Astronomical Observing Techniques

Lecture 11: How to Fingerprint a Star

Christoph U. Keller keller@strw.leidenuniv.nl

Overview

- 1. Spectral Lines
- 2. Spectrograph Concept
- 3. Grating Spectrograph
- 4. Grisms
- 5. Filters and Fabry-Perots
- 6. OH Suppression Spectrographs
- 7. Multi-Object Spectrographs
- 8. Fourier Transform Spectrometer

Fraunhofer's Solar Spectrum

A: telluric $O₂$ B: telluric $O₂$ C: Hα D: Na I D_1 , D_2 , He I D_3 E: Fe I F: Hβ G: CN band H: Ca II K: Ca II

Continuous, Emission, Absorption Spectra

Continuous spectrum

Emission line spectrum

Absorption line spectrum

Hydrogen

^{18/4/2016} Astronomical Observing Techniques 2016: Spectrographs 7

Oxygen in Radio Galaxies

Radio galaxy 3C435A, Plot courtesy: Université de Lyon, TIGER Scientific Results

The Sun in Helium I

18/4/2016 Astronomical Observing Techniques 2016: Spectrographs 9

Spectrograph Components

- 1. Slit: reduce telescope image to one dimension
- 2. Collimator: collimate (make parallel) diverging light
- 3. Disperser: spectrally disperses the light
- 4. Camera: focus spectrum onto detector

Long Slit Spectrum

Spectrograph Characteristics

- Spectral resolution element: Δλ
	- smallest spectral feature that can be resolved
	- FWHM of line that is not resolved
	- not the same as pixel size
- Spectral resolution (or resolving power) R: R=λ/Δλ
	- $R < 100$: low spectral resolution
	- $R \approx 100-10'000$: medium spectral resolution
	- $R > 10'000$: high spectral resolution

Spectrograph Characteristics

• Instrumental profile $P(\lambda)$ broadens theoretically infinitely narrow line to observed line width:

$$
I_0(\lambda) = \delta(\lambda - \lambda_0) \quad I(\lambda) = P(\lambda) * I_0(\lambda)
$$

- Instrumental profile often determines spectral resolution element, which should be Nyquist*sampled*
- Transmission determines throughput

$$
\eta(\lambda) = \frac{I_{out}(\lambda)}{I_{in}(\lambda)}
$$

Spectral Resolution and S/N

For *unresolved* spectral lines, both the S/N and the line/ continuum contrast increase with increasing resolution

Model spectra of C₂H₂ at 900K and HCN at 600K (assumed Doppler broadening ~4 km/s) at different spectrograph resolutions (figure provided by F. Lahuis).

- good for low-resolution spectroscopy
- no order overlap
- dispersion depends on wavelength

Angular Dispersion

angular dispersion $d\delta/d\lambda$ maximized with highdispersion dn/dλ glass

Diffraction Grating

Grating introduces optical path difference = f (angle to surface normal)

Condition for constructive interference given by grating equation:

 $m\lambda = d \cdot (\sin \alpha \pm \sin \beta)$

- $m =$ order of diffraction
- *λ* = wavelength
- d = distance between equally spaced grooves
- α = angle of incoming beam
- β = angle of reflected beam

Grating Spectral Resolution

- Grating equation $m\lambda = d \cdot (\sin \alpha \pm \sin \beta)$
- Gratings usually in collimated beam close to pupil image
- Maximum spectral resolution R given by $R=$ mN *N* = number of (illuminated) grooves $m =$ diffraction order
- Angular dispersion *dβ/dλ* = *m* $d\cos\beta$

Blaze Angle

- Periodic structure distributes energy over many orders
- Observing only one arbitrary order is inefficient
- For blazed gratings the *directions of constructive* interference and specular reflection coincide:

$$
\alpha + \beta = 2(\alpha + \theta_B) \implies \theta_B = \frac{\beta}{2}
$$

Advantage:

- High efficiency
- *Disadvantage*:
	- Blaze angle $\theta_{\rm R}$ (and blaze wavelength $\lambda_{\rm B}$) fixed by construction

Free Spectral Range

A light bulb seen through a transmissive grating, showing three diffracted orders. $m = 0$ *corresponds to direct transmission; colors with* increasing wavelengths (from blue to red) are diffracted at increasing angles. Source: *Wikipedia*

Different diffraction orders overlap with each other:

$$
m\lambda = d(\sin\alpha + \sin\beta) = (m+1)\lambda'
$$

The free spectral range is the largest wavelength range for a given order that does not overlap the same range in an adjacent order. \bigwedge

$$
\Delta \lambda_{free} = \lambda - \lambda' = \frac{\lambda'}{m}
$$

Overlapping Grating Orders

L200 Grating Angle Versus λ at 600L/mm Grating Orders 1, 2, 3 & 4

www.stargazing.net/david/spectroscopy/SpectraL200F4T5Dorders.html

18/4/2016 Astronomical Observing Techniques 2016: Spectrographs 21

Overlapping Orders

www.stargazing.net/david/spectroscopy/SpectraL200F4T5Dorders.html

• blue emission line in 3rd order overlaps red continuum in 2nd order

Cross-Dispersion

To spatially separate the orders and avoid overlap, an additional optical element will be needed: A low-dispersion prism/grating with a dispersion direction perpendicular to that of the high-dispersion grating

