Astronomical Observing Techniques

Lecture 4: Your Noise is My Signal

Christoph U. Keller keller@strw.leidenuniv.nl

Outline

- 1. Introduction
- 2. Statistics
- 3. Signal-to-Noise Ratio
- 4. Instrument Sensitivities

Noise

from Wikipedia:

- Common use: unwanted sound
- Signal processing: random unwanted data without meaning
- "Signal-to-noise ratio" is sometimes used to refer to the ratio of useful to irrelevant information

NASA researchers at Glenn Research Center conducting tests on aircraft engine noise in 1967

Signal?

SCUBA 850 μ m map of the Hubble deep field

22-2-2016

Noise or Signal?

Digitization/Quantization Noise

- Analog-to-Digital Signal Converter (ADC).
- Number of bits determines dynamic range of ADC
- Resolution: 12 bit $2^{12} = 4096$ quantization levels 16 bit $2^{16} = 65636$ quantization levels
- Discrete, "artificial" steps in signal levels \rightarrow noise

Astronomical Observing Techniques 2016: Your Noise is My Signal

Read Noise

Fig. 7.28. (a) Image of four source points, by a CCD with $\sigma_{\rm R} = 7.6 \,\mathrm{e^-}$ rms. (b) The same image in multiple readout (N = 64), where $\sigma_{\rm R} = 0.97 \,\mathrm{e^-}$ rms. The faintest source corresponds to a signal of 3.5 photocharges. (After Janesik et al., in *The CCD in Astronomy*, ASP Conf. Ser. 8, 1989)

Some Noise Sources in Astronomical Data

Noise type	Signal	Background
Photon shot noise	X	X
Scintillation	X	
Cosmic rays		X
Image stability	X	
Read noise	X	X
Dark current noise	X	X
CTE (CCDs)	X	X
Flat fielding (non-linearity)	X	X
Digitization noise	X	X
Other calibration errors	X	X
Image subtraction	X	X

Distribution Functions

for every *t*, *X*(*t*) is distributed according to cumulative distribution function

$$F(x;t) = \mathbf{P}\{X(t) \le x\}$$

- indicates probability that outcome at t will not exceed x
- probability density function (PDF) of X(t) defined by $\partial F(x;t)$

$$f(x;t) \equiv \frac{\partial F(x,t)}{\partial x}$$

Typical Probability Density Functions

binomial:

$$\binom{n}{k} p^k (1-p)^{n-k}$$

- Poisson: $f(k;\lambda) = \frac{\lambda^{\kappa} e^{-\lambda}}{k!}$
- Gaussian: $\frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Normal Cumulative Distribution

22-2-2016

Normal/Gaussian PDF

Poisson Cumulative Distribution Function

Poisson PDF

Mean, Variance, RMS

- properties of distributions often described by a few parameters, often moments of distribution
- mean or average $\mu(t)$ of X(t): expected value of X(t) $\mu(t) = \mathbf{E}\{X(t)\} = \int_{-\infty}^{+\infty} x f(x;t) dx$
- variance of X(t): expected value of the square of the difference of X(t) and μ(t)

 $\sigma^{2}(t) = \mathbf{E}\{(X(t) - \mu(t))^{2}\} = \mathbf{E}\{X^{2}(t)\} - \mu^{2}(t)$

 variance is square of standard deviation or root mean square (RMS)

Noise Propagation

- same as error propagation
- function f(u,v,...) depends on variables u,v, ...
- estimate variance of f knowing variances σ_u^2 , σ_v^2 ,... of variables u, v, ... $\sigma_f^2 \equiv \lim_{N \to \infty} \sum_{i=1}^N (f_i - \overline{f})^2$
- make assumption / approximately that average of f is well approximated by value of f for averages of variables: $\overline{f} = f(\overline{u}, \overline{v}, ...)$

Noise Propagation (cont.)

