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The three major branches of optics

Geometrical Optics

Physical Optics

Quantum Optics

“Light travels as straight rays”

“Light can be described as a series of waves”

“Light can be described as discrete particles”

Diffraction, interference

http://skullsinthestars.com/2007/08/31/optics-basics-the-three-major-branches-of-optical-science/

http://skullsinthestars.com/2007/08/31/optics-basics-the-three-major-branches-of-optical-science/


Solving Maxwell’s Equations directly

Electromagnetic Waves

Electromagnetic Waves in Matter
Maxwell’s equations ) electromagnetic waves
optics: interaction of electromagnetic waves with matter as
described by material equations
polarization of electromagnetic waves are integral part of optics

Maxwell’s Equations in Matter

r · ~D = 4⇡⇢

r⇥ ~H � 1
c
@~D
@t

=
4⇡
c
~j

r⇥ ~E +
1
c
@~B
@t

= 0

r · ~B = 0

Symbols
~D electric displacement
⇢ electric charge density
~H magnetic field
c speed of light in vacuum
~j electric current density
~E electric field
~B magnetic induction
t time
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Need to solve four coupled!
 differential equations together!

with boundary conditions

Numerically, require a 3D mesh!
with sub-wavelength resolution!

!
Each point has a vector for !

E and B field



…can be done for optics a few 
wavelengths in size

http://www.comsol.com/blogs/quick-intro-modeling-rf-microwave-heating/

Waveguide for microwave radiation

Green = magnetic field!
Red = electric fiels

http://www.comsol.com/blogs/quick-intro-modeling-rf-microwave-heating/


Simplified with Wave Equation in Matter

Now one equation for E field

Wave Equation in Matter
static, homogeneous medium with no net charges: ⇢ = 0
for most materials: µ = 1
combine Maxwell, material equations ) differential equations for
damped (vector) wave

r2~E � µ✏

c2
@2~E
@t2 � 4⇡µ�

c2
@~E
@t

= 0

r2~H � µ✏

c2
@2~H
@t2 � 4⇡µ�

c2
@~H
@t

= 0

damping controlled by conductivity �
~E and ~H are equivalent ) sufficient to consider ~E
interaction with matter almost always through ~E
but: at interfaces, boundary conditions for ~H are crucial
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Solutions with plane wavesPlane-Wave Solutions

Plane Vector Wave ansatz: ~E = ~E0ei(~k ·~x�!t)

~k spatially and temporally constant wave vector
~k normal to surfaces of constant phase

|~k | wave number
~x spatial location
! angular frequency (2⇡⇥ frequency)
t time

~E0 a (generally complex) vector independent of time and space
real electric field vector given by real part of ~E

Scalar Wave

electric field at position ~r at time t is Ẽ(~r , t)
complex notation to easily express amplitude and phase
real part of complex quantity is the physical quantity
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Interference

Young’s Double Slit
Experiment

monochromatic wave
infinitely small holes (pinholes)
source S generates fields
Ẽ(~r1, t) ⌘ Ẽ1(t) at S1 and
Ẽ(~r2, t) ⌘ Ẽ2(t) at S2

two spherical waves from pinholes
interfere on screen
electrical field at P

ẼP(t) = C̃1Ẽ1(t � t1) + C̃2Ẽ2(t � t2)

t1 = r1/c, t2 = r2/c
r1, r2: path lengths from S1, S2 to P
propagators C̃1,2 = i

�
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Two pinholes produce diffraction pattern
no tilt tilt by 0.5 �/d

Change in Angle of Incoming Wave
phase of fringe pattern changes, but not fringe spacing
tilt of �/d produces identical fringe pattern
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Different wavelengths make envelope

long wavelength short wavelength wavelength average

Change in Wavelength
fringe spacing changes, central fringe broadens
integral over 0.8 to 1.2 of central wavelength
integral over wavelength makes fringe envelope

Christoph U. Keller, Leiden Observatory ATI 2014 Lecture 2: Interference, Diffraction and Fourier Theory 7



Visibility Function VVisibility
“quality” of fringes described by Visibility function

V =
I
max

� I
min

I
max

+ I
min

I
max

, I
min

are maximum and adjacent minimum in fringe pattern

First Fringes from VLT Interferometer
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Fringes seen at VLT !
of the star Sirius

Visibility
“quality” of fringes described by Visibility function

V =
I
max

� I
min

I
max

+ I
min

I
max

, I
min

are maximum and adjacent minimum in fringe pattern

First Fringes from VLT Interferometer
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Why do we not see fringes 
everywhere during the day?

