Interference, Diffraction and Fourier Theory

ATI 2014 Lecture 02 Keller and Kenworthy

The three major branches of optics

Geometrical Optics

"Light travels as straight rays"

Physical Optics

"Light can be described as a series of waves"

Diffraction, interference

Quantum Optics

"Light can be described as discrete particles"

<http://skullsinthestars.com/2007/08/31/optics-basics-the-three-major-branches-of-optical-science/>

Solving Maxwell's Equations directly Solving Maxwell's Equations directly

$$
\nabla \cdot \vec{D} = 4\pi \rho
$$

$$
\nabla \times \vec{H} - \frac{1}{c} \frac{\partial \vec{D}}{\partial t} = \frac{4\pi}{c} \vec{j}
$$

$$
\nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0
$$

$$
\nabla \cdot \vec{B} = 0
$$

**Need to solve four coupled
differential equations together** *H* ry
ry with boundary conditions

<u>with boundary conditions</u> **Need to solve four coupled**

^c speed of light in vacuum [~] *Numerically, require a 3D mesh* eng
E ~
~
~ with sub-wavelength resolution

b
B
B f lS **Each point has a vector for**
 Eand B field *t* time **E and B field**

…can be done for optics a few wavelengths in size

Waveguide for microwave radiation

Green = magnetic field Red = electric fiels

<http://www.comsol.com/blogs/quick-intro-modeling-rf-microwave-heating/>

Simplified with Wave Equation in Matter damped (vector) wave

$$
\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} - \frac{4\pi \mu \sigma}{c^2} \frac{\partial \vec{E}}{\partial t} = 0
$$

Now one equation for E field @*H*

Solutions with plane waves

Plane Vector Wave ansatz: *E* $\bar{\bar{E}}$ = *E* $\vec{E}_0 e^{i(\vec{K}\cdot\vec{x}-\omega t)}$

- $\bar{\bm{k}}$ *k* spatially and temporally constant *wave vector* Philally and tompol
- $\bar{\bm{k}}$ *k* normal to surfaces of constant phase Plane Vector Wave ansatz: *E* ~ = *E* ~ ⁰*ei*(~*k·*~*x*!*t*) ~ *k* spatially and temporally constant *wave vector*
- $\bar{\bm{k}}$ k *wave number*
- ~ *x* spatial location *|* ~ *k| wave number*
- ω angular frequency (2 $\pi\times$ frequency)
- *t* time

|

E $\bar{\bar{E}}$ ϵ_0 a (generally complex) vector independent of time and space $\,$ generally complex) vector independent of time and

real electric field vector given by real part of *E* ectric field vector given by real part of \bar{E}

Scalar Wave

- Scalar Wave electric field at position \vec{r} at time *t* is $\tilde{E}(\vec{r}, t)$
	- **•** complex notation to easily express amplitude and phase
	- **•** real part of complex quantity is the physical quantity

Young's Double Slit **Experiment**

- **•** monochromatic wave
- infinitely small holes (pinholes)
- source *S* generates fields $\tilde{E}(\vec{r}_1,t) \equiv \tilde{E}_1(t)$ at S_1 and $\tilde{E}(\vec{r}_2,t)\equiv \tilde{E}_2(t)$ at S_2
- two spherical waves from pinholes interfere on screen
- **e** electrical field at P

$$
\tilde{E}_P(t) = \tilde{C}_1 \tilde{E}_1(t-t_1) + \tilde{C}_2 \tilde{E}_2(t-t_2)
$$

- $t_1 = r_1/c, t_2 = r_2/c$
- r_1 , r_2 : path lengths from S_1 , S_2 to P
- propagators $\tilde{\mathcal{C}}_{1,2} = \frac{1}{2}$ λ

Two pinholes produce diffraction pattern

Change in Angle of Incoming Wave

- phase of fringe pattern changes, but not fringe spacing
- \bullet tilt of λ/d produces identical fringe pattern

Different wavelengths make envelope

Change in Wavelength

- fringe spacing changes, central fringe broadens \bullet
- integral over 0.8 to 1.2 of central wavelength
- o integral over wavelength makes fringe envelope

Visibility **Visibility Function V**

$$
V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}
$$

I_{max}, *I_{min}* are maximum and adjacent minimum in fringe pattern

Fringes seen at VLT of the star Sirius

Why do we not see fringes everywhere during the day?