• Taylor expansion of *f* around average:

$$f_i - \overline{f} \simeq (u_i - \overline{u}) \frac{\partial f}{\partial u} + (v_i - \overline{v}) \frac{\partial f}{\partial v} + \dots$$

• variance in f:

$$\sigma_{f}^{2} \simeq \lim_{N \to \infty} \sum_{i=1}^{N} \left[(u_{i} - \overline{u}) \frac{\partial f}{\partial u} + (v_{i} - \overline{v}) \frac{\partial f}{\partial v} + \dots \right]^{2}$$
$$= \lim_{N \to \infty} \sum_{i=1}^{N} \left[(u_{i} - \overline{u})^{2} \left(\frac{\partial f}{\partial u} \right)^{2} + (v_{i} - \overline{v})^{2} \left(\frac{\partial f}{\partial v} \right)^{2} + 2(u_{i} - \overline{u})(v_{i} - \overline{v}) \frac{\partial f}{\partial u} \frac{\partial f}{\partial v} + \dots \right]$$

Noise Propagation (cont.)

• variances of *u* and *v*

$$\sigma_u^2 \equiv \lim_{N \to \infty} \sum_{i=1}^N (u_i - \overline{u})^2; \qquad \sigma_v^2 \equiv \lim_{N \to \infty} \sum_{i=1}^N (v_i - \overline{v})^2$$

covariance of u and v

$$\sigma_{uv}^{2} \equiv \lim_{N \to \infty} \sum_{i=1}^{N} (u_{i} - \overline{u})(v_{i} - \overline{v})$$

combine Taylor expansion and these definitions

$$\sigma_{f}^{2} = \sigma_{u}^{2} \left(\frac{\partial f}{\partial u}\right)^{2} + \sigma_{v}^{2} \left(\frac{\partial f}{\partial v}\right)^{2} + 2\sigma_{uv}^{2} \frac{\partial f}{\partial u} \frac{\partial f}{\partial v} + \dots$$

Noise Propagation (cont.)

from before

$$\sigma_f^2 = \sigma_u^2 \left(\frac{\partial f}{\partial u}\right)^2 + \sigma_v^2 \left(\frac{\partial f}{\partial v}\right)^2 + 2\sigma_{uv}^2 \frac{\partial f}{\partial u} \frac{\partial f}{\partial v} + \dots$$

- if differences (u_i ū) and (v_i v̄) not correlated →
 sign of product as often positive as negative →
 covariance small compared to other terms
- if differences are correlated → most products
 (u_i u
)(v_i v
) have the same sign → cross correlation term can be large

Time Series of Two Stars

Two Stars: Differently Sorted

22-2-2016

Gaussian Noise

- Gaussian noise has Gaussian (normal) distribution
- Sometimes (incorrectly) called white noise (uncorrelated noise)

Astronomers usually consider $S/N > 3\sigma$ as significant.

Poisson Noise

- Poisson noise has Poisson distribution
- probability of number of events occurring in constant interval of time/space if events occur with known average rate and independently of each other

$$P(k,\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

k: number of occurrences of an event (probability)

 λ : expected (average) number of occurrences

• mean of $P(k,\lambda)$ is λ

- standard deviation of $P(k,\lambda)$ is square root of λ
- example: fluctuations in photon flux in finite time intervals Δt . Chance to detect k photons with average flux of λ photons

Noise Measurement

If purely Gauss or Poisson noise distribution, <u>no other</u> <u>systematic</u> noise and no correlations,

then the spatial distribution (neighbouring pixels) of the noise is equivalent to the temporal distribution (successive measurements with one pixel)

This is analogous to throwing 5 dices once versus throwing one dice

Case 1: Spatial noiseCase 2: Repeated measurementsCase 3: Spectrum(detector pixels)in time (time series)(dispersed information)

Poisson Noise and Integration Time

- Integrate light from uniform, extended source on CCD
- In finite time interval Δt , expect average of λ photons
- Statistical nature of photon arrival rate \rightarrow some pixels will detect more, some less than λ photons.
- Noise of average signal λ (i.e., between pixels) is $\sqrt{\lambda}$
- Integrate for $2 \times \Delta t \rightarrow$ expect average of $2 \times \lambda$ photons
- Noise of that signal is now $V(2 \times \lambda)$, i.e., increased by V2
- With respect to integration time t, noise will only increase ~Vt while signal increases ~t

Signal-to-Noise Ratio

from Wikipedia:

Signal-to-noise ratio (often abbreviated SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise.

