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Electromagnetic Waves

Electromagnetic Waves in Matter
Maxwell’s equations⇒ electromagnetic waves
optics: interaction of electromagnetic waves with matter as
described by material equations
polarization of electromagnetic waves are integral part of optics

Maxwell’s Equations in Matter

∇ · ~D = 4πρ

∇× ~H − 1
c
∂~D
∂t

=
4π
c
~j

∇× ~E +
1
c
∂~B
∂t

= 0

∇ · ~B = 0

Symbols
~D electric displacement
ρ electric charge density
~H magnetic field
c speed of light in vacuum
~j electric current density
~E electric field
~B magnetic induction
t time
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Linear Material Equations

~D = ε~E
~B = µ~H
~j = σ~E

Symbols
ε dielectric constant
µ magnetic permeability
σ electrical conductivity

Isotropic and Anisotropic Media
isotropic media: ε and µ are scalars
anisotropic media: ε and µ are tensors of rank 2
isotropy of medium broken by

anisotropy of material itself (e.g. crystals)
external fields (e.g. Kerr effect)
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Wave Equation in Matter
static, homogeneous medium with no net charges: ρ = 0
for most materials: µ = 1
combine Maxwell, material equations⇒ differential equations for
damped (vector) wave

∇2~E − µε

c2
∂2~E
∂t2 −

4πµσ
c2

∂~E
∂t

= 0

∇2~H − µε

c2
∂2~H
∂t2 −

4πµσ
c2

∂~H
∂t

= 0

damping controlled by conductivity σ
~E and ~H are equivalent⇒ sufficient to consider ~E
interaction with matter almost always through ~E
but: at interfaces, boundary conditions for ~H are crucial
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Plane-Wave Solutions

Plane Vector Wave ansatz ~E = ~E0ei(~k ·~x−ωt)

~k spatially and temporally constant wave vector
~k normal to surfaces of constant phase
|~k | wave number
~x spatial location
ω angular frequency (2π× frequency)
t time

~E0 (generally complex) vector independent of time and space

could also use ~E = ~E0e−i(~k ·~x−ωt)

damping if ~k is complex
real electric field vector given by real part of ~E
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Complex Index of Refraction
temporal derivatives⇒ Helmholtz equation

∇2~E +
ω2µ

c2

(
ε+ i

4πσ
ω

)
~E = 0

dispersion relation between ~k and ω

~k · ~k =
ω2µ

c2

(
ε+ i

4πσ
ω

)
complex index of refraction

ñ2 = µ

(
ε+ i

4πσ
ω

)
, ~k · ~k =

ω2

c2 ñ2

split into real (n: index of refraction) and imaginary parts (k :
extinction coefficient)

ñ = n + ik
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Transverse Waves

plane-wave solution must also fulfill Maxwell’s equations

~E0 · ~k = 0, ~H0 · ~k = 0, ~H0 =
ñ
µ

~k

|~k |
× ~E0

isotropic media: electric, magnetic field vectors normal to wave
vector⇒ transverse waves
~E0, ~H0, and ~k orthogonal to each other, right-handed vector-triple
conductive medium⇒ complex ñ, ~E0 and ~H0 out of phase
~E0 and ~H0 have constant relationship⇒ consider only ~E
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Energy Propagation in Isotropic Media
Poynting vector

~S =
c

4π

(
~E × ~H

)
|~S|: energy through unit area perpendicular to ~S per unit time
direction of ~S is direction of energy flow
time-averaged Poynting vector given by〈

~S
〉

=
c

8π
Re
(
~E0 × ~H∗0

)
Re real part of complex expression
∗ complex conjugate
〈.〉 time average

energy flow parallel to wave vector (in isotropic media)

〈
~S
〉

=
c

8π
|ñ|
µ
|E0|2

~k

|~k |
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Quasi-Monochromatic Light
monochromatic light: purely theoretical concept
monochromatic light wave always fully polarized
real life: light includes range of wavelengths⇒
quasi-monochromatic light
quasi-monochromatic: superposition of mutually incoherent
monochromatic light beams whose wavelengths vary in narrow
range δλ around central wavelength λ0

