Astronomical Observing Techniques

Lecture 5: Monsieur Fourier and his Elegant Transform

Christoph U. Keller keller@strw.leidenuniv.nl

Outline

- 1. Fourier Transform
- 2. Fourier Transform Examples
- 3. Fourier Series of Periodic Functions
- 4. Telescope ⇔ PSF
- 5. Important Theorems

Hear the Difference

See the Difference

Find the Signal

Astronomical Observing Techniques: Fourier

See the Periodic Signal

Astronomical Observing Techniques: Fourier

Fourier Transformation

Functions *f*(*x*) and *F*(*s*) are Fourier pairs

$$F(s) = \int_{-\infty}^{+\infty} f(x) \cdot e^{-i2\pi xs} dx$$
$$f(x) = \int_{-\infty}^{+\infty} F(s) \cdot e^{i2\pi xs} ds$$

- *x*, *s* can be scalar or vector (*xs* becomes scalar product)
- Fourier transform is reciprocal (exponent sign changes)
- exponent sign and normalization are not well defined

Arbitrary Function

Astronomical Observing Techniques: Fourier

Even & Odd Decomposition

Even Function

Astronomical Observing Techniques: Fourier

Odd Function

Fourier Transform Properties: Symmetry

$$f(x) = f_{even}(x) + f_{odd}(x)$$

$$f_{even}(-x) = f_{even}(x) \quad f_{odd}(-x) = -f_{odd}(x)$$

$$e^{-i2\pi xs} = \cos(2\pi xs) - i\sin(2\pi xs)$$

$$\Rightarrow F(s) = 2\int_{0}^{+\infty} f_{even}(x)\cos(2\pi xs)dx$$

$$-i 2\int_{0}^{+\infty} f_{odd}(x)\sin(2\pi xs)dx$$

f(x) real: $f_{even}(x)$ transforms to (even) real part of F(s), $f_{odd}(x)$ transforms to (odd) imaginary part of F(s).

imaginary

real

29/2/2016

Imaginary, Even

F(s)

real

29/2/2016

F(s)

real

Fourier Transform Similarity

Other Fourier Transform Properties

LINEARITY:
$$F(as) = a \cdot F(s)$$

TRANSLATION:
$$f(x-a) \iff e^{-i2\pi as}F(s)$$

DERIVATIVE:
$$\frac{\partial^n f(x)}{\partial x^n} \Leftrightarrow (i2\pi s)^n F(s)$$

INTEGRAL: $\int f(x) \partial x \Leftrightarrow (i2\pi s)^{-1} F(s) + c\delta(s)$

ADDITION: $f(x) + g(x) \iff F(s) + G(s)$

Important 1-D Fourier Pairs 1

F(s)

f(x)

Important 1-D Fourier Pairs 2

F(s)

f(x)

 $f(x) = \Pi(x)$ $F(s) = \operatorname{sinc}(s)$ $F(s) = \operatorname{sinc}^2(s)$ $f(x) = \Lambda(x)$

Important 1-D Fourier Pairs 3

f(x)

F(s)

Numerical Fourier Transforms

- Problems with Fourier Transform
 - cannot integrate over ±∞
 - only know signal at discrete points (samples)
- Assumptions
 - signal is periodic beyond known interval
 - signal is sampled at discrete, evenly spaced points
 - signal is sampled at least twice as often as the highest frequency it contains (Nyquist or critical sampling)

Fourier Series of Periodic Functions

Decomposition using sines and cosines as orthonormal basis set Periodic function: f(x) = f(x+P)

Fourier series:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2\pi nx}{P}\right) + b_n \sin\left(\frac{2\pi nx}{P}\right) \right]$$

$$a_n = \frac{2}{P} \int_{-P/2}^{P/2} f(x) \cos\left(\frac{2\pi nx}{P}\right) dx$$

Fourier coefficients:

$$b_n = \frac{2}{P} \int_{-P/2}^{P/2} f(x) \sin\left(\frac{2\pi nx}{P}\right) dx$$

