Astronomical Observing Techniques 2018

Lecture 9: Silicon Eyes 1

Christoph U. Keller

keller@strw.leidenuniv.nl

Content

- 1. Detector Types
- 2. Crystal Lattices
- Covalent Bond
- 4. Electronic Bands
- 5. Fermi Energy and Fermi Function
- 6. Electric Conductivity
- 7. Band Gap and Conduction Band
- 8. Intrinsic Photoconductors
- 9. Photo-Current
- 10. Limitations of Intrinsic Photoconductors
- 11. Extrinsic Photoconductors
- 12. Depletion Zone
- 13. Photodiodes
- 14. Charge Coupled Devices
- 15. Readout & Operations
- 16. Detector Noise

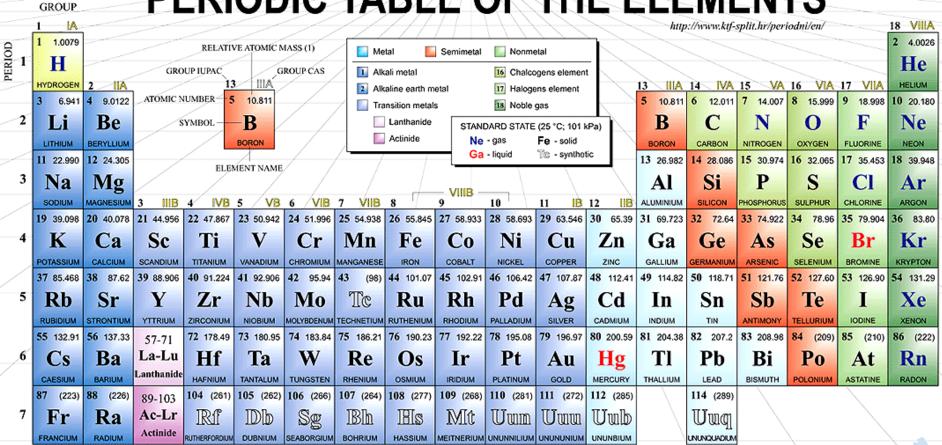
Modern Detectors

Photon detectors

Responds to individual photons, releases electrons, X-rays to IR *Examples: photoconductors, photodiodes, photoemissive detectors*

Thermal detectors

Absorbs photons, changes temperatures, changes resistance, IR and sub-mm detectors


Examples: bolometers

Coherent receivers

Responds directly to electrical field and preserve phase, mainly used in the sub-mm and radio regime

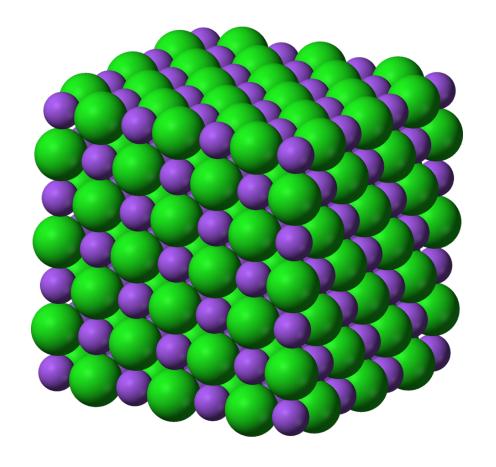
Examples: heterodyne receivers

PERIODIC TABLE OF THE ELEMENTS

(1) Pure Appl. Chem., 73, No. 4, 667-683 (2001) Relative atomic mass is shown with five significant figures. For olements have no stable nuclides, the value enclosed in brackets indicates the mass number of the longost-lived isotope of the element.

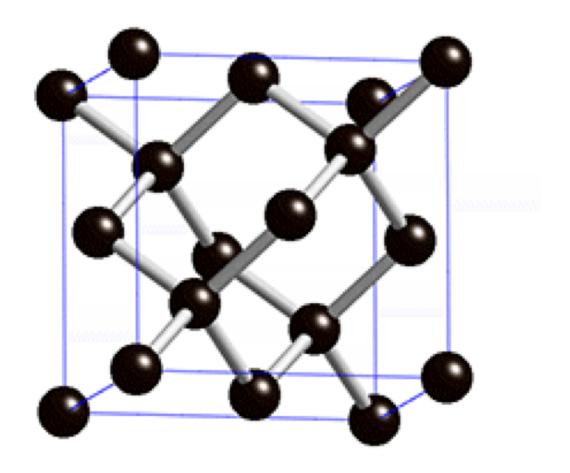
However three such elements (Th. Pa, and U) do have a characteristic terrestrial isotopic composition, and for these an atomic weight is tabulated.