COHERENCE

Real world sources are:

Not point like Mot monochromatic

Experience of the UV ny do **Why do we not see fringes everywhere during the day?**

Coherence Coherence

Mutual Coherence

total field in point *P*

$$
\tilde{E}_P(t) = \tilde{C}_1 \tilde{E}_1(t-t_1) + \tilde{C}_2 \tilde{E}_2(t-t_2)
$$

irradiance at *P*, averaged over time (expectation operator **E**)

$$
I = \mathbf{E}|\tilde{E}_P(t)|^2 = \mathbf{E}\left\{\tilde{E}_P(t)\tilde{E}_P^*(t)\right\}
$$

writing out all the terms

$$
I = \tilde{C}_1 \tilde{C}_1^* \mathbf{E} \left\{ \tilde{E}_1(t - t_1) \tilde{E}_1^*(t - t_1) \right\} + \tilde{C}_2 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_2(t - t_2) \tilde{E}_2^*(t - t_2) \right\} + \tilde{C}_1 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_1(t - t_1) \tilde{E}_2^*(t - t_2) \right\} + \tilde{C}_1^* \tilde{C}_2 \mathbf{E} \left\{ \tilde{E}_1^*(t - t_1) \tilde{E}_2(t - t_2) \right\}
$$

stationary wave field, time average independent of absolute time

$$
I_{S_1} = \mathbf{E} \left\{ \tilde{E}_1(t) \tilde{E}_1^*(t) \right\}, \ I_{S_2} = \mathbf{E} \left\{ \tilde{E}_2(t) \tilde{E}_2^*(t) \right\}
$$

irradiance at *P* is now Mutual Coherence (continued) $\frac{1}{2}$

$$
I = \tilde{C}_1 \tilde{C}_1^* I_{S_1} + \tilde{C}_2 \tilde{C}_2^* I_{S_2}
$$

+ $\tilde{C}_1 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_1(t - t_1) \tilde{E}_2^*(t - t_2) \right\} + \tilde{C}_1^* \tilde{C}_2 \mathbf{E} \left\{ \tilde{E}_1^*(t - t_1) \tilde{E}_2(t - t_2) \right\}$

• time difference $\tau = t_2 - t_1 \Rightarrow$ last two terms become

$$
\tilde{C}_1 \tilde{C}_2^* \mathbf{E} \left\{ \tilde{E}_1(t+\tau) \tilde{E}_2^*(t) \right\} + \tilde{C}_1^* \tilde{C}_2 \mathbf{E} \left\{ \tilde{E}_1^*(t+\tau) \tilde{E}_2(t) \right\}
$$

• equivalent to

$$
2\text{ Re }\left[\tilde{C}_1\tilde{C}_2^*\mathbf{E}\left\{\tilde{E}_1(t+\tau)\tilde{E}_2^*(t)\right\}\right]
$$

 \hat{C}_1 propagators \tilde{C} purely imaginary: $\tilde{C}_1 \tilde{C}_2^* = |\tilde{C}_1^* \tilde{C}_2| = |\tilde{C}_1||\tilde{C}_2|$ $\bigl\{ \textsf{cross-term becomes } 2|\tilde{C}_1||\tilde{C}_2|R\tilde{e}\bigr\} \bigl\}$ $\left\{\tilde{E}_1(t+\tau)\tilde{E}_2^*(t)\right\}$ ι

irradiance at *P*

$$
I = \tilde{C}_1 \tilde{C}_1^* I_{S_1} + \tilde{C}_2 \tilde{C}_2^* I_{S_2} + 2|\tilde{C}_1||\tilde{C}_2|Re\left[\mathbf{E}\left\{\tilde{E}_1(t+\tau)\tilde{E}_2^*(t)\right\}\right]
$$

o mutual coherence function of wave field at S_1 and S_2

$$
\tilde{\Gamma}_{12}(\tau) = \mathbf{E}\left\{\tilde{E}_1(t+\tau)\tilde{E}_2^*(t)\right\}
$$