COHERENCE
Real world sources are:

Not point like Not monochromatic



Interference

Young’s Double Slit
Experiment

monochromatic wave
infinitely small holes (pinholes)
source S generates fields
Ẽ(~r1, t) ⌘ Ẽ1(t) at S1 and
Ẽ(~r2, t) ⌘ Ẽ2(t) at S2

two spherical waves from pinholes
interfere on screen
electrical field at P

ẼP(t) = C̃1Ẽ1(t � t1) + C̃2Ẽ2(t � t2)

t1 = r1/c, t2 = r2/c
r1, r2: path lengths from S1, S2 to P
propagators C̃1,2 = i

�
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Why do we not see fringes 
everywhere during the day?

The Electric fields of two waves are!
 added together at P

If you had a detector that could measure!
at the frequency of the light (10e15 Hz)….!

but we use time averaged detectors



CoherenceCoherence

Mutual Coherence
total field in point P

ẼP(t) = C̃1Ẽ1(t � t1) + C̃2Ẽ2(t � t2)

irradiance at P, averaged over time (expectation operator E)

I = E|ẼP(t)|2 = E

n

ẼP(t)Ẽ⇤
P(t)

o

writing out all the terms

I = C̃1C̃⇤
1E

n

Ẽ1(t � t1)Ẽ⇤
1 (t � t1)

o

+ C̃2C̃⇤
2E

n

Ẽ2(t � t2)Ẽ⇤
2 (t � t2)

o

+C̃1C̃⇤
2E

n

Ẽ1(t � t1)Ẽ⇤
2 (t � t2)

o

+ C̃⇤
1C̃2E

n

Ẽ⇤
1 (t � t1)Ẽ2(t � t2)

o
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Mutual Coherence (continued)
as before

I = C̃1C̃⇤
1E

n

Ẽ1(t � t1)Ẽ⇤
1 (t � t1)

o

+ C̃2C̃⇤
2E

n

Ẽ2(t � t2)Ẽ⇤
2 (t � t2)

o

+C̃1C̃⇤
2E

n

Ẽ1(t � t1)Ẽ⇤
2 (t � t2)

o

+ C̃⇤
1C̃2E

n

Ẽ⇤
1 (t � t1)Ẽ2(t � t2)

o

stationary wave field, time average independent of absolute time

IS1 = E

n

Ẽ1(t)Ẽ⇤
1 (t)

o

, IS2 = E

n

Ẽ2(t)Ẽ⇤
2 (t)

o

irradiance at P is now

I = C̃1C̃⇤
1 IS1 + C̃2C̃⇤

2 IS2

+C̃1C̃⇤
2E

n

Ẽ1(t � t1)Ẽ⇤
2 (t � t2)

o

+ C̃⇤
1C̃2E

n

Ẽ⇤
1 (t � t1)Ẽ2(t � t2)

o
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Mutual Coherence (continued)
as before

I = C̃1C̃⇤
1 IS1 + C̃2C̃⇤

2 IS2

+C̃1C̃⇤
2E

n

Ẽ1(t � t1)Ẽ⇤
2 (t � t2)

o

+ C̃⇤
1C̃2E

n

Ẽ⇤
1 (t � t1)Ẽ2(t � t2)

o

time difference ⌧ = t2 � t1 ) last two terms become

C̃1C̃⇤
2E

n

Ẽ1(t + ⌧)Ẽ⇤
2 (t)

o

+ C̃⇤
1C̃2E

n

Ẽ⇤
1 (t + ⌧)Ẽ2(t)

o

equivalent to

2 Re
h

C̃1C̃⇤
2E

n

Ẽ1(t + ⌧)Ẽ⇤
2 (t)

oi

propagators C̃ purely imaginary: C̃1C̃⇤
2 = C̃⇤

1C̃2 = |C̃1||C̃2|

cross-term becomes 2|C̃1||C̃2|Re
h

E

n

Ẽ1(t + ⌧)Ẽ⇤
2 (t)

oi
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Mutual Coherence (continued)
irradiance at P