Editor: Aditya Vardhan (adivar@nettlinx.com)

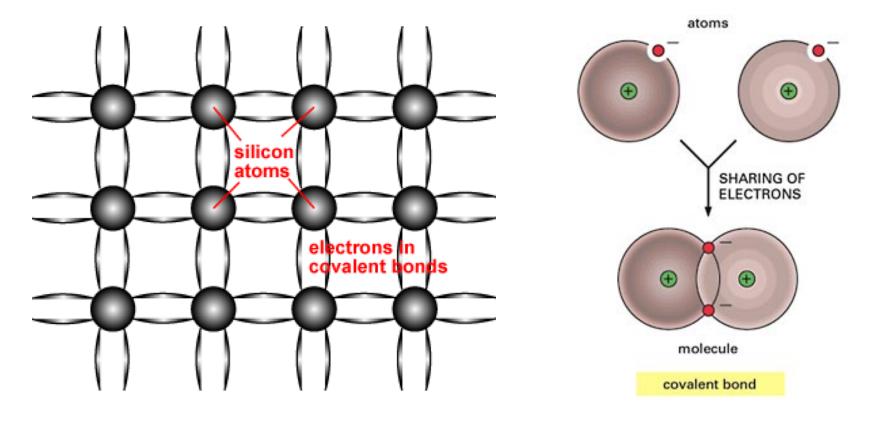

	LANTI	IMINII)E											Copyright © 19	90-2003 EURO (emagku-spiit.nr)
	57 13	8.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97
,	L	a	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
,	LANTHA	NUM	CERIUM	PRASECOYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
)	ACTINIDE															
á	89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
	A	c	Th	Pa	U	Np	Pu	Am	Cm	IBlk	Cf	Es	Fm	Md	No	Lr
	ACTIN	IUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM

JAMES AROOF BROOK FAIRS AND SHARE WATER

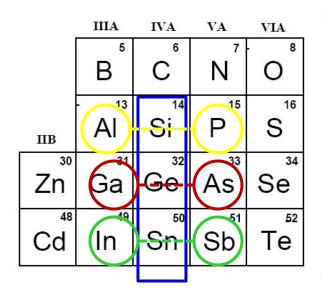
LANTHANIDE

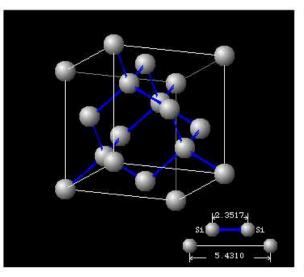

Crystal Lattice

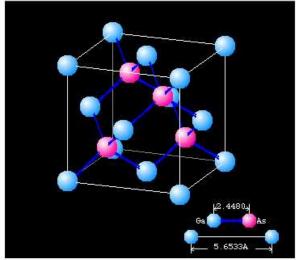
- crystals: periodic arrangement of atoms, ions or molecules
- smallest group of atoms that repeats is unit cell
- unit cells repeat at lattice points
- crystal structure and symmetry determine many physical properties


purple:Na+, green: Cl-

Diamond Unit Cell

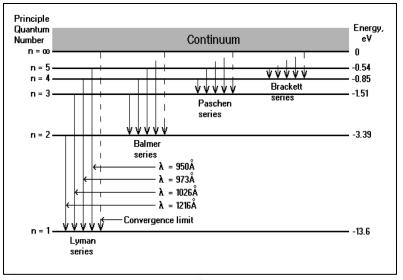

Covalent Bond


- Elements with 4 e⁻ in valence shell form crystals with diamond lattice structure (each atom bonds to four neighbors).
- Double-bonds between neighbours due to "shared" electrons