Period:PFrequency:v = 1/PAngular frequency: $\omega = 2\pi/P$

Orthonormal Basis Set

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \begin{cases} 1 \text{ for } n = m \\ 0 \text{ for } n \neq m \end{cases}$$
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(mx) \cos(nx) dx = 0$$
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \begin{cases} 1 \text{ for } n = m \\ 0 \text{ for } n \neq m \end{cases}$$

Example: Sawtooth Function

Fourier coefficients are:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) dx \stackrel{!}{=} 0 \quad (\cos() \text{ is symmetric around } 0)$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx = 2 \frac{(-1)^{n+1}}{n}$$

and hence:
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right] = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$$

Dirac Comb

Dirac's delta "function":

$$f(x) = \delta(x) = \int_{-\infty}^{+\infty} e^{i2\pi sx} ds \rightarrow FT\{\delta(x)\} = 1$$

Dirac comb: infinite series of delta functions spaced at intervals of T:

$$\Xi_T(x) = \sum_{k=-\infty}^{\infty} \delta(x - kT)^{Fourier}_{\substack{=\\ series}} \frac{1}{T} \sum_{n=-\infty}^{\infty} e^{i2\pi nx/T}$$

- Fourier transform of Dirac comb is also a Dirac comb
- Dirac comb is also called impulse train or sampling function

Nyquist-Shannon Theorem

Sampling: signal at discrete values of x:

$$f(x) \to f(x) \cdot \Xi\left(\frac{x}{\Delta x}\right)$$

Interval between two successive readings is sampling rate

Critical sampling given by Nyquist-Shannon theorem

Given f(x), its Fourier Transform F(s) with bounded support [-s_{max}, s_{max}].

Sampled distribution of the form

$$g(x) = f(x) \cdot \Xi\left(\frac{x}{\Delta x}\right)$$

with a sampling rate of $\Delta x=1/(2s_{max})$ is enough to reconstruct f(x) for all x.

Sampling

Oversampling

Sampling rate above critical sampling rate:

- redundant measurements
- often lowering the S/N

Undersampling

ng Sampling rate below critical sampling rate:

- signal contains frequencies higher than 1/(2s_{max})
- source signal cannot be determined after sampling
- loss of fine details
- must apply low-pass filter before sampling

Aliasing

- unresolved, high frequencies look like resolved low frequencies
- create spurious components below Nyquist frequency
- may create major problems and uncertainties in determination of original signal

Point Spread Function

 Fraunhofer Diffraction: electric field in image plane is Fourier transf. of electric field in aperture

$$E(x,y,z) = \iint A(u,v)e^{i\varphi(u,v)}e^{-i\frac{2\pi}{\lambda z}(xu+yv)}du\,dv$$

Point Spread Function (PSF)

 image of a point source produced by optical system
 PSF = E(x,y,z)²

Fourier Pair in 2-D: Box Function

Larger telescopes produce smaller Point Spread Functions (PSFs)!

Bessel Functions

Bessel functions are canonical solutions y(x) of Bessel's differential equation:

$$x^{2} \frac{\partial^{2} y}{\partial x^{2}} + x \frac{\partial y}{\partial x} + (x^{2} - n^{2})y = 0$$

for an arbitrary real or complex number *n*, the order of the Bessel function.

Solutions = Bessel Functions:

$$J_{n}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k} \left(\frac{x}{2}\right)^{2^{k+n}}}{k!(k+n)!}$$

Bessel Functions J₀, J₁, J₂

Astronomical Observing Techniques: Fourier

Telescope Aperture \Leftrightarrow Focal Plane 1

Telescope Aperture \Leftrightarrow Focal Plane 2

PSF Example

central obscuration, monolithic mirror (pupil) no support-spiders

central obscuration, monolithic mirror (pupil) with 6 support-spiders

central obscuration, segmented mirror (pupil) no support-spiders

central obscuration, segmented mirror (pupil) with 6 support-spiders

Convolution

Convolution of two functions, f*g, is integral of product of functions after one is reversed and shifted:

