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Hear	the	Difference	
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See	the	Difference	
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Find	the	Signal	
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Frequency	Analysis	
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See	the	Periodic	Signal	
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Fourier	TransformaDon	
	FuncCons	f(x)	and	F(s)	are	Fourier	pairs	

F s( ) = f x( )
−∞

+∞

∫ ⋅e− i2π xsdx

f x( ) = F s( )
−∞

+∞

∫ ⋅ei2π xsds

•  x,	s	can	be	scalar	or	vector	(xs	becomes	scalar	product)	
•  Fourier	transform	is	reciprocal	(exponent	sign	changes)	
•  exponent	sign	and	normalizaCon	are	not	well	defined	
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Arbitrary	FuncDon	
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Even	&	Odd	DecomposiDon	
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Even	FuncDon	
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Odd	FuncDon	
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Fourier	Transform	ProperDes:	Symmetry	
f x( ) = feven x( ) + fodd x( )
feven −x( ) = feven x( )    fodd −x( ) = − fodd x( )
e− i2πxs = cos 2π xs( )− isin 2π xs( )

⇒ F s( ) = 2 feven x( )cos 2π xs( )
0

+∞

∫ dx

             − i 2 fodd x( )sin 2π xs( )
0

+∞

∫ dx

f(x)	real:		feven(x)	transforms	to	(even)	real	part	of	F(s),	
	 	 	fodd(x)	transforms	to	(odd)	imaginary	part	of	F(s).	
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Real,	Even	
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Real,	Odd	
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Imaginary,	Even	
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Imaginary,	Odd	
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Fourier	Transform	Similarity	

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛⇔→
a
sF

a
axfxf 1

Expansion	of	f(x)	contracts	F(s):	

29/2/2016 Astronomical Observing Techniques: Fourier 18 



Other	Fourier	Transform	ProperDes	

( ) ( )sFeaxf asi π2      −⇔−

LINEARITY:		

TRANSLATION:	

DERIVATIVE:	

INTEGRAL:	

ADDITION:		

( ) ( ) ( )sFsi
x
xf n
n

n

π2⇔
∂

∂

( ) ( )sFaasF ⋅=

f x( ) + g x( )    ⇔    F s( ) +G s( )

f x( )∫ ∂x⇔ i2π s( )−1F s( ) + cδ (s)
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Important	1-D	Fourier	Pairs	1	
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f (x) = e−πx
2

F(s) = e−πs
2

f (x) = const F(s) = δ (s)



Important	1-D	Fourier	Pairs	2	
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f (x) =Π(x)

f (x) = Λ(x)

F(s) = sinc(s)

F(s) = sinc2(s)



Important	1-D	Fourier	Pairs	3	
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f (x) = cos(π x) F(s) = δ (s ± 1
2
)



Numerical	Fourier	Transforms	
•  Problems	with	Fourier	Transform	

– cannot	integrate	over	±∞	
– only	know	signal	at	discrete	points	(samples)	

•  AssumpCons	
– signal	is	periodic	beyond	known	interval	
– signal	is	sampled	at	discrete,	evenly	spaced	points	
– signal	is	sampled	at	least	twice	as	o[en	as	the	highest	
frequency	it	contains	(Nyquist	or	criCcal	sampling)	
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Fourier	series:	
	
	
	
Fourier	coefficients:	
	
	
	
Period:	 	 	 	 	P	
Frequency: 	 	 	ν	=	1/P	
Angular	frequency: 	ω	=	2π/P	

Fourier	Series	of	Periodic	FuncDons	
DecomposiCon	using	sines	and	cosines	as	orthonormal	basis	set	
Periodic	funcCon:		

an =
2
P

f x( )
−P/2

P/2

∫ cos 2πnx
P

⎛
⎝⎜

⎞
⎠⎟ dx

bn =
2
P

f x( )
−P/2

P/2

∫ sin 2πnx
P

⎛
⎝⎜

⎞
⎠⎟ dx

f (x) = a0
2
+ an cos

2πnx
P

⎛
⎝⎜

⎞
⎠⎟ + bn sin

2πnx
P

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥n=1

∞

∑

f x( ) = f x + P( )
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Orthonormal	Basis	Set	