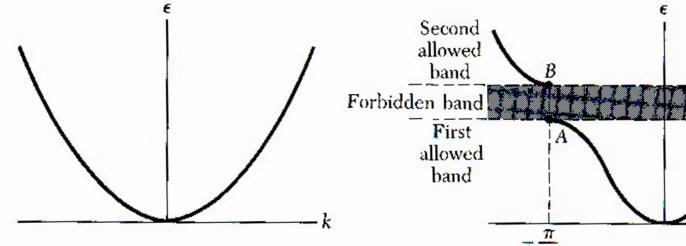


Diamond Lattice with 2 Elements

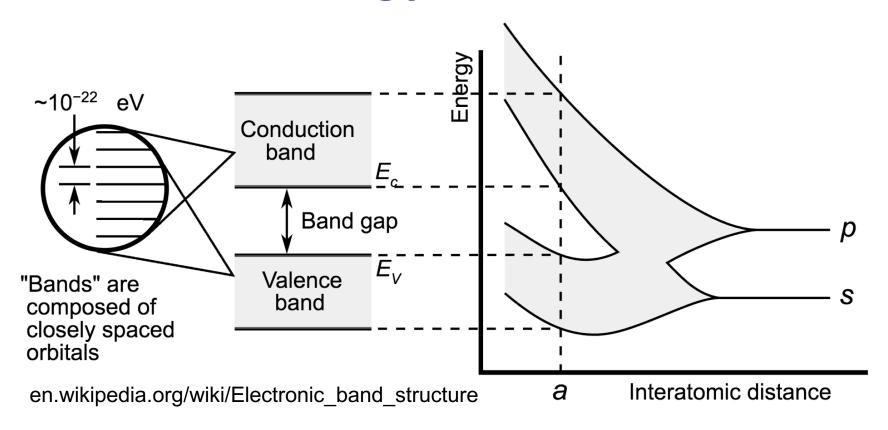
Diamond lattice not only formed by group IV elements (C, Si, Ge) but also by III-V semiconductors (InSb, GaAs, AIP)



Electronic States and Bands

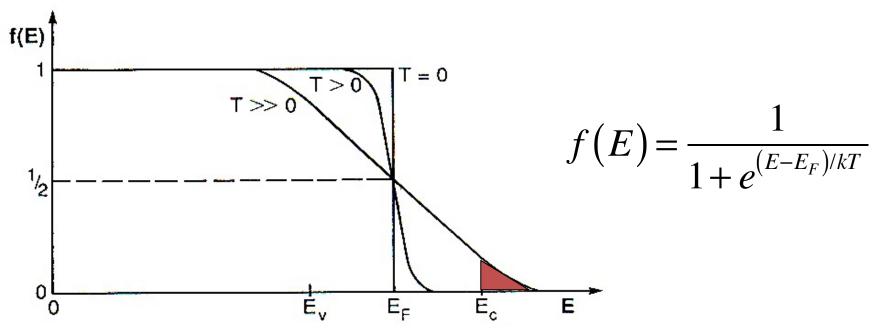

Single (Hydrogen) Atom

Atoms in crystal

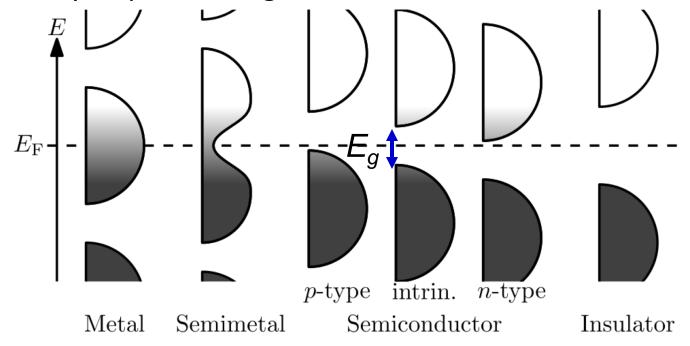

Wavefunctions Ψ overlap

- → Energy levels of individual atoms split due to Pauli principle (avoiding the same quantum states)
- → Multiple splitting → "bands"

