Astronomical Observing Techniques

Lecture 12: Pink and other Colored Glasses

Christoph U. Keller keller@strw.leidenuniv.nl

Overview

- 1. Colored Plastic and Glass Filters
- 2. Interference Filters
- 3. UBVRI Photometry
- 4. Precision Photometry
- 5. Extreme Photometry

Broadband Color Filters

- Dyed gelatin (Kodak Wratten)
 - advantages: thin, cheap, large sizes
 - disadvantages: limited optical quality, heat-sensitive
- Colored glass (Schott, Corning)
 - advantages: stable, rugged, high transmission
 - disadvantages: limited bandpasses, limited sizes
- Interference filters
 - advantages: very narrow filters, almost arbitrary bandpass shape and wavelength
 - disadvantages: expensive, very limited sizes, temperature-sensitive, humidity-sensitive, aging

Wratten Filters

colored plastic sheets

www.edmundoptics.com/ onlinecatalog/displayproduct.cfm? productid=1326

- named after Frederick Wratten, manufactured by Kodak for about 100 years
- recently: Wratten 2
- up to 100 mm by 300 mm
- can be used for experiments
- improved performance when put between glass plates

Typical Wratten Filters

www.edmundoptics.com/ onlinecatalog/displayproduct.cfm? productid=1326

Astronomical Observing Techniques 2016: Imaging

Colored Glass

- typically useful from 200 1000 nm
- Schott
 - UG: Black and blue glasses, UV transmitting
 - BG: Blue, blue-green, and multi-band glasses
 - VG: Green glass
 - GG: Nearly colorless to yellow glasses, IR transmitting
 - OG: Orange glasses, IR transmitting
 - RG: Red and black glasses, IR transmitting
 - NG: Neutral density glasses with uniform attenuation in the visible range
 - N-WG: Colorless glasses with different cutoffs in the UV, transmitting in the visible range and the IR
 - KG: Virtually colorless glasses with high transmission in the visible and effective absorption in the IR (heat protection filters)
- other glasses from Corning, Hoya

dark red-black (UG11)

Astronomical Observing Techniques 2016: Imaging

UBVRI

www.sbig.com/products/filters.htm

- UBV by Johnson and Morgan (1953)
- VRIJKLMNQ (infrared) by Johnson (1960)
- (combinations of) glass filters
- invented to classify stars with photomultipliers
- zero point of B-V and U-B color indices defined to be zero for A0 V stars

(Old) UBVRI

UBVRI Filter Characteristics

Limitations of UBVRI Photometry

- limited spectral resolution
- effective central wavelength changes with color of star
- star's magnitudes and color depend on the star's color
- short-wavelength side of U filter extends below atmospheric transmission cutoff
- properties of sky define width of bandpass, not filter
- no clean separation of information from different filters
- different detectors have different sensitivities
- today: Bessel or Cron/Cousins UBVRI with CCDs

UBVRI

Other Filter Systems

- have less
 overlap and/or
 higher
 transmission
- Johnson system for stars
- Thuan-Gunn filters for faint galaxy observations

Other Filter Systems

- Sloan Digital Sky Survey (SDSS) for faint galaxy classification
- Stromgren for better sensitivity to stellar properties (metallicity, temperature, surface gravity)

Interference Filters

- thin film:
 - layer with thickness $\leq \lambda$
 - extends in 2 other dim. >> λ
- reflection, refraction at all interfaces

- layer thickness d_i≤λ -> interference between reflected and refracted waves
- L layers of thin films like Fabry-Perots: thin film stack
- substrate (index n_s), incident medium (index n_m) have infinite thickness
- can be tailored to almost any specifications
- sensitive to temperature, humidity, angle of incidence
- tune in wavelength with temperature, angle of incidence

Fabry-Perot Tunable Filter

www.arcetri.astro.it/science/solare/ IBISphoto.jpeg

- main ingredient is Fabry-Perot with tunable plate separation
- stability of cavity spacing is critical
- often combine two or more tunable elements
- always need interference prefilter

Photometry

- goal: determine flux of an astronomical object in well-defined wavelength range
- problems:
 - seeing
 - extinction
 - sky background
 - telescope, instrument, detector
- calibration with (standard) stars
- all-sky photometry: compare objects all over the sky
- differential photometry: compare objects on same CCD exposure