1
π

cos mx( )
−π

π

∫ cos nx( )dx = 1 for n = m
0 for n ≠ m{

1
π

sin mx( )
−π

π

∫ cos nx( )dx = 0

1
π

sin mx( )
−π

π

∫ sin nx( )dx = 1 for n = m
0 for n ≠ m{
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Example:	Sawtooth	FuncDon	
Sawtooth	funcCon:	
( )
( ) ( )xfxf

xxxf
=+

<<−=
π

ππ
2

for         

Fourier	coefficients	are:	
	
	
	
	
	
	
	
	
and	hence:	

an =
1
π

x
−π

π

∫ cos nx( )dx=
!
0         (cos() is symmetric around 0)

bn =
1
π

x
−π

π

∫ sin nx( )dx = 2
−1( )n+1

n

( ) ( ) ( )[ ] ( ) ( )nx
n

nxbnxaaxf
n

n

n
nn sin12sincos

2 1

1

1

0 ∑∑
∞

=

+∞

=

−=++=
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2
π

−1( )n+1
nn=1

∞

∑ sin nx( )Sawtooth	ApproximaDon	
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Dirac	Comb	
	Dirac’s	delta	“funcCon”:	

ΞT x( ) = δ
k=−∞

∞

∑ x − kT( ) =
series

Fourier 1
T

ei2πnx/T
n=−∞

∞

∑

f x( ) = δ x( ) = ei2π sx ds
−∞

+∞

∫  →  FT δ x( ){ } = 1

	Dirac	comb:	infinite	series	of	delta	funcCons	
spaced	at	intervals	of	T:	

Ξ(x) 

Ξ(x)×f(x) 

• Fourier	transform	of	Dirac	comb	is	also	a	
Dirac	comb	

• Dirac	comb	is	also	called	impulse	train	or	
sampling	funcCon	
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Sampling:	signal	at	discrete	values	of	x:		
		

Interval	between	two	successive	readings	is	sampling	rate	

CriCcal	sampling	given	by	Nyquist-Shannon	theorem	

Nyquist-Shannon	Theorem	

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛
Δ

Ξ⋅=
x
xxfxg

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛
Δ

Ξ⋅→
x
xxfxf
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Given	f(x),	its	Fourier	Transform	F(s)	
with	bounded	support	[-smax,	smax].	

Sampled	distribuCon	of	the	form	

		

with	a	sampling	rate	of	Δx=1/(2smax)	
is	enough	to	reconstruct	f(x)	for	all	x.	



Sampling	
Oversampling	 	Sampling	rate	above	criCcal	sampling	rate:	

	 	 	 	 	-	redundant	measurements	
	 	 	 	 	-	o[en	lowering	the	S/N	

Undersampling	 	Sampling	rate	below	criCcal	sampling	rate:	
	 	 	 	 	-	signal	contains	frequencies	higher	than	1/(2smax)	
	 	 	 	 	-	source	signal	cannot	be	determined	a[er	sampling	
	 	 	 	 	-	loss	of	fine	details	
	 	 	 	 	-	must	apply	low-pass	filter	before	sampling	
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Aliasing	

•  unresolved,	high	frequencies	look	like	resolved	low	
frequencies	

•  create	spurious	components	below	Nyquist	frequency	
•  may	create	major	problems	and	uncertainCes	in	
determinaCon	of	original	signal	
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Point	Spread	FuncDon	
•  Fraunhofer	DiffracCon:	
electric	field	in	image	
plane	is	Fourier	transf.	
of	electric	field	in	
aperture	
	
	
	

•  Point	Spread	FuncCon	(PSF)	
–  image	of	a	point	source	produced	by	opCcal	system	
– PSF	=	E(x,y,z)2	
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E x, y, z( ) = A u,v( )eiϕ u ,v( )e
− i2π