 $\int \text{Therefore } I = |\tilde{C}_1|^2 I_{S_1} + |\tilde{C}_2|^2 I_{S_2} + 2|\tilde{C}_1||\tilde{C}_2|$ Re $\tilde{\Gamma}_{12}(\tau)$

 $I_1 = |\tilde{C}_1|^2 I_{S_1}, I_2 = |\tilde{C}_2|^2 I_{S_2}$: irradiances at *P* from single aperture

$$
I = I_1 + I_2 + 2|\tilde{C}_1||\tilde{C}_2| \text{ Re } \tilde{\Gamma}_{12}(\tau)
$$

Self-Coherence

 $S_1 = S_2 \Rightarrow$ mutual coherence function = autocorrelation

$$
\tilde{\Gamma}_{11}(\tau) = \tilde{B}_1(\tau) = \mathbf{E} \left\{ \tilde{E}_1(t + \tau) \tilde{E}_1^*(t) \right\}
$$
\n
$$
\tilde{\Gamma}_{22}(\tau) = \tilde{B}_2(\tau) = \mathbf{E} \left\{ \tilde{E}_2(t + \tau) \tilde{E}_2^*(t) \right\}
$$

autocorrelation functions are also called *self-coherence functions* \bullet for $\tau = 0$

$$
I_{S_1} = \mathbf{E} \left\{ \tilde{E}_1(t) \tilde{E}_1^*(t) \right\} = \Gamma_{11}(0) = \mathbf{E} \left\{ |\tilde{E}_1(t)|^2 \right\}
$$

$$
I_{S_2} = \mathbf{E} \left\{ \tilde{E}_2(t) \tilde{E}_2^*(t) \right\} = \Gamma_{22}(0) = \mathbf{E} \left\{ |\tilde{E}_2(t)|^2 \right\}
$$

• autocorrelation function with zero lag ($\tau = 0$) represent (average) irradiance (power) of wave field at S_1 , S_2

Complex Degree of Coherence

using selfcoherence functions

$$
|\tilde{C}_1||\tilde{C}_2| \ = \ \frac{\sqrt{I_1}\sqrt{I_2}}{\sqrt{\Gamma_{11}(0)}\sqrt{\Gamma_{22}(0)}}
$$

normalized mutual coherence defines the **complex degree of coherence**

$$
\tilde{\gamma}_{12}(\tau) = \frac{\tilde{\Gamma}_{12}(\tau)}{\sqrt{\Gamma_{11}(0)\Gamma_{22}(0)}} = \frac{\mathbf{E}\left\{\tilde{E}_1(t+\tau)\tilde{E}_2^*(t)\right\}}{\sqrt{\mathbf{E}\left\{|\tilde{E}_1(t)|^2\right\}\mathbf{E}\left\{|\tilde{E}_2(t)|^2\right\}}}
$$

irradiance in point *P* as *general interference law for a partially coherent radiation field*

$$
I = I_1 + I_2 + 2\sqrt{I_1I_2} Re \,\tilde{\gamma}_{12}(\tau)
$$

Spatial and Temporal Coherence

• complex degree of coherence

$$
\tilde{\gamma}_{12}(\tau) \equiv \frac{\tilde{\Gamma}_{12}(\tau)}{\sqrt{\Gamma_{11}(0)\Gamma_{22}(0)}} = \frac{\mathbf{E}\left\{\tilde{E}_1(t+\tau)\tilde{E}_2^*(t)\right\}}{\sqrt{\mathbf{E}\left\{|\tilde{E}_1(t)|^2\right\}\mathbf{E}\left\{|\tilde{E}_2(t)|^2\right\}}}
$$

- **o** measures both
	- *spatial coherence* at S_1 and S_2
	- \bullet *temporal coherence* through time lag τ
- \bullet $\tilde{\gamma}_{12}(\tau)$ is a complex variable and can be written as:

$$
\tilde{\gamma}_{12}(\tau) = |\tilde{\gamma}_{12}(\tau)|e^{i\psi_{12}(\tau)}
$$