δλ

λ
� 1

measurement of quasi-monochromatic light: integral over
measurement time tm
amplitude, phase (slow) functions of time for given spatial location
slow: variations occur on time scales much longer than the mean
period of the wave
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Polarization of Quasi-Monochromatic Light

electric field vector for quasi-monochromatic plane wave is sum of
electric field vectors of all monochromatic beams

~E (t) = ~E0 (t) ei(~k ·~x−ωt)

can write this way because δλ� λ0

measured intensity of quasi-monochromatic beam〈
~Ex ~E∗x

〉
+
〈
~Ey ~E∗y

〉
= lim

tm−>∞

1
tm

∫ tm/2

−tm/2

~Ex (t)~E∗x (t) + ~Ey (t)~E∗y (t)dt

〈· · · 〉: averaging over measurement time tm
measured intensity independent of time
quasi-monochromatic: frequency-dependent material properties
(e.g. index of refraction) are constant within ∆λ
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Polychromatic Light or White Light

wavelength range comparable wavelength ( δλλ ∼ 1)
incoherent sum of quasi-monochromatic beams that have large
variations in wavelength
cannot write electric field vector in a plane-wave form
must take into account frequency-dependent material
characteristics
intensity of polychromatic light is given by sum of intensities of
constituting quasi-monochromatic beams
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Material Properties

Index of Refraction
complex index of refraction

ñ2 = µ

(
ε+ i

4πσ
ω

)
, ~k · ~k =

ω2

c2 ñ2

no electrical conductivity⇒ real index of refraction
dielectric materials: real index of refraction
conducting materials (metal): complex index of refraction
index of refraction depends on wavelength (dispersion)
index of refraction depends on temperature
index of refraction roughly proportional to density
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Glass Dispersion

http://en.wikipedia.org/wiki/File:Dispersion-curve.png
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Wavelength Dependence of Index of Refraction

tabulated by glass manufacturer
various approximations to express wavelength dependence with a
few parameters
typically index increases with decreasing wavelength
Abbé number:

νd =
nd − 1

nF − nC

nd : index of refraction at Fraunhofer d line (587.6 nm)
nF : index of refraction at Fraunhofer F line (486.1 nm)
nC : index of refraction at Fraunhofer C line (656.3 nm)
low dispersion materials have high values of νd

Abbe diagram: νd vs nd
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Glasses

Abbe-Diagram nd –ννd

Description of Symbols

   N- or P-glass

     Lead containing glass

     N-glass or lead containing glass

     Glass suitable for Precision Molding

     Fused Silica

PSK
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BK K
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F
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KF
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4

KZFS4
52
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4

2
4

16

11

14
5
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3
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5
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1
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7
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6
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Glass Ingredients

http://glassproperties.com/abbe_number
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Internal Transmission

internal transmission per cm
typically strong absorption in the blue and UV
almost all glass absorbs above 2 µm
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Metal Reflectivity

http://commons.wikimedia.org/wiki/File:Image-Metal-reflectance.png
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Electromagnetic Waves Across Interfaces

Introduction
classical optics due to interfaces between 2 different media
from Maxwell’s equations in integral form at interface from
medium 1 to medium 2(

~D2 − ~D1

)
· ~n = 4πΣ(

~B2 − ~B1

)
· ~n = 0(

~E2 − ~E1

)
× ~n = 0(

~H2 − ~H1

)
× ~n = −4π

c
~K

~n normal on interface, points from medium 1 to medium 2
Σ surface charge density on interface
~K surface current density on interface
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Fields at Interfaces

Σ = 0 in general, ~K = 0 for dielectrics
complex index of refraction includes effects of currents⇒ ~K = 0
requirements at interface between media 1 and 2(

~D2 − ~D1

)
· ~n = 0(

~B2 − ~B1

)
· ~n = 0(

~E2 − ~E1

)
× ~n = 0(

~H2 − ~H1

)
× ~n = 0

normal components of ~D and ~B are continuous across interface
tangential components of ~E and ~H are continuous across interface
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Plane of Incidence

plane wave onto interface
incident (i ), reflected (r ), and
transmitted (t ) waves

