Astronomical Observing Techniques

Lecture 13: Twinkle, twinkle little star... No more!

Christoph U. Keller keller@strw.leidenuniv.nl

Overview

- 1. The Power of Adaptive Optics
- 2. Atmospheric Turbulence
- 3. Basic Principle
- 4. Key Components
- 5. Error Terms
- 6. Laser Guide Stars
- 7. Adaptive Optics Operations Modes

ExPo Adaptive Optics at WHT

Star with and without AO

cfao.ucolick.org/pgallery/stellar.php

Io with and without Keck AO

Io image taken with Keck adaptive optics; K-band, **2.2micron**

Io image taken with Keck adaptive optics; L-band, **3.5micron**

Io image based on visible light taken with **Galileo** spacecraft orbiter.

Io image taken **without** Keck adaptive optics.

cfao.ucolick.org/pgallery/io.php

NGC 7469

cfao.ucolick.org/ao/why.php

Seeing: r₀, τ₀, θ₀ (from Lecture 2)

 $(\lambda) = 0.185 \lambda^{6/5}$ $C_n^2(z)$

 $r_0(\lambda) = 0.185 \lambda^{6/5} \left| \int_{0}^{2} C_n^2(z) dz \right|$

 $f_0(\lambda) = 0.185 \lambda^{6/5} \left| \int C_n^2$

0

 \lfloor

 $\overline{}$

[−] [∞]

 $\left|\int\limits_{0}^{\infty}C_{n}^{2}(z)dz\right|$

0

r

 $\tau_{0} = 0.314$

 $\theta_0 = 0.314 \cos \zeta$

- Fried parameter r_0 : average turbulent scale over which RMS optical phase distortion is 1 rad
- r_0 increases as $\lambda^{6/5}$
- Seeing Δθ at good sites at 0.5μm: 10 30 cm $\Delta\theta\!=\!\frac{\lambda}{\text{}}\!\sim\! \lambda^{\!\!-}$
- atmospheric coherence (or Greenwood delay) time: maximum time delay for RMS wavefront error to be < 1 rad (\bar{v} is mean propagation velocity)
- Isoplanatic angle θ_0 : angle over which RMS wavefront error is smaller than 1 rad

h

 $r₀$

3/5

 $\frac{1}{2}$

 \rfloor

1/5

r 0

v

Resolution & Sensitivity Improvement

- 1. Angular resolution: 0 D $\left| \right|$ $\rightarrow \theta = \frac{\pi}{R}$ \rightarrow gain r_0 *D* $\theta = \frac{\lambda}{\theta} \rightarrow \theta = \frac{\lambda}{\theta} \Rightarrow \text{gain} =$
- 2. Point source sensitivity: $l/N \sim D^2$ \Rightarrow gain in $t_{int} \sim \frac{l_0}{D}$ $S/N \sim D^2 \implies$ gain in t

PHARO LGS Ks image 500s integ., 40" FOV, 150 mas FWHM

r

int $\overline{D^4}$

D

WIRO H image Kobulnicky et al. 2005, AJ 129, 239-250

Adaptive Optics Principle

- Maximum scale of tolerated wavefront deformation is $r_0 \rightarrow$ subdivide telescope into apertures with diameter r_0
- Measure wavefront deformation
- Correct wavefront deformation by "bending back" patches of size r_0

 r_0

• Number of subapertures is $(D/r_0)^2$ at observing wavelength \rightarrow requires hundreds to thousands of actuators for large telescopes

D

Adaptive Optics Scheme (SCAO)

Wavefront Description: Zernike Polynomials

Zernike Amplitudes for Kolmogorov Turbulence

Wavefront Sensors – Shack Hartmann

Most common principle is the Shack Hartmann wavefront sensor measuring sub-aperture tilts:

ExPo Wavefront Sensor at WHT

Wavefront Sensing

Sunspot wavefront sensor images at 955Hz

Curvature, Pyramid Wavefront Sensors

Deformable Mirrors (DM)

- Fit mirror surface to wavefront
- r_0 sets number of degrees of freedom
- segmented mirrors rarely used anymore
- mostly continuous face-sheet mirrors

Membrane Deformable Mirror

- micromachined deformable mirror (OKOtech/Flexible Optics) with 37 actuators
- 600-nm thick, 15-mm diameter silicon nitride membrane
- electrostatic actuators

Adaptive Secondary Mirrors

- DM part of telescope \rightarrow adaptive secondary mirrors
- no additional optics \rightarrow lower emission, higher throughput
- more difficult to build, control, and handle

DM for MMT Upgrade

Shack-Hartmann Wavefront Analysis

• centroid (center of gravity) calculation on each subaperture:

Influence Matrix

- slope of mirror surface *and* Shack-Hartmann star positions are proportional to actuator position
- linear relationship between actuator *a* and star position c : $c_n = \sum a_k b_{nk}$ *N* $\sum_{k=1}^{N} a_{k} b_{nk}$ (For a single spot — x-offset or y-offset)

$$
k=1
$$
 combin equations for each spot position *n* into matrix equation:

$$
C = BA
$$

- $C = star$ positions
- $A =$ actuator positions
- $B =$ influence matrix describing influence of specific actuator position on star positions

Measuring the Influence Matrix

- measure centroid positions in subapertures for different settings of actuator *k*
- for actuator *k* and subaperture *n*, slope of best fit line is element (n, k) of influence matrix B

Actuator 1, Trial 1, Spot 17 (horizontal) r = .988

Determining the Control Vector

- Influence matrix B is known, C from wavefront sensor
- Find control vector A to correct for error in wavefront
- Matrix inversion of B?