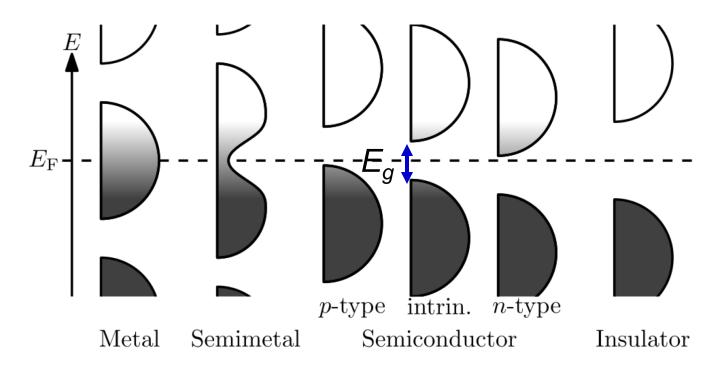
 π


Electron Energy Levels in Carbon

- possible energy levels of electrons in diamond lattice
- Pauli exclusion principle leads to splitting of energy states
- electrons in conduction band can move freely


Fermi Energy

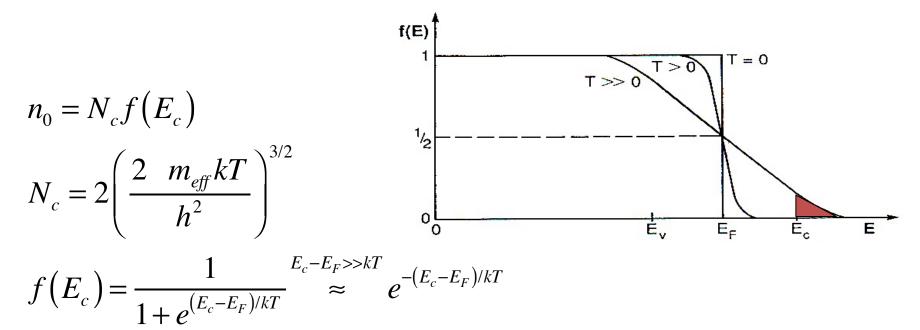
- Pauli exclusion principle 2 fermions cannot occupy same quantum state; fill up unoccupied quantum states
- Fermi energy E_F is energy of highest occupied quantum state in a system of fermions at T = 0K
- Fermi function f(E) is probability that state of energy E is occupied at temperature T; $f(E_F) = 0.5$


Electric Conductivity

Conductivity requires charge carriers in the conduction band

- Metal: Fermi energy in the middle of conduction band -> free electrons at all temperatures
- Insulator: large band gap and Fermi energy between bands
- Semiconductor: narrow band gap and Fermi energy between bands

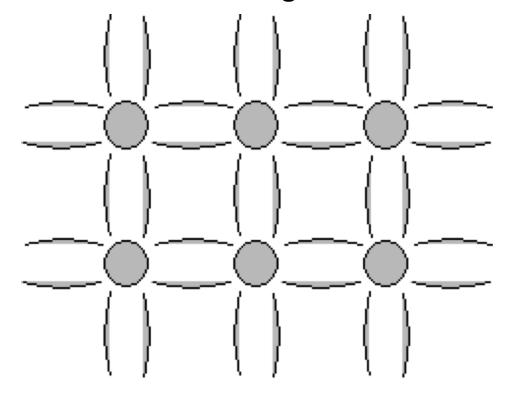
Bandgap



Overcome bandgap E_q by lifting e^- into conduction band:

- 1. external excitation, e.g. via a photon ←photon detector
- 2. thermal excitation
- 3. impurities

Electrons in Conduction Band


- Number of occupied states in conduction band is given by product of number of possible states N_c in conduction band times the probability $f(E_c)$ that they are occupied
- For silicon, temperature increase of 8K doubles number of electrons in conduction band

Intrinisic Photo-Conductors: Basic Principle

- semi-conductor: few charge carriers

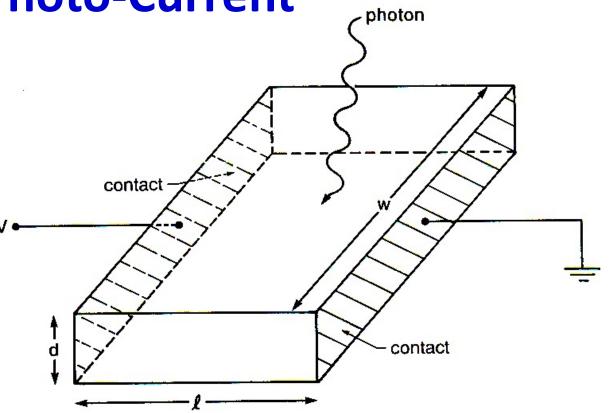

 high resistance
- charge carriers = electron-hole pairs
- photon lifts e⁻ into conduction band
- applied electric field drives charges to electrodes