λz
xu+yv( )

dudv∫∫



Fourier	Pair	in	2-D:	Box	FuncDon	

2-D	box	funcCon	with	r2	=	x2	+	y2:	
⎩
⎨
⎧

≥
<

=⎟
⎠
⎞⎜

⎝
⎛Π

1for      0
1for      1

2 r
rr

( )
ω
πω2

2
1Jr ⇔⎟

⎠
⎞⎜

⎝
⎛ΠFourier	Transform:																																			 	(1st	order	Bessel	funcCon	J1)		

Larger	telescopes	produce	smaller	Point	Spread	FuncCons	(PSFs)!	

Electric	Field	in 	 	 	 	 	 	Electric	Field	in	
Telescope	Aperture: 																		 	 	Focal	plane:	
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Bessel	FuncDons	

Bessel	funcCons	are	canonical	soluCons		
y(x)	of	Bessel's	differenCal	equaCon:	
	
	

	
for	an	arbitrary	real	or	complex	number	n,	the	order	of	
the	Bessel	funcCon.	

( ) 022
2

2
2 =−+

∂
∂+

∂
∂ ynx

x
yx

x
yx

SoluCons	=	Bessel	FuncCons:	 ( )
( )

( )∑
∞

=

+

+

⎟
⎠
⎞⎜

⎝
⎛−

=
0

2

! !
2

1

k

nk
k

n nkk

x

xJ
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Bessel	FuncDons	J0,	J1,	J2	
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Telescope	Aperture	ó	Focal	Plane	1	
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Telescope	Aperture	ó	Focal	Plane	2	
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PSF	Example	
central	obscuraDon,	

monolithic	mirror	(pupil)	
no	support-spiders	

39m	telescope	pupil 	 	 	 	 	 	à		FT	=	image	of	a	point	source			(log	scale)	
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central	obscuraDon,	
monolithic	mirror	(pupil)	
with	6	support-spiders	

39m	telescope	pupil 	 	 	 	 	 	à		FT	=	image	of	a	point	source			(log	scale)	
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central	obscuraDon,	
segmented	mirror	(pupil)	

no	support-spiders	

39m	telescope	pupil 	 	 	 	 	 	à		FT	=	image	of	a	point	source			(log	scale)	
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central	obscuraDon,	
segmented	mirror	(pupil)	
with	6	support-spiders	

39m	telescope	pupil 	 	 	 	 	 	à		FT	=	image	of	a	point	source			(log	scale)	
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ConvoluDon	
ConvoluCon	of	two	funcCons,	
ƒ∗g,	is	integral	of	product	of	
funcCons	a[er	one	is	reversed	
and	shi[ed:		

( ) ( ) ( ) ( ) ( )duuxgufxgxfxh  ∫
+∞

∞−

−⋅=∗=
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f x( )⇔ F s( )
g x( )⇔G s( )

h x( ) = f x( )∗g x( )
⇔

F s( ) ⋅G s( ) = H s( )



ConvoluDon:	Example	
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ConvoluDon:	ApplicaDons	
Example:	
f(x)	:	object	in	sky	
g(x):	point	spread	funcCon	of	telescope		
h(x):	observed	image	

( ) ( ) ( )xhxgxf =∗

Example:	
ConvoluCon	of	f(x)	with	a	smooth	kernel	g(x)	can	be	used	to	
smoothen	f(x)	
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Star	cluster	observed	with	HST/NICMOS	

29/2/2016 Astronomical Observing Techniques: Fourier 45 



Cross-CorrelaDon	
	Cross-correlaCon	(or	covariance)	is	measure	of	similarity	of	two	
waveforms	as	funcCon	of	Cme-lag	between	them.		

