Spectrographs Part 2

Multi-Object Spectroscopy

and
3D spectroscopy

ATI 2014 Lecture 11
Kenworthy and Keller

Multi-Object Spectrographs

Multi Object Spectrographs - drilled spectro slits

DEIMOS slit masks milled with 0.015 inch diameter bits
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Multi Object Spectrographs - laser cut slits

IMACS on the Magellan 6.5m telescope

First spectrum with 240 slits

http://www.Ico.cl/telescopes-information/magellan/instruments/imacs/




Multi Object Spectrographs - laser cut slits

VIMOS on the VLT telescopes

You decide where to put the slits on the science field
Can take up to two weeks to manufacture

Night sky emission lines in NIR

VIMOS on the VLT telescopes

http://www.eso.org/public/news/es00209/

Spectrum of galaxy

Night sky emission lines
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Multi Object Spectrographs - laser cut slits

VIMOS on the VLT telescopes

Number of spectra limited by sky coverage http:/www.eso.org/public/news/es00209/

Configurable slits on MOSFIRE (Keck)

NIR multi-object spectrograph
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Configurable Slit Unit (CSU) Configurable slits on MOSFIRE (Keck)

Cryogenic slits can be reconfigured in cold and in vacuum dewar! Adjustable mechanical slits allow for much faster configuration

McLean 2012
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Figure 7. On the left is the layout of the MOSFIRE field on the sky with a 58s J-band image of The Antennae galaxies. The
middle image is of a slit mask and the right image is the night sky emission with this mask in H-band.

McLean 2010

Fibre Optics Fibre Optics

Diameters of 200 microns down to 10 microns

_ Can be used for REFORMATTING

the focal plane of the telescope

° 5
Leads to hundreds of objects simultaneously
° g




Structure of an optical fibre

Cladding has higher refractive index than core material

Core Cladding Buffer Outer layer

Total internal refection along core/cladding boundary

A

Largest acceptance angle dependent on core and cladding refractive indices

Everything is big when you are 100 microns in size

Figure 2-14 Examining the fibre faces. On the left the fibre face is checked for micro-pits - several can
be clearly seen. On the right the back-illuminated fibre shows a clean ring of light across the face of the
fibre.

Optical Fibre - azimuthal scrambling

/

Input beam from laser

Coiled length of

Output ‘ring’ of light

optical fibre

Thousands of internal reflections from curved interface

Optical Fibre - azimuthal scrambling

Input fibre face Output fibre face

Looking down on the end of the polished fibre end




Optical Fibre - Focal Ratio Degradation

,,,,,,,, } ‘

Ideal preservation of input beam angle and output beam angle

Deformation and stress causes light to ‘spread’ in output angle cone

Loss of flux from FRD if you don’t make the output
optics bigger in size
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Figure 2-19 FRD test results for seven SPIRAL fibres. This is for a 16m length of Polymicro
50/70/90/110pm fibre measured at 600nm.

Plug plates drilled manually to match target fields
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the MEDUSA spectrograph.

Optical Fibre Spectrograph
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Gluing optical fibres onto a glass plate(!)

The fine plate-scale (67 arcsec/mm) meant that drilling holes in brass plates was not an
option for fibre positioning, due to thermal and other considerations. The required positioning
accuracy for the fibres was 10 um over the whole field (think of sticking a pin in a cricket pitch
with a precision of 1 mm). It was one of the editors of these proceedings who suggested a

viable alternative. Tacking the fibres directly onto transparent star and galaxy images on a
positive copy of the target field using UV-curing cement seemed like a blindingly obvious
solution to David Malin, with his background in photography and polymer chemistry.

Unlﬁ(ely as it sounds, this technique worked rather well when it was tried out late in 1983.
It required a special plate-holder to support the glass positive plate and bend it to the focal
curvature. This had the same dimensions as the photographic plate-holders, so it could be
loaded via the existing elevator, and was built for the project by UKST technicians Eric Coyte
and Magnus Paterson (Fig. 3). It was another nine months before the necessary components
for a fibre acquisition system had been built, but by October 1984, sets of stars spread over
the full 6.5 degrees square field of the telescope were being simultaneously acquired. By then,
too, the system had a name —FLAIR, for Fibre-Linked Array Image Reformatter. What else?

Fred Watson

Robotic positioners - 2dF
Sits at prime focus of 4m Anglo-Australian Telescope

400 fibres positioned whilst other 400 are observing!

Diameter of 140 microns (2.1 arcsec on the sky)
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Lewis (2002) SPECTROGRAPH 2

Robotic positioners - 2dF
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3D Spectroscopy

3D spectroscopy
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Optical Fibre Image Reformatter

Use the flexibility of fibres to reformat the 2D sky into a 1D entrance slit

Split focal plane into single units —

Dispersion direction A
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Fibers take light from telescope Spectrograph disperses the light

focus to the spectrograph

Spectrograph can sit on floor of the
observatory instead of at the focus
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Optical Fibre

Figure 6-1 A raw IFS data frame. In this data frame from SPIRAL the dispersion axis is across the
page and the 37 separate fibre tracks can be seen. This is a twilight sky exposure, clearly showing
absorption features in the atmosphere and the variation in throughput between fibres.

Hexagonal lenslets on the sky

Figure 9-1 Image reconstruction using the LDISPLAY software. The image of the left is a raw image
from the COHSI spectrograph. By knowing the relation between fibres on the sky and fibres in the
slit an image can be reconstructed (right-hand panel).

Image Slicers
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MUSE on VLT - 24 Integral Field Spectrographs MUSE velocity fields

e)

100 BRLG Rl

80 [

)
o

Arcseconds
Velocity (km/s)

“
40 iy

0 £l et A
0 10 20 30 40 50 60
Arcseconds

MUSE on VLT - 24 Integral Field Spectrographs

Complete wavelength coverage gives both abundances,
velocity fields of different species of atomic transition
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