Photo-Current

- Conductivity: $j = \sigma E$
- Current: *I=jwd*
- V=RI, E=V/l
- $\sigma = j/E = jl/V = jl/(RI)$ = jl/(Rjwd)= $1/R \cdot l/wd$

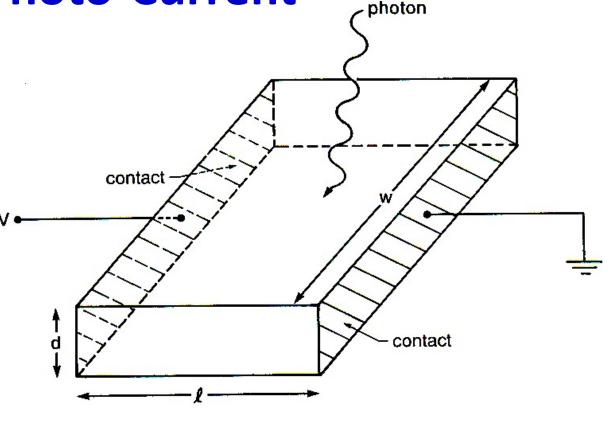
$$\sigma = \frac{1}{R_d} \frac{l}{wd} = q n_0 \mu_n$$

where:

 R_d = resistance w,d,l = geometric dimensions

Photo-Current

$$\sigma = \frac{1}{R_d} \frac{l}{wd} = q n_0 \mu_n$$


where:

 R_d = resistance w,d,l = geo. dimensions q = elementary charge n_0 = number density of charge carriers

 φ = photon flux

 η = quantum efficiency

 τ = mean lifetime before recombination wdl μ_n = electron mobility; drift velocity $v=\mu_n E$, current density $j=n_0 qv$, $\sigma=j/E=n_0 q\mu_n E/E=qn_0 \mu_n$

Important Quantities and Definitions

Quantum efficiency
$$\eta = \frac{\text{\# absorbed photons}}{\text{\# incoming photons}}$$

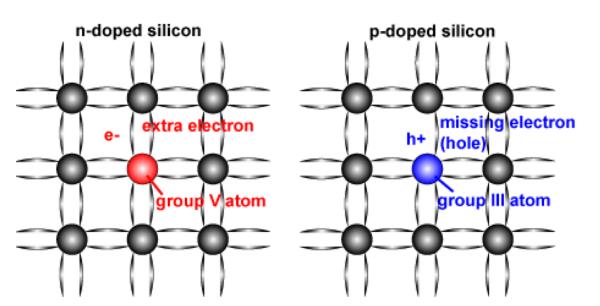
Responsivity
$$S = \frac{\text{electrical output signal}}{\text{input photon power}}$$

Wavelength cutoff:
$$\lambda_c = \frac{hc}{E_g} = \frac{1.24 \, \mu m}{E_g [eV]}$$

Photo-current:
$$I_{ph} = q \varphi \eta G$$

Photoconductive gain 6:
$$G = \frac{I_{ph}}{q \varphi \eta} = \frac{\tau}{\tau_t} = \frac{\text{carrier lifetime}}{\text{transit time}}$$

The product ηG describes the probability that an incoming photon will produce an electric charge that will reach an electrode


Limitations of Intrinsic Semiconductors

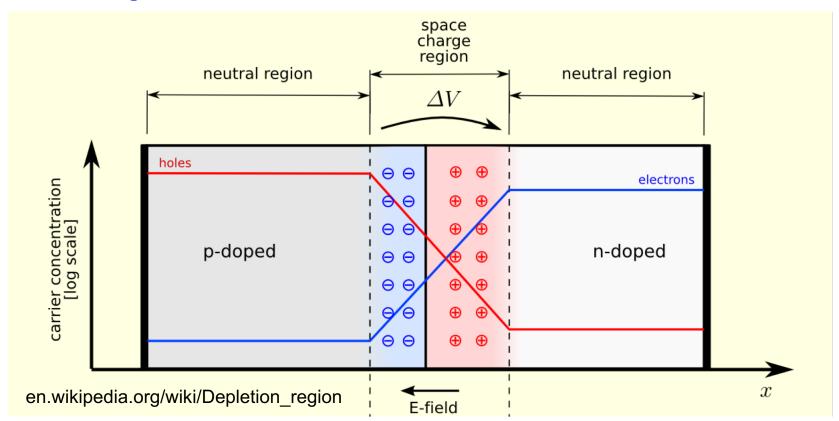
long-wavelength cutoffs

- difficult to create completely pure material
- problems to make good electrical contacts to pure Si
- difficult to avoid impurities and minimize thermal noise