- \bullet 0 \leq $|\tilde{\gamma}_{12}(\tau)| \leq$ 1
- phase angle $\psi_{12}(\tau)$ relates to
	- \bullet phase angle between fields at S_1 and S_2
	- phase angle difference in P resulting in time lag τ

Coherence of Quasi-Monochromatic Light

• quasi-monochromatic light, mean wavelength $\overline{\lambda}$, frequency $\overline{\nu}$, phase difference ϕ due to optical path difference:

$$
\phi = \frac{2\pi}{\overline{\lambda}}(r_2 - r_1) = \frac{2\pi}{\overline{\lambda}}c(t_2 - t_1) = 2\pi\overline{\nu}\tau
$$

• with phase angle $\alpha_{12}(\tau)$ between fields at pinholes S_1 , S_2

$$
\psi_{12}(\tau)=\alpha_{12}(\tau)-\phi
$$

• and

$$
Re \,\tilde{\gamma}_{12}(\tau) = |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi]
$$

• intensity in *P* becomes

$$
I = I_1 + I_2 + 2\sqrt{I_1 I_2} |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi]
$$

Visibility of Quasi-Monochromatic, Partially Coherent Light

o intensity in P

$$
I = I_1 + I_2 + 2\sqrt{I_1 I_2} |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi]
$$

- \bullet maximum, minimum *I* for $cos(...) = \pm 1$
- visibility *V* at position *P*

$$
V=\frac{2\sqrt{l_1}\sqrt{l_2}}{l_1+l_2}|\tilde{\gamma}_{12}(\tau)|
$$

• for $I_1 = I_2 = I_0$

$$
I = 2I_0 \{1 + |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi] \}
$$

$$
V = |\tilde{\gamma}_{12}(\tau)|
$$

Interpretation of Visibility

• for $I_1 = I_2 = I_0$

$$
I = 2I_0 \{1 + |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi] \}
$$

$$
V = |\tilde{\gamma}_{12}(\tau)|
$$

- *modulus of complex degree of coherence = visibility of fringes*
- modulus can therefore be measured
- shift in location of central fringe (no optical path length difference, $\phi = 0$) is measure of $\alpha_{12}(\tau)$
- measurements of visibility and fringe position yield amplitude and phase of complex degree of coherence

Fringe Pattern

• for $I_1 = I_2 = I_0$

$$
I = 2I_0 \{ 1 + |\tilde{\gamma}_{12}(\tau)| \cos [\alpha_{12}(\tau) - \phi] \} \quad V = |\tilde{\gamma}_{12}(\tau)|
$$

source *S* on central axis, fully coherent waves from two holes

$$
I = 2I_0(1 + \cos \phi) = 4I_0 \cos^2 \frac{\phi}{2}
$$

$$
I = 4I_0 \cos^2 \frac{\phi}{2}
$$

$$
\phi = \frac{2\pi}{\overline{\lambda}} (r_2 - r_1) = 2\pi \overline{\nu} \tau
$$

- **o** distance *a* between pinholes
- \bullet distance *s* to observation plane Σ_O , *s* \gg *a*
- path difference $(r_2 r_1)$ in equation for ϕ in good approximation

$$
r_2-r_1\ =\ a\theta\ =\ \frac{a}{s}\ y
$$

• and therefore

$$
I = 4I_0 \cos^2 \frac{\pi a y}{s \overline{\lambda}}
$$

Interference Fringes from Monochromatic Point Source

- irradiance as a function of the *y*-coordinate of the fringes in observation plane Σ_{Ω}
- **•** irradiance vs. distance distribution is Point-Spread Function (PSF) of ideal two-element interferometer

Huygens-Fresnel Principle

en.wikipedia.org/wiki/File:Refraction_on_an_aperture_-_Huygens-Fresnel_principle.svg

- every unobstructed point of a wavefront at a given moment in time serves as a source of spherical, secondary waves with the same frequency as the primary wave
- the amplitude of the optical field at any point beyond is the coherent superposition of all these secondary, spherical waves

Diffraction

If obstructions are small compared to the wavelength, then waves will spread out

Huygens-Fresnel works for most cases and is much faster than solving Maxwell's Equations!