I = C̃1C̃⇤
1 IS1 + C̃2C̃⇤

2 IS2

+2|C̃1||C̃2|Re
h

E

n

Ẽ1(t + ⌧)Ẽ⇤
2 (t)

oi

mutual coherence function of wave field at S1 and S2

�̃12(⌧) = E

n

Ẽ1(t + ⌧)Ẽ⇤
2 (t)

o

therefore I = |C̃1|2IS1 + |C̃2|2IS2 + 2|C̃1||C̃2| Re �̃12(⌧)

I1 = |C̃1|2IS1 , I2 = |C̃2|2IS2 : irradiances at P from single aperture

I = I1 + I2 + 2|C̃1||C̃2| Re �̃12(⌧)
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Self-Coherence
S1 = S2 ) mutual coherence function = autocorrelation

�̃11(⌧) = R̃1(⌧) = E

n

Ẽ1(t + ⌧)Ẽ⇤
1 (t)

o

�̃22(⌧) = R̃2(⌧) = E

n

Ẽ2(t + ⌧)Ẽ⇤
2 (t)

o

autocorrelation functions are also called self-coherence functions
for ⌧ = 0

IS1 = E

n

Ẽ1(t)Ẽ⇤
1 (t)

o

= �11(0) = E

n

|Ẽ1(t)|2
o

IS2 = E

n

Ẽ2(t)Ẽ⇤
2 (t)

o

= �22(0) = E

n

|Ẽ2(t)|2
o

autocorrelation function with zero lag (⌧ = 0) represent (average)
irradiance (power) of wave field at S1, S2

Christoph U. Keller, Leiden Observatory ATI 2014 Lecture 2: Interference, Diffraction and Fourier Theory 13



Complex Degree of Coherence
using selfcoherence functions

|C̃1||C̃2| =

p
I1
p

I2
p

�11(0)
p

�22(0)

normalized mutual coherence defines the complex degree of

coherence

�̃12(⌧) ⌘ �̃12(⌧)
p

�11(0)�22(0)
=

E

n

Ẽ1(t + ⌧)Ẽ⇤
2 (t)

o

r

E

n

|Ẽ1(t)|2
o

E

n

|Ẽ2(t)|2
o

irradiance in point P as general interference law for a partially
coherent radiation field

I = I1 + I2 + 2
p

I1I2 Re �̃12(⌧)
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Spatial and Temporal Coherence
complex degree of coherence

�̃12(⌧) ⌘ �̃12(⌧)
p

�11(0)�22(0)
=

E

n

Ẽ1(t + ⌧)Ẽ⇤
2 (t)

o

r

E

n

|Ẽ1(t)|2
o

E

n

|Ẽ2(t)|2
o

measures both
spatial coherence at S1 and S2
temporal coherence through time lag ⌧

�̃12(⌧) is a complex variable and can be written as:

�̃12(⌧) = |�̃12(⌧)|ei 12(⌧)

0  |�̃12(⌧)|  1
phase angle  12(⌧) relates to

phase angle between fields at S1 and S2
phase angle difference in P resulting in time lag ⌧
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Coherence of Quasi-Monochromatic Light

quasi-monochromatic light, mean wavelength �, frequency ⌫,
phase difference � due to optical path difference:

� =
2⇡
�
(r2 � r1) =

2⇡
�

c(t2 � t1) = 2⇡⌫⌧

with phase angle ↵12(⌧) between fields at pinholes S1, S2

 12(⌧) = ↵12(⌧)� �

and
Re �̃12(⌧) = |�̃12(⌧)| cos [↵12(⌧)� �]

intensity in P becomes

I = I1 + I2 + 2
p

I1I2 |�̃12(⌧)| cos [↵12(⌧)� �]
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Visibility of Quasi-Monochromatic, Partially Coherent Light
intensity in P

I = I1 + I2 + 2
p

I1I2 |�̃12(⌧)| cos [↵12(⌧)� �]

maximum, minimum I for cos(...) = ±1
visibility V at position P

V =
2
p

I1
p

I2
I1 + I2

|�̃12(⌧)|

for I1 = I2 = I0

I = 2I0 {1 + |�̃12(⌧)| cos [↵12(⌧)� �]}
V = |�̃12(⌧)|
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Interpretation of Visibility
for I1 = I2 = I0