Echelle Gratings

Want high dispersion

$$
\frac{d\beta}{d\lambda} = \frac{m}{d\cos\beta} = \frac{\sin\alpha + \sin\beta}{\lambda\cos\beta}
$$

and high spectral resolution $R = Nm$

 α and β large, high order m (≈ 50), and therefore large a

Grating equation in Littrow configuration $(\alpha=\beta)$: m $\lambda_{\beta}=2d \sin\beta$

18/4/2016 Astronomical Observing Techniques 2016: Spectrographs 24

Echelle Spectrograph

Operation in high order \rightarrow cross-disperser essential

McMath-Pierce Spectrograph

Smaller Pixels

Echelle Spectrographs

Example: ESO's VLT instrument CRIRES:

The ruled echelle grating of the SOFIA Facility Spectrometer AIRES. Two images of the engineer are seen reflected from the facets of the grooves *that are at angles of 90 degrees from each other.*

18/4/2016 Astronomical Observing Techniques 2016: Spectrographs 28

Echelle Spectra

Grisms

Grism = transmission $GRating + prISM$

For one wavelength and diffraction order, refraction of grating and prism may compensate and optical axis remains (almost) unchanged.

Advantages:

- ideal to bring in and out of a collimated beam ("filter wheel")
- reduces coma (if in non-collimated beam)

Disadvantages:

- difficult to manufacture (replication and gluing or by direct ruling.
- can be quite "bulky" (\leftarrow filter wheel)

Interference (Transmission) Filters

Principle: layers with thickness of ~λ with different indices of refraction deposited on a substrate.

• filters are often tilted with respect to the optical axis to avoid reflections \rightarrow shift of λ_0

• wavelengths farther from λ_0 (for which the above equation is also satisfied) need a blocking or absorbing filter.

Fabry-Perot Etalon

Here, m is the order of the interferometer, d is the separation of the plates, and $\Delta k = 1/2d$ the free spectral range.

18/4/2016 **Astronomical Observing Techniques 2016: Spectrographs Wavelength** λ 32

OH Suppression Spectrographs

OHS filter out the wavelengths of atmospheric OH lines, which contribute the major part of the near-IR background.

http://subarutelescope.org/Introduction/instrument/img/OHS_concept.gif

18/4/2016 Astronomical Observing Techniques 2016: Spectrographs 33

Multi-Object Spectrographs

 $\widehat{1}$

Use numerous "slits" in the focal plane simultaneously \rightarrow multiple source pick-ups using fibers or mirrors.

Needs different slit masks for different fields.

Hydra Arbitrary Fiber Positioning

18/4/2016 Astronomical Observing Techniques 2016: Spectrographs 35

Hydra Arbitrary Fiber Positioning

18/4/2016 Astronomical Observing Techniques 2016: Spectrographs 36

Multi-Object Spectrograph Spectra

Integral Field Spectrographs

Cut area on sky into adjacent slices or sub-portions, realign them optically into one long slice and treat it as a long slit spectrograph.

Leiden Observatory pIFU

Venus (Rodenhuis 2013)

- 450-900 nm, R^2 25
- polarization grating: polarizing beamsplitter and transmission grating

Simultaneous Multi-Wavelength Images of Venus

18/4/2016 Astronomical Observing Techniques 2016: Spectrographs 41

Fourier Transform Spectrometer (FTS)

- Assume a single pixel detector
	- FTS or Michelson interferometer is a two-wave interferometer (grating has *N* waves from *N* grooves)

FTS – Measured Intensity

Output intensity $I(x)$ for a monochromatic input intensity I_0 (with wave number $k=2\pi/\lambda$ and path length difference *x*) is:

$$
I(x) = \frac{I_0}{2} (1 + \cos kx)
$$

- Source with spectrum $I_0(k)$ in range $[k_1,k_2]$ produces signal $I(x) =$ 1 2 $I^{}_0 (k)$ *k*1 k_2 $\int I_0(k)(1+\cos kx)dk$
- Constant term plus real part of Fourier transform of spectrum

FTS – Measured Intensity

- For each path-length difference x, all spectral elements of incident spectrum contribute to signal
- Only one Fourier component is measured at any given path-length difference x
- Spectral resolution with maximum path length difference x_{max} is R=2 x_{max}/λ

FTS – Output Signal

- For each moving mirror position, broadband (integrated over wavelength) intensity is measured
- Measured signal is an interferogram
- Interferogram is Fourier transform of object spectrum

Pros & Cons of Different Spectrographs