( ) ( ) ( ) ( ) ( )duuxgufxgxfxk  ∫
+∞

∞−

+⋅=⊗=

	Difference	between	cross-correlaCon	and	convoluCon:	
•  ConvoluCon	reverses	the	signal	(‘-’	sign)	
•  Cross-correlaCon	shi[s	the	signal	and	mulCplies	it	with	another	

InterpretaCon:			By	how	much	(x)	must	g(u)	be	shi[ed	to	match	f(u)?		
Answer	given	by	maximum	of	k(x)	
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Cross-CorrelaDon	in	Fourier	Space	
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f x( )⇔ F s( )
g x( )⇔G s( )
h x( ) = f x( )⊗ g x( )⇔ F s( ) ⋅G∗ s( ) = H s( )

In	contrast	to	convoluCon,	in	general	

f ⊗ g ≠ g⊗ f



Auto-CorrelaDon	Theorem	
Auto-correlaCon	is	cross-correlaCon	of	funcCon	with	itself:	

( ) ( ) ( ) ( ) ( )duuxfufxfxfxk  ∫
+∞

∞−

+⋅=⊗=

+

+

f x( )⊗ f x( )⇔ F s( )F* s( ) = F(s) 2
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Auto-CorrelaDon:	ApplicaDon	

•  Auto-correlaCon	can	
find	repeaCng	
pauerns	

•  Can	be	useful	to	find	
periodic	signal	
hidden	in	noise	
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Speckle	Interferometry	
•  average	auto-
correlaCon	of	
short-exposure	
images	

•  preserves	high-
resoluCon	
informaCon	
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average	
cross-correlaCon	

perfect	image	



Power	Spectrum	
	Power	Spectrum	Sf	of	f(x)		(or	the	Power	Spectral	Density,	PSD)	
describes	how	the	power	of	a	signal	is	distributed	with	frequency.			

	Power	is	o[en	defined	as	squared	value	of	signal:	

( ) ( )2sFsS f =

Power	spectrum	is	Fourier	transform	of	autocorrelaCon	and	
indicates	what	frequencies	carry	most	of	the	energy.			

		
Total	energy	of	a	signal	is:	
	

ApplicaCons:	spectrum	analyzers,	calorimeters	of	light	sources,	…		

( )∫
+∞

∞−

dssS f
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Parseval’s	Theorem	
Parseval’s	theorem	(or	Rayleigh’s	Energy	Theorem):	
Sum	of	square	of	a	funcCon	is	the	same	as	sum	of	square	
of	the	Fourier	transform:	

( ) ( ) dssFdxxf ∫∫
+∞

∞−

+∞

∞−

= 22

InterpretaCon:		Total	energy	contained	in	signal	f(x),	
summed	over	all	x	is	equal	to	total	energy	of	signal’s	
Fourier	transform	F(s)	summed	over	all	frequencies	s.	
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Wiener-Khinchin	Theorem	
Wiener–Khinchin	theorem	states	that	the	power	
spectral	density	Sf	of	a	funcCon	f(x)	is	the	Fourier	
transform	of	its	auto-correlaCon	funcCon:	

( ) ( ) ( ){ }

( ) ( )sFsF

xfxfFTsF

*

2

    
⋅

⊗=

!

ApplicaCons:		E.g.	in	the	analysis	of	linear	Cme-invariant	
systems,	when	the	inputs	and	outputs	are	not	square	
integrable,	i.e.	their	Fourier	transforms	do	not	exist.	
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Fourier	RelaDon	Summary	
ConvoluDon	

Cross-correlaDon	

Auto-correlaDon	

Power	spectrum	

Parseval’s	theorem	

Wiener-Khinchin	
theorem	

( ) ( ) ( ) ( ) ( )duuxgufxgxfxh  ∫
+∞

∞−

−⋅=∗=

( ) ( ) ( ) ( ) ( )duuxgufxgxfxk  ∫
+∞

∞−

+⋅=⊗=

( ) ( ) ( ) ( ) ( )duuxfufxfxfxk  ∫
+∞

∞−

+⋅=⊗=

( ) ( )2sFsS f =

( ) ( ) dssFdxxf ∫∫
+∞

∞−

+∞

∞−

= 22

F s( ) 2 = FT f x( )⊗ f x( ){ } = F s( ) ⋅F* s( )
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