~E i,r ,t = ~E i,r ,t
0 ei(~k i,r,t ·~x−ωt)

~H i,r ,t =
c
µω

~k i,r ,t × ~E i,r ,t

interface normal ~n ‖ z-axis

spatial, temporal behavior at interface the same for all 3 waves

(~k i · ~x)z=0 = (~k r · ~x)z=0 = (~k t · ~x)z=0

valid for all ~x in interface⇒ all 3 wave vectors in one plane, plane
of incidence
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Snell’s Law

spatial, temporal behavior the
same for all three waves

(~k i ·~x)z=0 = (~k r ·~x)z=0 = (~k t ·~x)z=0∣∣∣~k ∣∣∣ = ω
c ñ

ω, c the same for all 3 waves
Snell’s law

ñ1 sin θi = ñ1 sin θr = ñ2 sin θt
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Monochromatic Wave at Interface

~H i,r ,t
0 =

c
ωµ

~k i,r ,t × ~E i,r ,t
0 , ~Bi,r ,t

0 =
c
ω
~k i,r ,t × ~E i,r ,t

0

boundary conditions for monochromatic plane wave:(
ñ2

1
~E i

0 + ñ2
1
~E r

0 − ñ2
2
~E t

0

)
· ~n = 0(

~k i × ~E i
0 + ~k r × ~E r

0 − ~k t × ~E t
0

)
· ~n = 0(

~E i
0 + ~E r

0 − ~E t
0

)
× ~n = 0(

1
µ1

~k i × ~E i
0 +

1
µ1

~k r × ~E r
0 −

1
µ2

~k t × ~E t
0

)
× ~n = 0

4 equations are not independent
only need to consider last two equations (tangential components
of ~E0 and ~H0 are continuous)
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Two Special Cases

TM, p TE, s

1 electric field parallel to plane of incidence⇒ magnetic field is
transverse to plane of incidence (TM)

2 electric field particular (German: senkrecht) or transverse to plane
of incidence (TE)

general solution as (coherent) superposition of two cases
choose direction of magnetic field vector such that Poynting vector
parallel, same direction as corresponding wave vector
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Electric Field Perpendicular to Plane of Incidence

E
i

E
r

E
t

H
i

H
r

H
t

θr = θi

ratios of reflected and transmitted to incident wave amplitudes

rs =
E r

0
E i

0
=

ñ1 cos θi − µ1
µ2

ñ2 cos θt

ñ1 cos θi + µ1
µ2

ñ2 cos θt

ts =
E t

0
E i

0
=

2ñ1 cos θi

ñ1 cos θi + µ1
µ2

ñ2 cos θt
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Electric Field in Plane of Incidence

E
i E

r

E
t

H
i H

r

H
t

ratios of reflected and transmitted to incident wave amplitudes

rp =
E r

0
E i

0
=

ñ2 cos θi
µ1
µ2
− ñ1 cos θt

ñ2 cos θi
µ1
µ2

+ ñ1 cos θt

tp =
E t

0
E i

0
=

2ñ1 cos θi

ñ2 cos θi
µ1
µ2

+ ñ1 cos θt
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Summary of Fresnel Equations

eliminate θt using Snell’s law ñ2 cos θt =
√

ñ2
2 − ñ2

1 sin2 θi

for most materials µ1/µ2 ≈ 1
electric field amplitude transmission ts,p, reflection rs,p

ts =
2ñ1 cos θi

ñ1 cos θi +
√

ñ2
2 − ñ2

1 sin2 θi

tp =
2ñ1ñ2 cos θi

ñ2
2 cos θi + ñ1

√
ñ2

2 − ñ2
1 sin2 θi

rs =
ñ1 cos θi −

√
ñ2

2 − ñ2
1 sin2 θi

ñ1 cos θi +
√

ñ2
2 − ñ2

1 sin2 θi

rp =
ñ2

2 cos θi − ñ1

√
ñ2

2 − ñ2
1 sin2 θi

ñ2
2 cos θi + ñ1

√
ñ2

2 − ñ2
1 sin2 θi
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Consequences of Fresnel Equations
complex index of refraction⇒ ts, tp, rs, rp (generally) complex
real indices⇒ argument of square root can still be negative⇒
complex ts, tp, rs, rp