Signal = S; Background = B; Noise = N;

Both *S* and *N* should be in units of events (photons, electrons, data numbers) per unit area (pixel, PSF size, arcsec²)

S/N and Integration Time

Assuming the signal suffers from Poisson shot noise. Let's calculate the dependence on integration time t_{int}:

$$\begin{aligned} \text{Integrating } \mathbf{t}_{\text{int}} & \boldsymbol{\sigma} = \frac{S}{N} \\ \text{Integrating } \boldsymbol{n} \times \mathbf{t}_{\text{int}} & \boldsymbol{\sigma} = \frac{\boldsymbol{n} \cdot S}{\sqrt{\boldsymbol{n} \cdot \boldsymbol{B}}} \stackrel{N = \sqrt{B}}{=} \sqrt{n} \frac{S}{N} \implies \frac{S}{N} \propto \sqrt{t_{\text{int}}} \end{aligned}$$

Need to integrate four times as long to get twice the S/N

3 Cases

Background (=noise)

Target

Seeing-limited point source

- pixel size ~ seeing
- PSF ≠ f(D)

Diffraction-limited, extended source

- pixel size ~ diff.lim
- PSF = f(D)
- target >> PSF

Diffraction-limited, point source

- pixel size ~ diff.lim
- PSF = f(D)
- target << PSF

Case 1: Seeing-limited "Point Source"

Signal = S; Background = B; Noise = N; Telescope diameter = D

 $\theta_{\text{seeing}} \sim \text{const}$ If detector is Nyquist-sampled to θ_{seeing} : $S \sim D^2$ (area)

 $B \sim D^2 \rightarrow N \sim D$ (Poisson std.dev)

$$\rightarrow$$
 t_{int} ~ D⁻²

Case 2: Diffraction-limited extended Source

Signal = S; Background = B; Noise = N; Telescope diameter = D

"Diameter" of PSF ~ const

If detector Nyquist sampled to θ_{diff} : pixel ~ D^{-2} but $S \sim D^2$

 D^2 (telescope size) and D^{-2} (pixel FOV) cancel each other \rightarrow no change in signal

same for the background flux

→ S/N ~ const → t_{int} ~ const → <u>no gain for larger telescopes!</u>

Case 2B: offline re-sampling by a factor x (makes θ_{diff} x-times larger)

since S/N ~ $\sqrt{n_{pix}} \rightarrow S/N \sim \sqrt{x^2} = x \rightarrow t_{int} \sim x^{-2}$

Case 3: Diffraction-limited "Point Source"

Signal = S; Background = B; Noise = N; Telescope diameter = D

"S/N = $(S/N)_{light bucket} \cdot (S/N)_{pixel scale}$ " (i) Effect of telescope aperture: Signal S ~ D² $\rightarrow S/N \sim D$ Background B ~ D² $\rightarrow N \sim D$

(ii) Effect of pixel FOV (if Nyquist sampled to θ_{diff}):

S ~ const (pixel samples PSF = all source flux)

 $B \sim D^{-2} \rightarrow N \sim D^{-1} \rightarrow S/N \sim D$

(i) and (ii) combined $S/N \sim D^2 \rightarrow t_{int} \sim D^{-4}$

 \rightarrow huge gain: 1hr ELT = 3 months VLT

Instrument Sensitivity Example: HAWK-I

Operating temperature	75K, controlled to 1mK	
Dark current [e-/s] (at 75K)	between 0.10 & 0.15	
Read noise* (DCR)	~ 12 e-	
Read noise* (NDR)	~ 5 e-	
Linear range (1%)	60.000e- (~30.000 ADUs)	
Saturation level	between 40.000 & 50.000 ADUs	