Fraunhoffer and Fresnel Diffraction

en.wikipedia.org/wiki/File:Fraunhofer_diffraction_pattern_image.PNG

- wave shape changes as it moves away from obstruction
- *Fresnel* (or near-field) diffraction close to obstruction
- em Fraunhofer (or far-field) diffraction far away from obstruction \bullet
- **•** rule of thumb: Frauenhofer diffraction for

$$
R > a^2/\lambda
$$

Single Slit Diffraction

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html

- diffraction of a plane wave on a slit aperture
- Huygens-Fresnel: line of spherical wave sources

Break slit into many small radiating elements

with *E*⁰ the strength of each slit segment *i* at point *P* is

$$
E_i(P) = \frac{E_L}{r_i} \sin(k\omega - kr_i)\Delta y_i
$$

i segment index $(1 - M)$

- *EL* source strength per unit length
	- *ri* distance between segment and point *P*
- Δy_i small segment of slit
	- *D* length of slit

Integrate small elements along slit

• integrate along slit

$$
E = E_L \int_{-D/2}^{D/2} \frac{\sin \omega t - kr}{r} dy
$$

express *r* as a function of *y*:

$$
r = R - y \sin \theta + \frac{y^2}{2R} \cos^2 \theta + \dots
$$

R distance between center of slit and point *P*

substituting, integrating and squaring for intensity:

$$
I(\theta) = I(0) \left(\frac{\sin \beta}{\beta}\right)^2
$$

$$
\bullet \ \beta = (kD/2) \sin \theta
$$

Destructive interference

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html

- **assume infinite distance from aperture for source and** observation plane
- equivalent to plane waves coming from aperture into different directions
- **•** first minimum when phase delay at edge is exactly one wave

Circular aperture diffraction

integrate over circular aperture with radius *a*

$$
E = \frac{E_A e^{i(\omega t - kR)}}{R} \int \int_{aperture} e^{ik(Yy + ZZ)/R} dS
$$

using polar coordinates in aperture and plane of observation and Bessel functions

$$
I(\theta) = I(0) \left(\frac{2J_1(kasin \theta)}{kasin \theta} \right)^2
$$

- *J*¹ Bessel function of order 1
- **•** Airy function
- first dark ring at 1*.*22 *^R* 2*a*
- **•** images with perfect telescopes are convolution of Airy disk with actual image

…and for any type of aperture

● from before forgetting common phase term and 1/*R* amplitude drop-off

$$
E(Y,Z) = \int \int_{aperture} A(y,z) e^{ik(Yy+Zz)/R} dS
$$

- complex aperture function $A(y, z)$ describing non-uniform absorption and phase delays
- finite aperture \Rightarrow change integration boundaries to infinity
- with $k_v = kY/R$ and $k_z = kZ/R$ we obtain

$$
E(k_y, k_z) = \int \int_{aperture} A(y, z) e^{i(k_y y + k_z z)} dy dz
$$

• field distribution in Fraunhofer diffraction pattern is Fourier transform of field distribution across aperture

The Point Spread Function

- intensity is modulus squared of field distribution \Rightarrow point-spread function
- image of a point source: *Point Spread Function (PSF)*
- image of arbitrary object is a convolution of object with PSF

$$
i = o * s
$$

- *i* observed image
- *o* true object, constant in time
- *s* point spread function
- ⇤ convolution

The Optical Transfer Function

• after Fourier transformation:

$$
I=O\cdot S
$$

- **Fourier transformed**
- *I* Fourier transform of image
- *O* Fourier transform of object
- *S* Optical Transfer Function (OTF)
- **OTF is Fourier transform of PSF and vice versa**

Finite Hole Diameter

- fringe spacing only depends on separation of holes and \bullet wavelength
- the smaller the hole, the larger the 'illuminated' area \bullet
- fringe envelope is Airy pattern (diffraction pattern of a single hole)