real indices, arguments of square roots positive (e.g. dielectric
without total internal reflection)

therefore ts,p ≥ 0, real⇒ incident and transmitted waves will have
same phase
therefore rs,p real, but become negative when n2 > n1 ⇒ negative
ratios indicate phase change by 180◦ on reflection by medium with
larger index of refraction
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Other Form of Fresnel Equations
using trigonometric identities

ts = 2 sin θt cos θi
sin(θi+θt )

tp = 2 sin θt cos θi
sin(θi+θt ) cos(θi−θt )

rs = −sin(θi−θt )
sin(θi+θt )

rp = tan(θi−θt )
tan(θi+θt )

refractive indices “hidden” in angle of transmitted wave, θt

can always rework Fresnel equations such that only ratio of
refractive indices appears
⇒ Fresnel equations do not depend on absolute values of indices
can arbitrarily set index of air to 1; then only use indices of media
measured relative to air
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Relative Amplitudes for Arbitrary Polarization

electric field vector of incident wave ~E i
0, length E i

0, at angle α to
plane of incidence
decompose into 2 components: parallel and perpendicular to
interface

E i
0,p = E i

0 cosα , E i
0,s = E i

0 sinα

use Fresnel equations to obtain corresponding (complex)
amplitudes of reflected and transmitted waves

E r ,t
0,p = (rp, tp) E i

0 cosα , E r ,t
0,s = (rs, ts) E i

0 sinα
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Reflectivity
Fresnel equations apply to electric field amplitude
need to determine equations for intensity of waves

time-averaged Poynting vector
〈
~S
〉

= c
8π
|ñ|
µ |E0|2

~k
|~k |

absolute value of complex index of refraction enters
energy along wave vector and not along interface normal
each wave propagates in different direction⇒ consider energy of
each wave passing through unit surface area on interface
does not matter for reflected wave⇒ ratio of reflected and
incident intensities is independent of these two effects
relative intensity of reflected wave (reflectivity)

R =

∣∣E r
0

∣∣2∣∣E i
0

∣∣2
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Transmissivity
transmitted intensity: multiplying amplitude squared ratios with

ratios of indices of refraction
projected area on interface

relative intensity of transmitted wave (transmissivity)

T =
|ñ2| cos θt

∣∣E t
0

∣∣2
|ñ1| cos θi

∣∣E i
0

∣∣2
arbitrarily polarized light with ~E i

0 at angle α to plane of incidence

R = |rp|2 cos2 α + |rs|2 sin2 α

T =
|ñ2| cos θt

|ñ1| cos θi

(
|tp|2 cos2 α + |ts|2 sin2 α

)
R + T = 1 for dielectrics, not for conducting, absorbing materials
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Brewster Angle

rp = tan(θi−θt )
tan(θi+θt )

= 0 when θi + θt = π
2

corresponds to Brewster angle of incidence of tan θB = n2
n1

occurs when reflected wave is perpendicular to transmitted wave
reflected light is completely s-polarized
transmitted light is moderately polarized
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Total Internal Reflection (TIR)

Snell’s law: sin θt = n1
n2

sin θi

wave from high-index medium into lower index medium (e.g. glass
to air): n1/n2 > 1
right-hand side > 1 for sin θi >

n2
n1

all light is reflected in high-index medium⇒ total internal reflection
transmitted wave has complex phase angle⇒ damped wave
along interface
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Phase Change on Total Internal Reflection (TIR)

TIR induces phase change
that depends on polarization
complex ratios:
rs,p = |rs,p|eiδs,p

phase change δ = δs − δp

tan
δ

2
=

cos θi

√
sin2 θi −

(
n2
n1

)2

sin2 θi

relation valid between critical
angle and grazing incidence
for critical angle and grazing
incidence, phase difference is
zero

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Lecture 1: Foundations of Optics 35