I = 2I0 {1 + |�̃12(⌧)| cos [↵12(⌧)� �]}
V = |�̃12(⌧)|

modulus of complex degree of coherence = visibility of fringes
modulus can therefore be measured
shift in location of central fringe (no optical path length
difference, � = 0) is measure of ↵12(⌧)

measurements of visibility and fringe position yield amplitude
and phase of complex degree of coherence
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Two-Element Interferometer

Fringe Pattern

for I1 = I2 = I0

I = 2I0 {1 + |�̃12(⌧)| cos [↵12(⌧)� �]} V = |�̃12(⌧)|

source S on central axis, fully coherent waves from two holes

I = 2I0(1 + cos�) = 4I0 cos2 �

2
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Fringe Pattern (continued)

I = 4I0 cos2 �

2

� =
2⇡
�
(r2 � r1) = 2⇡⌫⌧

distance a between pinholes
distance s to observation plane ⌃O, s � a
path difference (r2 � r1) in equation for � in good approximation

r2 � r1 = a✓ =
a
s

y

and therefore
I = 4I0 cos2 ⇡ay

s�
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Interference Fringes from Monochromatic Point Source

irradiance as a function of the y -coordinate of the fringes in
observation plane ⌃O

irradiance vs. distance distribution is Point-Spread Function
(PSF) of ideal two-element interferometer
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Diffraction

Huygens-Fresnel Principle

en.wikipedia.org/wiki/File:Refraction_on_an_aperture_-_Huygens-Fresnel_principle.svg

every unobstructed point of a wavefront at a given moment in
time serves as a source of spherical, secondary waves with the
same frequency as the primary wave
the amplitude of the optical field at any point beyond is the
coherent superposition of all these secondary, spherical waves
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Diffraction

If obstructions are small compared!
to the wavelength, then waves!

will spread out

Huygens-Fresnel works for most!
cases and is much faster than!
solving Maxwell’s Equations!



Fraunhoffer and Fresnel Diffraction
Fraunhofer and Fresnel Diffraction

en.wikipedia.org/wiki/File:Fraunhofer_diffraction_pattern_image.PNG

wave shape changes as it moves away from obstruction
Fresnel (or near-field) diffraction close to obstruction
em Fraunhofer (or far-field) diffraction far away from obstruction
rule of thumb: Frauenhofer diffraction for

R > a2/�

a greatest width of obscuration
� wavelength
R greater of distance between source/detector and obscuration
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Single Slit DiffractionSlit Diffraction

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html

diffraction of a plane wave on a slit aperture
Huygens-Fresnel: line of spherical wave sources
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Slit Diffraction

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html

with E0 the strength of each slit segment i at point P is

Ei(P) =
EL

ri
sin(k! � kri)�yi

i segment index (1 � M)
EL source strength per unit length
ri distance between segment and point P

�yi small segment of slit
D length of slit
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Break slit into many small radiating elements



Integrate small elements along slit
Fraunhofer Diffraction at Single Slit

integrate along slit

E = EL

Z D/2

�D/2

sin!t � kr
r

dy

express r as a function of y :

r = R � y sin ✓ +
y2

2R
cos2 ✓ + ...

R distance between center of slit and point P
substituting, integrating and squaring for intensity:

I(✓) = I(0)
✓

sin�

�

◆2

� = (kD/2) sin ✓
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Destructive interferenceInterpretation of Single Slit Diffraction

hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslitd.html

assume infinite distance from aperture for source and
observation plane
equivalent to plane waves coming from aperture into different
directions
first minimum when phase delay at edge is exactly one wave
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Circular aperture diffraction
Fraunhofer Diffraction at Circular Aperture

integrate over circular aperture with radius a

E =
EAei(!t�kR)

R

Z Z

aperture
eik(Yy+Zz)/RdS

using polar coordinates in aperture and plane of observation and
Bessel functions

I(✓) = I(0)
✓

2J1(ka sin ✓)

ka sin ✓

◆2

J1 Bessel function of order 1
Airy function
first dark ring at 1.22R�

2a

images with perfect telescopes are convolution of Airy disk with
actual image
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…and for any type of apertureFourier Optics