Extrinsic Semiconductors

- extrinsic semiconductors:
 charge carriers = electrons (n-type) or holes (p-type)
- addition of impurities at low concentration to provide excess electrons or holes
- much reduced bandgap -> longer wavelength cutoff

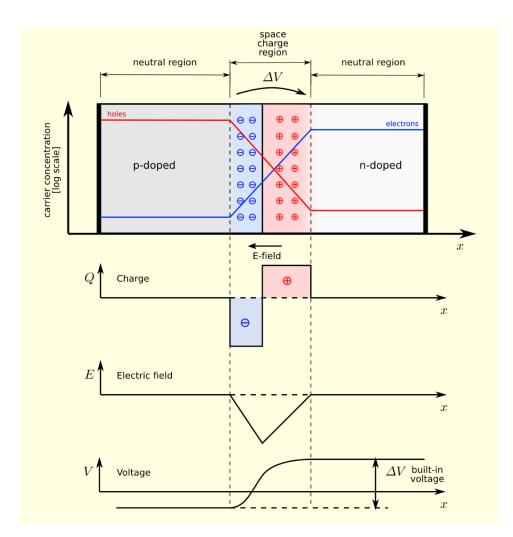
Example: addition of boron to silicon in the ratio 1:100,000 increases its


1:100,000 increases its conductivity by a factor of 1000!

Extrinsic Semiconductor Band Gaps

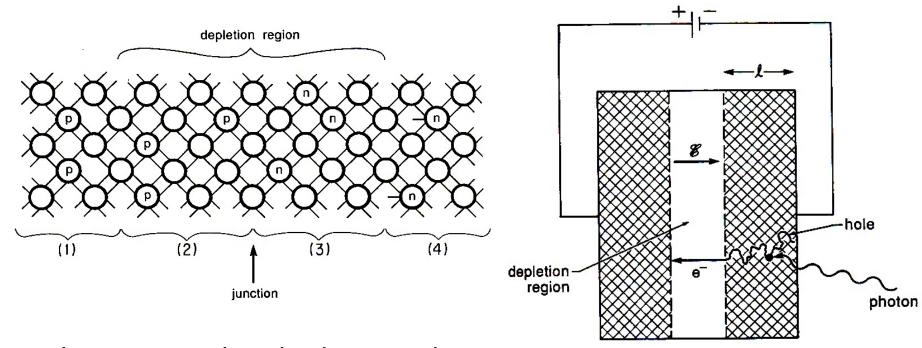
		Ge	Si
Impurity	Туре	Cutoff wavelength λ _c (μm)	Cutoff wavelength λ_c (μ m)
Al	p		18.5^{a}
В	p	119^{b}	28^{a}
Be	p	52^{b}	8.3^{a}
Ga	p	115^{b}	17.2^{a}
In	p	111^{b}	7.9^{a}
As	n	98 ^b	23^{a}
Cu	p	31^b	5.2^{a}
P	n	103 ^b	27^a
Sb	n	129^{b}	29^{a}

Problem: absorption coefficients much less than for intrinsic photoconductors → low quantum efficiency → active volumes of pixels must be large


Depletion Zone / PN Junction

- junction between p- and n-doped Si (both are electrically neutral)
- e⁻ migrate to P-side, holes migrate to N-side
- e⁻ can only flow over large distances in n-type material, holes can only flow in p-type material

