ec{m e} = \left(egin{array}{c} E_X \ E_Y \end{array}
ight)$

- Maxwell's equations linear ⇒ sum of two solutions again a solution
- Jones vector of sum of two waves = sum of Jones vectors of individual waves if wave vectors k the same
- addition of Jones vectors: coherent superposition of waves
- elements of Jones vectors are not observed directly
- observables always depend on products of elements of Jones vectors, i.e. intensity

$$I = \vec{e} \cdot \vec{e}^* = e_x e_x^* + e_y e_y^*$$

16

Jones matrices

 influence of medium on polarization described by 2 × 2 complex Jones matrix J

$$ec{e}' = \mathsf{J}ec{e} = \begin{pmatrix} J_{11} & J_{12} \ J_{21} & J_{22} \end{pmatrix} ec{e}$$

- assumes that medium not affected by polarization state
- different media 1 to N in order of wave direction ⇒ combined influence described by

$$J = J_N J_{N-1} \cdots J_2 J_1$$

- order of matrices in product is crucial
- Jones calculus describes coherent superposition of polarized light

Linear PolarizationCircular• horizontal:
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
• left:• vertical: $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ • right• 45°: $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Circular Polarization
• left:
$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$$

• right: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$

Notes on Jones Formalism

- Jones formalism operates on amplitudes, not intensities
- coherent superposition important for coherent light (lasers, interference effects)
- Jones formalism describes 100% polarized light

Stokes and Mueller Formalisms

Stokes Vector

- formalism to describe polarization of quasi-monochromatic light
- directly related to measurable intensities
- Stokes vector fulfills these requirements

$$\vec{I} = \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} E_x E_x^* + E_y E_y^* \\ E_x E_x^* - E_y E_y^* \\ E_x E_y^* + E_y E_x^* \\ i (E_x E_y^* - E_y E_x^*) \end{pmatrix} = \begin{pmatrix} E_1^2 + E_2^2 \\ E_1^2 - E_2^2 \\ 2E_1 E_2 \cos \delta \\ 2E_1 E_2 \sin \delta \end{pmatrix}$$

Jones vector elements $E_{x,y}$, real amplitudes $E_{1,2}$, phase difference $\delta = \delta_2 - \delta_1$

• $I^2 \ge Q^2 + U^2 + V^2$

• can describe unpolarized (Q = U = V = 0) light

Stokes Vector Interpretation

$$\vec{l} = \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} \text{intensity} \\ \text{linear } 0^{\circ} - \text{linear } 90^{\circ} \\ \text{linear } 45^{\circ} - \text{linear } 135^{\circ} \\ \text{circular left} - \text{right} \end{pmatrix}$$

degree of polarization

$$P = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}$$

1 for fully polarized light, 0 for unpolarized light

 summing of Stokes vectors = incoherent adding of quasi-monochromatic light waves

Mueller Matrices

• 4×4 real Mueller matrices describe (linear) transformation between Stokes vectors when passing through or reflecting from media

$$\vec{l}' = M\vec{l}$$
,

$$\mathsf{M} = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{pmatrix}$$

• N optical elements, combined Mueller matrix is

$$\mathsf{M}'=\mathsf{M}_N\mathsf{M}_{N-1}\cdots\mathsf{M}_2\mathsf{M}_1$$

Rotating Mueller Matrices

- optical element with Mueller matrix M
- Mueller matrix of the same element rotated by θ around the beam given by

$$\mathsf{M}(heta) = \mathsf{R}(- heta)\mathsf{M}\mathsf{R}(heta)$$

with

$$\mathsf{R}(\theta) = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & \cos 2\theta & \sin 2\theta & 0 \\ 0 & -\sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Vertical Linear Polarizer

Horizontal Linear Polarizer

Mueller Matrix for Ideal Linear Polarizer at Angle θ

$$\mathsf{M}_{\mathrm{pol}}\left(\theta\right) = \frac{1}{2} \begin{pmatrix} 1 & \cos 2\theta & \sin 2\theta & 0\\ \cos 2\theta & \cos^{2} 2\theta & \sin 2\theta \cos 2\theta & 0\\ \sin 2\theta & \sin 2\theta \cos 2\theta & \sin^{2} 2\theta & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Poincaré Sphere

Relation to Stokes Vector

- fully polarized light: $I^2 = Q^2 + U^2 + V^2$
- for *I*² = 1: sphere in *Q*, *U*, *V* coordinate system
- point on Poincaré sphere represents particular state of polarization
- graphical representation of fully polarized light

- polarizer: optical element that produces polarized light from unpolarized input light
- linear, circular, or in general elliptical polarizer, depending on type of transmitted polarization
- linear polarizers by far the most common
- large variety of polarizers