 $A = B^{-1}C$

- Overdetermined system
	- More centroid measurements than actuators
	- No exact solution A exists for given set of centroids
	- No exact B^{-1} exists (B is rectangular)
- Singular Value Decomposition: approximate B^{-1} in best possible way (minimizes wavefront error)

Typical AO Error Terms

- Fitting errors from insufficient approximation of the wavefront by the deformable mirror, mostly due to finite number of actuators
- Temporal errors from time delay between measurement and correction, mostly due to exposure and readout time

$$
\sigma_{fit}^2 \approx 0.3 \left(\frac{D}{r_0}\right)^{5/3}
$$

- Measurement errors from wavefront sensor
- Calibration errors from non-common aberrations between wavefront sensing optics and science optics
- Angular anisoplanatism from sampling different lines of sight through the atmosphere, mostly limits field of view

 $\sigma_{measure}^2 \sim S/N$

 $\sigma _{calibration}^2 \thicksim ? ? ?$

Angular Anisoplanatism

Angular anisoplanatism severely limits

- wide-field imaging
- sky coverage (finding a guide star within the isoplanatic angle)

Multi-LGS allows to fight cone effect AND increase FOV

"Typical" Correction and Residuals

cfao.ucolick.org/pgallery/gc.php

Sky Coverage

To sense the wavefront one needs a bright reference/guide star within the isoplanatic angle.

Cumulative sky coverage, i.e., the chance of finding stars brighter than given magnitude, for a random target as a function of I-band magnitude using the USNO-B1.0 catalogue.

Laser Guide Stars

Solution to the sky coverage problem: *create your own guide star*

- Sodium LGS excite atoms in "sodium layer" at altitude of \sim 95 km.
- Rayleigh beacon $LGS -$ scattering from air molecules sends light back into telescope, $h \approx 10$ km

Since the beam travels twice (up and down) through the atmosphere, tip-tilt cannot be corrected \rightarrow LGS-AO still needs a natural guide star, but this one can be much fainter $($ $^{\sim}$ 18mag) as it is only needed for tip-tilt sensing

Sodium Beacons

- Layer of neutral sodium atoms in mesosphere (height \sim 95 km, thickness $^{\sim}10$ km) from smallest meteorites
- **Resonant scattering occurs** when incident laser is tuned to D2 line of Na at 589 nm.

www.eso.org/public/images/eso1613n/

WHT Rayleigh Guide Star

Rayleigh Beacons

Due to interactions of the electromagnetic wave from the laser beam with molecules in the atmosphere.

Advantages:

- cheaper and easier to build
- higher power
- independent of Na layer

Disadvantages:

- larger focus anisoplanatism
- laser pulses \rightarrow timing

Focus Anisoplanatism

The LGS is at finite distance H above the telescope and does not sample all turbulence and not the same column of turbulent atmosphere ("cone effect"):

Ground Layer AO – GLAO

- Useful if ground layer $($ = ground + dome $+$ mirror seeing) is the dominant component
- Uses several WFS and guide stars within a large FOV (several arcmin)
- WFS signals are averaged \rightarrow control one DM
- Reduction of FWHM \sim factor of two (only!)
- GLAO is thus a "seeing enhancement" technique
- Advantage: wider fields and shorter wavelengths

Laser Tomography AO – LTAO

- Uses multipe laser beacons
- each laser has its WFS
- \cdot combined information is used to optimize the correction by one DM onaxis.
- reduces the cone effect
- system performance similar to natural guide star AO but at much higher sky coverage.

Multi-Conjugate AO – MCAO

- to overcome anisoplanatism, the basic limitation of single guide star AO
- MCAO uses multiple NGS or LGS
- MCAO controls several DMs
- each DM is conjugated to a different atmospheric layer at a different altitude
- at least one DM is conjugated to the ground layer
- best approach to larger corrected FOV

MCAO: Performance

Multi-Object AO – MOAO

- MOAO provides correction not over the entire FOV of several arcmin but only in local areas within several arcmin \rightarrow multiobject spectroscopy.
- needs (several) guide stars close to each science target.
- picks up the WFS light via small "arms" inserted in the FOV.
- each science target has its DM
- systems work in open loop (!)

Extreme AO – XAO

- XAO is similar to SCAO
- high Strehl on-axis and small corrected FOV
- however, Strehl values in excess of 90%
- requires many thousands of DM actuators
- requires minimal optical and alignment errors
- main application: search for exoplanets, SPHERE on VLT

Student-Built ExPo Adaptive Optics

TODAY: Mercury Transit

- old observatory
- starts just before 14:00

Last Exercise Class: 12 May at 11:15

Presentations

- 26 May 2016, between 11:00 and 16:00
- 15 minutes per person
- location to be announced

MSc Astronomy & Instrumentation

- lectures:
	- $-$ Astronomical Telescopes and Instruments
	- Detection of Light
	- High Contrast Imaging
	- Astronomical Systems Design
	- Project Management
- option to take courses at TU Delft (not required)
- option for major research thesis in industry

www.astroinstrumentation.nl