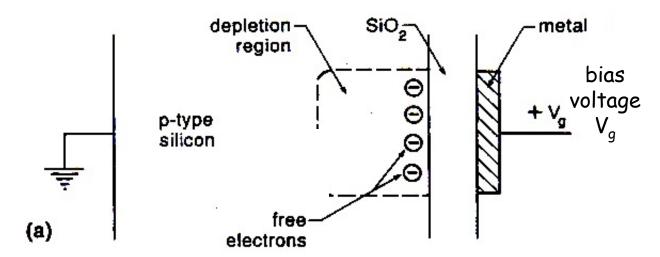
Depletion Zone / PN Junction


- migrating e⁻ from N-side to P-side produces positive donor ion on N-side; migrating hole produces negative acceptor ion on P-side
- migrating e⁻ recombine with holes on P-side; migrating holes recombine with e⁻ on N-side
- migrating e⁻ and holes, mobile charge carriers are depleted
- charged ions remain adjacent to interface

en.wikipedia.org/wiki/Depletion_region

Photodiodes

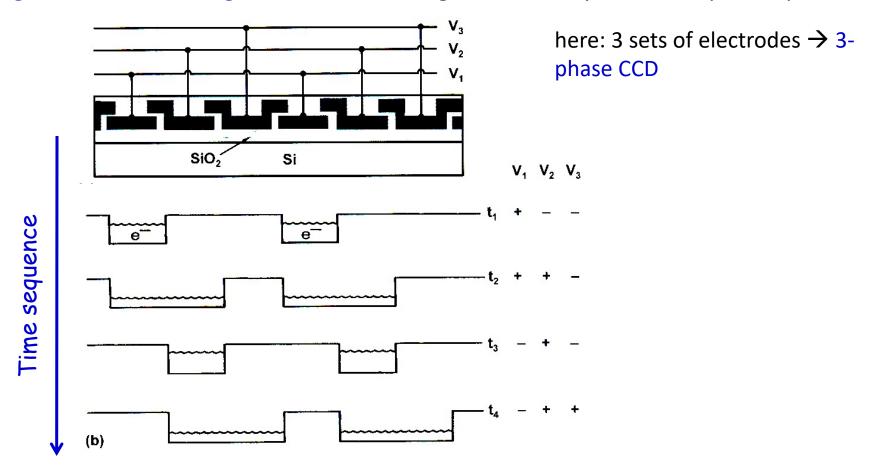
- junction between two oppositely doped zones
- 2 adjacent zones create a depletion region

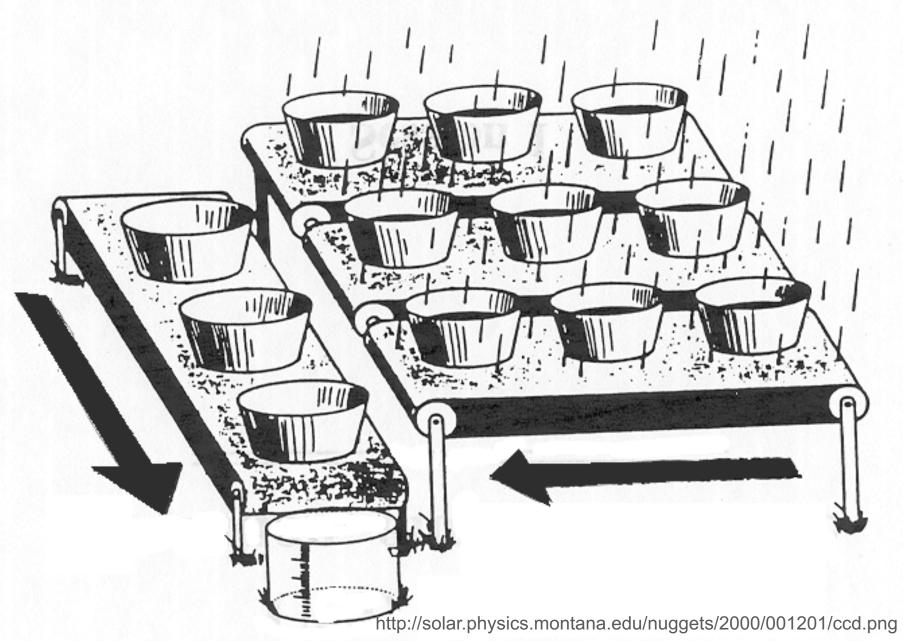

- 1. Photon gets absorbed e.g. in the p-type part
- 2. Absorption creates an e-hole pair
- The e⁻ diffuses through the material
- 4. Voltage drives the e^- across the depletion region \rightarrow photo-current

Charge Coupled Devices (CCDs)

CCDs = array of integrating capacitors.