Arbitrary Diffracting Aperture
from before forgetting common phase term and 1/R amplitude
drop-off

E(Y ,Z ) =

Z Z

aperture
A(y , z)eik(Yy+Zz)/RdS

complex aperture function A(y , z) describing non-uniform
absorption and phase delays
finite aperture ) change integration boundaries to infinity
with ky = kY/R and kz = kZ/R we obtain

E(ky , kz) =

Z Z

aperture
A(y , z)ei(ky y+kzz)dy dz

field distribution in Fraunhofer diffraction pattern is Fourier
transform of field distribution across aperture
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The Point Spread Function
Point-Spread Function

intensity is modulus squared of field distribution ) point-spread
function
image of a point source: Point Spread Function (PSF)
image of arbitrary object is a convolution of object with PSF

i = o ⇤ s

i observed image
o true object, constant in time
s point spread function
⇤ convolution
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The Optical Transfer Function
Optical Transfer Function

after Fourier transformation:

I = O · S

Fourier transformed
I Fourier transform of image

O Fourier transform of object
S Optical Transfer Function (OTF)

OTF is Fourier transform of PSF and vice versa
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2 pinholes 2 small holes 2 large holes

Finite Hole Diameter
fringe spacing only depends on separation of holes and
wavelength
the smaller the hole, the larger the ’illuminated’ area
fringe envelope is Airy pattern (diffraction pattern of a single
hole)
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Interferometer with Finite Apertures
non-ideal two-element interferometer with finite apertures using
pupil function concept (Observational Astrophysics 1)
optical transfer function (OTF)

OTF = 2
✓

�

R

◆2 

�(~⇣ ) +
1
2
�
⇣

~⇣ � ~s/�
⌘

+
1
2
�
⇣

~⇣ + ~s/�
⌘

�

pair of pinholes transmits three spatial frequencies
DC-component �(~0)
two high frequencies related to length of baseline vector ~s at ±~s/�

3 spatial frequencies represent three-point sampling of the
uv-plane in 2-d spatial frequency space
complete sampling of uv-plane provides sufficient information to
completely reconstruct original brightness distribution
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Point-Spread Function (PSF)
PSF is Fourier Transform of OTF

�(~⇣ ) , 1

�
⇣

~⇣ � ~s/�
⌘

, ei2⇡~✓·~s/�

�
⇣

~⇣ + ~s/�
⌘

, e�i2⇡~✓·~s/�

Point-Spread Function of 2-element interferometer
✓

�

R

◆2
h

2(1 + cos 2⇡~✓ · ~s/�)
i

= 4
✓

�

R

◆2
cos2 ⇡~✓ · ~s/�

~✓: 2-d angular coordinate vector
attenuation factor (�/R)2 from spherical expansion
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2-d Brightness Distribution

PSF of single circular aperture PSF of two-element
interferometer, aperture diameter
d = 25 m, length of baseline
vector |~s| = 144 m

double beam interference fringes showing modulation effect of
diffraction by aperture of a single pinhole
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Why do we see Airy patterns of stars?

Image of Vega taken with !
8.4m diameter telescope in Arizona



van Cittert-Zernike Theorem
Van Cittert-Zernike Theorem

The Problem

relates brightness distribution of extended source and phase
correlation between two points in radiation field
extended source S incoherent, quasi-monochromatic
positions P1 and P2 in observers plane ⌃

Ẽ1(t)Ẽ⇤
2 (t) = E{Ẽ1(t)Ẽ⇤

2 (t)} = �̃12(0)
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The Solution

I(~⌦) is intensity distribution of extended source as function of unit
direction vector ~⌦ as seen from observation plane ⌃

�̃(~r) is coherence function in ⌃-plane
vector ~r represents arbitrary baseline
van Cittert-Zernike theorem

�̃(~r) =
Z Z

source

I(~⌦)e
2⇡i~⌦.~r

� d~⌦

I(~⌦) = ��2
Z Z

⌃-plane

�̃(~r)e� 2⇡i~⌦.~r
� d~r

�̃(~r) and I(~⌦) are linked through Fourier transform, except for
scaling with wavelength �

"true" Fourier transform with conjugate variables ~⌦, ~r/�,
Fourier pair: I(~⌦) , �̃(~r/�)
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