S/N

http://www.eso.org/observing/etc/bin/ut4/hawki/script/hawkisimu

Input Flux Distribution

Instrument Sensitivity: Example

Detected Signal

Detected signal S_{el} depends on:

- source flux density S_{src} [photons s⁻¹ cm⁻² μ m⁻¹]
- integration time t_{int} [s]
- telescope aperture A_{tel} [m²]
- transmission of the atmosphere η_{atm}
- total throughput of the system η_{tot} , which includes:
 - reflectivity of all telescope mirrors
 - reflectivity (or transmission) of all instrument components, such as mirrors, lenses, filters, beam splitters, grating efficiencies, slit losses, etc.
- Strehl ratio SR (ratio of actual to theoretical maximum intensity)
- detector responsivity $\eta_D G$
- spectral bandwidth $\Delta\lambda$ [µm]

$$S_{el} = S_{src} \cdot SR \cdot \Delta \lambda \cdot A_{tel} \cdot \eta_D G \cdot \eta_{atm} \cdot \eta_{tot} \cdot t_{int}$$

Total Noise

Total noise N_{tot} depends on:

- number of pixels n_{pix} of one resolution element
- background noise per pixel N_{back}

$$N_{tot} = N_{back} \sqrt{n_{pix}}$$

total background noise N_{back} depends on:

- background flux density S_{back}
- integration time t_{int}
- detector dark current I_d
- pixel read noise (N) and detector frames (n)

$$N_{back} = \sqrt{S_{back} \cdot t_{int} + I_d \cdot t_{int} + N_{read}^2 \cdot n}$$

Background Flux

Background flux density S_{back} depends on:

- total background intensity $B_{tot} = (B_T + B_A) \cdot \eta_{tot}$ B_T, B_A are thermal emissions from telescope, atmosphere (~black body)
- spectral bandwidth $\Delta\lambda$
- pixel field of view $A \times \Omega = 2\pi \left(1 \cos \left(\arctan \left(\frac{1}{2F^{\#}} \right) \right) \right) D^2_{pix}$
- detector responsivity $\eta_D G$
- photon energy hc/λ

$$S_{back} = B_{tot} \cdot A \times \Omega \cdot \frac{\eta_D G \lambda}{hc} \cdot \Delta \lambda$$

Instrument Sensitivity

Putting it all together, the minimum detectable source signal is:

$$\sigma = \frac{S_{el}}{N_{tot}} = \frac{S_{src} \cdot SR \cdot \Delta\lambda \cdot A_{tel} \cdot \eta_D G \cdot \eta_{atm} \cdot \eta_{tot} \cdot t_{int}}{N_{back} \sqrt{n_{pix}}}$$
$$\Rightarrow S_{src} = \frac{\sigma \cdot \sqrt{S_{back} \cdot t_{int} + I_d \cdot t_{int} + N_{read}^2 \cdot n} \cdot \sqrt{n_{pix}}}{SR \cdot \Delta\lambda \cdot A_{tel} \cdot \eta_D G \cdot \eta_{atm} \cdot \eta_{tot} \cdot t_{int}}$$

Masterdag vrijdag 11 maart

Weet jij al wat je gaat doen na je bachelor?

Kom langs op de Masterdag en ontdek jouw master. Meld je nu aan!

unileidenmasters.nl

Masterdag & minorenmarkt vrijdag 11 maart

Ben je aan het oriënteren op een science minor? Je minor kan van essentieel belang zijn voor jouw masterkeuze. Bezoek de minorenmarkt tijdens de Masterdag.

unileidenmasters.nl