Pixel structure: metal "gate" evaporated onto SiO₂ (isolator) on silicon


= MOS


- 1. photons create free e⁻ in the photoconductor
- 2. e⁻ drift toward the electrode but cannot penetrate the SiO₂ layer
- 3. e⁻ accumulate at the Si—SiO₂ interface
- 4. total charge collected at interface measures number of photons during the exposure
- 5. \rightarrow read out the number of e⁻

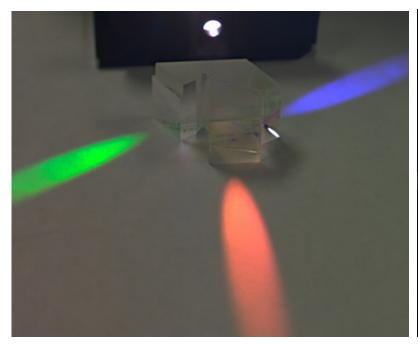
Charge Coupled Readouts

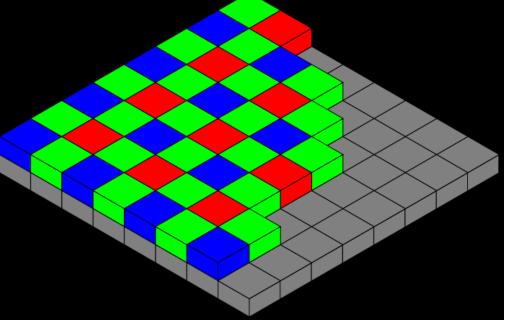
Charges are moved along columns to the edge of the array to the output amplifier

Charge transfer (in-)efficiencies (CTEs) due to electrostatic repulsion, thermal diffusion and fringing fields

Charge Transfer Efficiency (CTE)

Time-dependent mechanisms that influence the CTE:


- 1. Electrostatic repulsion causes electrons to drift to the neighbouring electrode with time constant for charge transfer τ_{SI} .
- 2. Thermal diffusion drives electrons across the storage well at τ_{th} .
- 3. "Fringing fields" due to dependency of the well on the voltages of neighbouring electrodes (τ_{ff}).


Approximation for the CTE of a CCD with m phases: $CTE = (1 - e^{-t/\tau})^m$

Noise from charge transfer inefficiency: $\varepsilon = (1-CTE)$

CCD Color Sensors

- 1. Three exposures through 3 filters only works for fixed targets
- 2. Split input into 3 channels with separate filter and CCD
- 3. Bayer mask over CCD each subset of 4 pixels has one filtered red, one blue, and two green

Main Detector Noise Components

G-R noise
$$\langle I_{G-R}^2 \rangle = 4q^2 \varphi \eta G^2 \Delta f$$

Fundamental statistical noise due to the Poisson statistics of the photon arrival \rightarrow transferred into the statistics of the generated and recombined holes and electrons

Johnson or kTC noise
$$\langle I_J^2 \rangle = \frac{4kT}{R} \Delta f$$

Fundamental thermodynamic noise due to thermal motion of charge carriers. Photo-conductor is an RC circuit where $\langle Q^2 \rangle = kTC$

1/f noise
$$\langle I_{1/f}^2 \rangle \propto \frac{I^2}{f} \Delta f$$

increased noise at low frequencies, due to bad electrical contacts, temperature fluctuations, surface effects (damage), crystal defects, and JFETs, ...

Total noise:
$$\left\langle I_{N}^{2}\right\rangle =\left\langle I_{G-R}^{2}\right\rangle +\left\langle I_{J}^{2}\right\rangle +\left\langle I_{1/f}^{2}\right\rangle$$

BLIP and **NEP**

Operationally, background-limited performance (BLIP) is always preferred:

$$\langle I_{G-R}^2 \rangle >> \langle I_J^2 \rangle + \langle I_{1/f}^2 \rangle$$

The noise equivalent power (NEP) is the signal power that yields an RMS S/N of unity in a system of $\Delta f = 1$ Hz:

$$NEP_{G-R} = \frac{2hc}{\lambda} \left(\frac{\varphi}{\eta}\right)^{1/2}$$

In BLIP the NEP can only be improved by increasing the quantum efficiency η as background photon noise dominates