 $F(s) \cdot G(s) = H(s)$

 $f(x) \Leftrightarrow F(s)$

 $g(x) \Leftrightarrow G(s)$

h(x) = f(x) * g(x)

Convolution: Example

Convolution: Applications

Example:

$$f(x) * g(x) = h(x)$$

f(x) : object in sky *g(x)*: point spread function of telescope

h(*x*): observed image

Example: Convolution of *f(x)* with a smooth kernel g(x) can be used to smoothen *f(x)*

Star cluster observed with HST/NICMOS

Cross-Correlation

Cross-correlation (or covariance) is measure of similarity of two waveforms as function of time-lag between them.

$$k(x) = f(x) \otimes g(x) = \int_{-\infty}^{+\infty} f(u) \cdot g(x+u) du$$

Difference between cross-correlation and convolution:

- Convolution reverses the signal ('-' sign)
- Cross-correlation shifts the signal and multiplies it with another

Interpretation: By how much (x) must g(u) be shifted to match f(u)? Answer given by maximum of k(x)

Cross-Correlation in Fourier Space

$$f(x) \Leftrightarrow F(s)$$

$$g(x) \Leftrightarrow G(s)$$

$$h(x) = f(x) \otimes g(x) \Leftrightarrow F(s) \cdot G^*(s) = H(s)$$

In contrast to convolution, in general

$$f \otimes g \neq g \otimes f$$

Auto-Correlation Theorem

Auto-correlation is cross-correlation of function with itself:

Auto-Correlation: Application

Speckle Interferometry

- average autocorrelation of short-exposure images
- preserves highresolution information

Power Spectrum

Power Spectrum S_f of f(x) (or the Power Spectral Density, PSD) describes how the power of a signal is distributed with frequency.

Power is often defined as squared value of signal:

$$S_f(s) = |F(s)|^2$$

Power spectrum is Fourier transform of autocorrelation and indicates what frequencies carry most of the energy.

Total energy of a signal is:

$$\int_{-\infty}^{+\infty} S_f(s) ds$$

<u>Applications:</u> spectrum analyzers, calorimeters of light sources, ...

Parseval's Theorem

Parseval's theorem (or Rayleigh's Energy Theorem): Sum of square of a function is the same as sum of square of the Fourier transform:

$$\int_{-\infty}^{+\infty} |f(x)|^2 dx = \int_{-\infty}^{+\infty} |F(s)|^2 ds$$

<u>Interpretation</u>: Total energy contained in signal f(x), summed over all x is equal to total energy of signal's Fourier transform F(s) summed over all frequencies s.

Wiener-Khinchin Theorem

Wiener–Khinchin theorem states that the power spectral density S_f of a function f(x) is the Fourier transform of its auto-correlation function:

$$|F(s)|^{2} = FT\{f(x) \otimes f(x)\}$$

$$\updownarrow$$

$$F(s) \cdot F^{*}(s)$$

<u>Applications:</u> E.g. in the analysis of linear time-invariant systems, when the inputs and outputs are not square integrable, i.e. their Fourier transforms do not exist.

Fourier Relation Summary

Convolution	$h(x) = f(x) * g(x) = \int_{-\infty}^{+\infty} f(u) \cdot g(x-u) du$
Cross-correlation	$k(x) = f(x) \otimes g(x) = \int_{-\infty}^{+\infty} f(u) \cdot g(x+u) du$
Auto-correlation	$k(x) = f(x) \otimes f(x) = \int_{-\infty}^{+\infty} f(u) \cdot f(x+u) du$
Power spectrum	$S_f(s) = \left F(s) \right ^2$
Parseval's theorem	$\int_{-\infty}^{+\infty} \left f(x) \right ^2 dx = \int_{-\infty}^{+\infty} \left F(s) \right ^2 ds$
Wiener-Khinchin theorem	$\left F(s)\right ^{2} = FT\left\{f(x) \otimes f(x)\right\} = F(s) \cdot F^{*}(s)$