

Astronomical Instrumentation course lecture 8 Dec 17, 2010

Frans Snik BBL 710 f.snik@astro.uu.nl

Hollandsche kijker

Band Lipportes

2 Colober 100 - wind a ray and the first

The second state of the se

HANS LIPPERHEY, fecundus Configuration inventor.

Hollandsche kijker

1609

Hollandsche kijker

Hollandsche kijker

- limitations:
 - -FOV
 - chromatic aberrations
 - magnification: stabilization and guiding

Kepler refractor

magnification = f1/f2

Newtonian telescope

1668

1721: parabolic primary mirror to reduce spherical aberration

secondary mirror

Gregorian telescope

secondary mirror

Cassegrain telescope

secondary mirror

- relay of focus
- focusing mechanism
- reduction of aperture surface
 off-axis telescope
- equivalence with Barlow lens

Cassegrain telescope

Cassegrain telescope

short system with long focal length

• effective focal length
$$f_{eff} = \frac{f_1 \cdot f_2}{f_1 - f_2 - d}$$

- secondary magnification:
 M₂ = f_{eff} / f₁ = s'₂ / s₂
- $f_{eff} = d + b + M_2 d$

two-mirror telescope aberrations

field curvature

$$\frac{1}{r_{f}} = \frac{2}{R_{1}} - \frac{2}{R_{2}}$$

- concave towards the sky
- always present in real two-mirror telescopes

two-mirror telescope aberrations

two-mirror telescope aberrations

two-mirror telescope aberrations

- Seidel aberrations
- solutions for conic constants to cancel spherical aberration; ΣS_I=0
- classical Cassegrain: parabolic M1 and hyperbolic secondary with conic constant

$$\mathsf{K}_2 = -\left(\frac{\mathsf{M}_2 + 1}{\mathsf{M}_2 - 1}\right)^2$$

residual coma and astigmatism...

two-mirror telescope aberrations

two-mirror telescope aberrations

 equations also for Gregorian: elliptical secondary

adaptive secondary calibrated from intermediate focus

two-mirror telescope aberrations

many solar telescopes are Gregorian

Hinode Solar Optical Telescope

two-mirror telescope aberrations

- many solar telescopes are Gregorian
 - heat stop

EST

two-mirror telescope aberrations

many solar telescopes are Gregorian

 heat stop

Ritchey-Chrétien telescope

• cancel spherical and coma: $\Sigma S_I = 0$ and $\Sigma S_I = 0$

$$K_{1} = -1 - \frac{2}{(M_{2})^{3}} \cdot \frac{b}{d} < -1$$

$$K_{2} = -1 - \frac{2}{(M_{2} - 1)^{3}} \left(M_{2}(2M_{2} - 1) + \frac{b}{d} \right) < -1$$

• both M1 and M2 hyperbolic

wide-field telescopes

- add degree(s) of freedom
- corrector plate (Schmidt, Maksutov)

- three-mirror anastigmat (TMA):
 - three conic constants to fix spherical, coma, astigmatism

wide-field telescope

LSST

wide-field telescope

wide-field telescope

JWST

wide-field telescope

telescope size

- Airy disk: λ/D
- D² photon flux

- D⁴ point source detection limit for diffraction-limited performance
 - D² more photons in an area of a factor D² smaller

larger primary mirrors

- "membrane" mirror
- honeycomb structure spincasting
- active optics to
 - bring mirror in shape
 - correct for gravitational sag

larger primary mirrors

larger primary mirrors

larger primary mirrors

segmented mirrors

 most segments have different off-axis distance and therefore different conic constant to be measured

larger primary mirrors

Keck

larger primary mirrors

E-ELT: 984 1.4-m segments

larger primary mirrors

• interferometry (lecture 12)

Keck

VLTI

LBT

pointing

• equatorial (RA, dec)

Hale 200" (Palomar)

pointing

• equatorial (RA, dec)

pointing

Herschel (1789)

E-ELT (>2020)

pointing

• alt-az

- mechanically much easier
- computer control
- zenith not accessible because drives would spin too fast

pointing

• coelostat

pointing

Hobby-Eberly style

 liquid mirror telescopes

- connected to telescope (varying gravity):
 - prime focus
 - Cassegrain
- fixed platforms:
 - Nasmyth
 - Coudé

image rotation

 none for Cassegrain or Gregorian focus on equatorial mount

image rotation

- δ = source declination
- ϕ = telescope lattitude
- alt-az at Cassegrain focus:

$$\cos\vartheta_{\text{Cass}} = \frac{\sin\varphi - \sin(alt)\sin\delta}{\cos(alt)\cos\delta}$$

• alt-az at Nasmyth (or Coudé) platform: $\vartheta_{Nasmyth} = alt - \vartheta_{cass.} (-az)$

image rotation

- rotate entire instrument
- derotator
 - K-mirror
 - Dove prism
 - anything rotatable with an odd number of reflections

instrumental polarization

- virtually zero for (rotationally symmetric) Cassegrain or Gregorian focus
- Nasmyth mirror:

$$M_{M3} = T \cdot \begin{pmatrix} 1 & 0.03 & 0 & 0 \\ 0.03 & 1 & 0 & 0 \\ 0 & 0 & -0.96 & 0.28 \\ 0 & 0 & -0.28 & -0.96 \end{pmatrix}$$

Plus rotations of [Q,U] coordinate system
 – crossing and uncrossing mirrors

atmospheric dispersion corrector