Sky over La Palma

Atmosphere

- photometric night = uniform, stable sky conditions
- thin clouds and cirrus are hard to see at night
- bright, grey and dark observing time
- seeing defines size of stellar image for large telescopes
- image = convolution of source and Point-Spread Function (PSF)
- integral over image = integral over source

Air Mass

- extinction due to atmosphere along line-ofsight
- airmass = amount of air one looks through
- at zenith (*z=0*): airmass
 X=1.0
- at zenith distance z, airmass X≈sec z=1/cos z
- *X*(*z*=60°)≈2

Air Mass

- absorption coefficient K=2.5 log(f(z)/f(z=0)), where f(z) is measured flux as function of zenith distance z
- KΔX = Δm change in magnitude is absorption coefficient times change in airmass
- measure magnitude for different airmasses and extrapolate to zero airmass (no atmosphere!)
- linear extrapolation does not work in the infrared due to saturated/overlapping molecular lines

Simulated Near-Infrared Absorption

from Tokunaga et al. 2002, adsabs.harvard.edu/abs/2002PASP..114..180T

Astronomical Observing Techniques 2016: Imaging

Dark Sky in Alps

Bright Sky in the Netherlands

Photometric Observations (1)

- observe object and standard stars with different colors
- observe standard stars at low and high airmass to determine their (color-dependent) extinction coefficients
- reduce images with bias, dark, flat field
- measure fluxes with aperture photometry
- calculate instrumental magnitudes:
 m_{inst} = -2.5log(f_i/t_{exp})

Photometric Observations (2)

- calibrate instrumental magnitude for zero airmass: m₀=m_{inst}-K sec z
- zero point from standard stars: $m_{zp} = m_{std} m_{std,inst}$
- remove zero point: $m = m_{zp} + m_{inst}$
- absolute photometry: determine actual magnitudes with calibrations derived from standard stars
- differential photometry: does not require calibrations

Sky Background

- use annulus around star
 - use median
 instead of
 mean to
 neglect cosmic
 rays

Aperture Photometry

- determine location of star by fitting 2-D Gaussian or Moffat PSF model
- determine and remove sky background

Aperture Photometry (continued)

- best aperture size depends on brightness of star
- trade-off between capturing more starlight and adding noise from sky background, detector etc.
- plot result as function of increasing aperture and estimate asymptotic value
- for variability measurements (e.g. exoplanet transit) with differential photometry (standard star in same image):
 - use fixed and identical apertures for target and reference star(s)
 - optimum aperture minimizes scatter in constant parts of mtarget-mstd

Color Correction

- extinction depends strongly on wavelength (color)
- measured flux through broad filter depends on stellar spectrum
- additional correction

 $m=m_0+K \sec z + k_2C \sec z$ where C is color index (e.g. C=B-V)

Extreme Photometry

keplerscience.arc.nasa.gov/PyKEprimerWalkthroughC.shtml 90-day long-cadence Kepler SAP light curve of KIC 3749404. 2/5/2016 Astronomical Observing Techniques 2016: Imaging

Subtle Instrumental Effects

- Thermal changes in optics, electronics
- Small guiding errors coupled with sub-pixel gain variations
- Cotrending Basis Vectors (CBV): Instrumental parameters that have been shown to correlate with photometry of standard stars

16 Kepler Light Curves

BJD - 2455200

keplerscience.arc.nasa.gov/images/PyKE/PyKEprimerFig4.png

Cotrending Basis Vectors

keplerscience.arc.nasa.gov/images/PyKE/PyKEprimerFig3.png

Subtraction of 2 CBVs

90-day long-cadence Kepler SAP light curve of KIC 3749404.

2/5/2016

Astronomical Observing Techniques 2016: Imaging

Subtraction of 8 CBVs

keplerscience.arc.nasa.gov/PyKEprimerWalkthroughC.shtml 90-day long-cadence Kepler SAP light curve of KIC 3749404. 2/5/2016 Astronomical Observing Techniques 2016: Imaging

No CBV Fitting During Eclipses

keplerscience.arc.nasa.gov/PyKEprimerWalkthroughC.shtml 90-day long-cadence Kepler SAP light curve of KIC 3749404. 2/5/2016 Astronomical Observing Techniques 2016: Imaging