Jones Matrix for Linear Polarizers

Jones matrix for linear polarizer:

$$\mathsf{J}_{oldsymbol{
ho}}=\left(egin{array}{cc} oldsymbol{
ho}_{x} & 0 \ 0 & oldsymbol{
ho}_{y} \end{array}
ight)$$

• $0 \le p_x \le 1$ and $0 \le p_y \le 1$, real: transmission factors for *x*, *y*-components of electric field: $E'_x = p_x E_x$, $E'_y = p_y E_y$

- $p_x = 1$, $p_y = 0$: linear polarizer in +Q direction
- $p_x = 0$, $p_y = 1$: linear polarizer in -Q direction
- $p_x = p_y$: neutral density filter

Mueller Matrix for Linear Polarizers

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

28

Mueller Matrix for Ideal Linear Polarizer at Angle θ

Poincare Sphere

- polarizer is a point on the Poincaré sphere
- transmitted intensity: cos²(1/2), 1 is arch length of great circle between incoming polarization and polarizer on Poincaré sphere

Wire Grid Polarizers

- parallel conducting wires, spacing $d \lesssim \lambda$ act as polarizer
- electric field parallel to wires induces electrical currents in wires
- induced electrical current reflects polarization parallel to wires
- polarization perpendicular to wires is transmitted
- rule of thumb:
 - $d < \lambda/2 \Rightarrow$ strong polarization
 - $d \gg \lambda \Rightarrow$ high transmission of both polarization states (weak polarization)
- mostly used in infrared

Polaroid-type Polarizers

- developed by Edwin Land in 1938 \Rightarrow Polaroid
- sheet polarizers: stretched polyvynil alcohol (PVA) sheet, laminated to sheet of cellulose acetate butyrate, treated with iodine
- PVA-iodine complex analogous to short, conducting wire
- cheap, can be manufactured in large sizes

Crystal-Based Polarizers

- crystals are basis of highest-quality polarizers
- precise arrangement of atom/molecules and anisotropy of index of refraction separate incoming beam into two beams with precisely orthogonal linear polarization states
- work well over large wavelength range
- many different configurations
- calcite most often used in crystal-based polarizers because of large birefringence, low absorption in visible
- many other suitable materials

Retarders or Wave Plates

- retards (delays) phase of one electric field component with respect to orthogonal component
- anisotropic material (crystal) has index of refraction that depends on polarization

Retarder Properties

- does not change intensity or degree of polarization
- characterized by two (not identical, not trivial) Stokes vectors of incoming light that are not changed by retarder ⇒ *eigenvectors* of retarder
- depending on polarization described by eigenvectors, retarder is
 - linear retarder
 - circular retarder
 - elliptical retarder
- linear, circular retarders are special cases of elliptical retarders
- circular retarders sometimes called *rotators* since they rotate the orientation of linearly polarized light
- linear retarders by far the most common type of retarder

Jones Matrix for Linear Retarders

linear retarder with fast axis at 0° characterized by Jones matrix

$$\mathsf{J}_{r}\left(\delta\right) = \left(\begin{array}{cc} e^{i\delta} & 0\\ 0 & 1\end{array}\right), \quad \mathsf{J}_{r}\left(\delta\right) = \left(\begin{array}{cc} e^{i\frac{\delta}{2}} & 0\\ 0 & e^{-i\frac{\delta}{2}}\end{array}\right)$$

- δ: phase shift between two linear polarization components (in radians)
- absolute phase does not matter

Mueller Matrix for Linear Retarder

$$M_r = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \delta & -\sin \delta \\ 0 & 0 & \sin \delta & \cos \delta \end{pmatrix}$$

Quarter-Wave Plate on the Poincaré Sphere

- retarder eigenvector (fast axis) in Poincaré sphere
- points on sphere are rotated around retarder axis by amount of retardation

Variable Retarders

- sensitive polarimeters requires retarders whose properties (retardance, fast axis orientation) can be varied quickly (modulated)
- retardance changes (change of birefringence):
 - liquid crystals
 - Faraday, Kerr, Pockels cells
 - piezo-elastic modulators (PEM)
- fast axis orientation changes (change of *c*-axis direction):
 - rotating fixed retarder
 - ferro-electric liquid crystals (FLC)

Liquid Crystals

- liquid crystals: fluids with elongated molecules
- at high temperatures: liquid crystal is isotropic
- at lower temperature: molecules become ordered in orientation and sometimes also space in one or more dimensions
- liquid crystals can line up parallel or perpendicular to external electrical field

Liquid Crystal Retarders

- dielectric constant anisotropy often large \Rightarrow very responsive to changes in applied electric field
- birefringence δn can be very large (larger than typical crystal birefringence)
- liquid crystal layer only a few μ m thick
- birefringence shows strong temperature dependence