Interferometer with Finite Apertures

- non-ideal two-element interferometer with finite apertures using *pupil function* concept (Observational Astrophysics 1)
- optical transfer function (OTF)

$$
OTF = 2\left(\frac{\lambda}{R}\right)^2 \left[\delta(\vec{\zeta}) + \frac{1}{2}\delta\left(\vec{\zeta} - \vec{s}/\lambda\right) + \frac{1}{2}\delta\left(\vec{\zeta} + \vec{s}/\lambda\right)\right]
$$

- pair of pinholes transmits three spatial frequencies
	- DC-component $\delta(\vec{0})$
	- two high frequencies related to length of baseline vector \vec{s} at $\pm \vec{s}/\lambda$
- 3 spatial frequencies represent three-point sampling of the **uv-plane** in 2-d spatial frequency space
- complete sampling of uv-plane provides sufficient information to completely reconstruct original brightness distribution

Point-Spread Function (PSF)

PSF is Fourier Transform of OTF

$$
\delta(\vec{\zeta}) \Leftrightarrow \delta(\vec{\zeta}) \Leftrightarrow 1
$$
\n
$$
\delta(\vec{\zeta} - \vec{s}/\lambda) \Leftrightarrow e^{i2\pi \vec{\theta} \cdot \vec{s}/\lambda}
$$
\n
$$
\delta(\vec{\zeta} + \vec{s}/\lambda) \Leftrightarrow e^{-i2\pi \vec{\theta} \cdot \vec{s}/\lambda}
$$

Point-Spread Function of 2-element interferometer

$$
\left(\frac{\lambda}{R}\right)^2 \left[2(1+\cos 2\pi \vec{\theta}\cdot \vec{s}/\lambda)\right] = 4\left(\frac{\lambda}{R}\right)^2 \cos^2 \pi \vec{\theta}\cdot \vec{s}/\lambda
$$

- $\vec{\theta}$: 2-d angular coordinate vector
- attenuation factor $(\lambda/R)^2$ from spherical expansion

2-d Brightness Distribution

PSF of single circular aperture PSF of two-element

4.00

interferometer, aperture diameter $d = 25$ m, length of baseline vector *|*~ *s|* = 144 m

• double beam interference fringes showing modulation effect of diffraction by aperture of a single pinhole

6

Why do we see Airy patterns of stars?

Image of Vega taken with 8.4m diameter telescope in Arizona

van Cittert-Zernike Theorem

- o relates brightness distribution of extended source and phase correlation between two points in radiation field
- extended source *S* incoherent, quasi-monochromatic
- **•** positions P_1 and P_2 in observers plane Σ

$$
\tilde{E}_1(t)\tilde{E}_2^*(t) = \mathbf{E}\{\tilde{E}_1(t)\tilde{E}_2^*(t)\} = \tilde{\Gamma}_{12}(0)
$$

The Solution

- $I(\vec{\Omega})$ is intensity distribution of extended source as function of unit direction vector $\vec{\Omega}$ as seen from observation plane Σ
- $\tilde{\Gamma}(\vec{r})$ is coherence function in Σ -plane
- vector \vec{r} represents arbitrary baseline
- **•** van Cittert-Zernike theorem

$$
\tilde{\Gamma}(\vec{r}) = \int \int_{\text{source}} I(\vec{\Omega}) e^{\frac{2\pi i \vec{\Omega} \cdot \vec{r}}{\lambda}} d\vec{\Omega}
$$

$$
I(\vec{\Omega}) = \lambda^{-2} \int \int_{\Sigma \text{-plane}} \tilde{\Gamma}(\vec{r}) e^{-\frac{2\pi i \vec{\Omega} \cdot \vec{r}}{\lambda}} d\vec{r}
$$

- $\tilde{\Gamma}(\vec{r})$ and $I(\vec{\Omega})$ are linked through Fourier transform, except for scaling with wavelength λ
- "true" Fourier transform with *conjugate variables* $\vec{\Omega}$, \vec{r}/λ ,
- Fourier pair: $I(\vec{\Omega}) \Leftrightarrow \vec{\Gamma}(\vec{r}/\lambda)$