Astronomical Observing Techniques

Lecture 2: Trouble is in the Air

Christoph U. Keller keller@strw.leidenuniv.nl

Outline

- 1. Atmospheric Structure
- 2. Absorption
- 3. Emission
- 4. Scattering, Refraction & Dispersion
- 5. Turbulence & Seeing

1. Atmospheric Structure

- Assumptions:
 - atmosphere in local radiative equilibrium
 - homogeneous composition
- Hydrostatic equilibrium structure described by:
 - altitude z
 - temperature T(z)
 - density $\rho(z)$
- Pressure P(z) described by: $P(z) = P_0 e^{-\frac{z}{H}}$, $H = \frac{kT}{\mu g}$

H =scale height (about 8km), $\mu =$ mean molecular weight

Vertical Profile

Mixing Ratio of Atmospheric Gases

ruc.noaa.gov/AMB_Publications_bj/2009%20Schlatter_Atmospheric%20Composition%20and%20Vertical %20Structure_eae319MS-1.pdf

Atmospheric Composition

- O₂, N₂ main constituents, constant proportions up to 100 km
- Ozone mainly absorbs in UV
 - distribution depends on latitude, season
- CO₂ important component for (mid)-infrared absorption
 mixing independent of altitude
- Ions vary strongly with altitude and solar activity
 - relevant > 60km (reactions with UV photons)

 $O_2 + h\nu \rightarrow O_2^{+*} + e^-$ and $O_2 + h\nu \rightarrow O^+ + O + e^-$

- electron showers along magnetic fields cause Aurora
- at 100 300 km height: $n_e \sim 10^5 10^6 \text{ cm}^{-3}$
- H₂O highly variable, very strong absorption bands

2. Absorption

- Atomic, molecular transitions -> absorption features:
 - pure rotational molecular transitions: H_2O , CO_2 , O_3 ,
 - rotation-vibrational molecular transitions: CO₂, NO, CO
 - electronic molecular transitions: CH_4 , CO, H_2O , O_2 , O_3 , OH
 - electronic atomic transitions: O, N, …
- Attenuation at altitude z_0 $I(z_0) = I_0(\infty) \cdot \exp\left[-\frac{1}{\cos\theta}\sum_i \tau_i(\lambda, z_0)\right]$ and zenith distance θ :
- for *i* absorbing species with optical depth τ_i $\tau_i(\lambda, z_0) = \int_{z_0}^{\infty} r_i(z) \rho_0(z) \kappa_i(\lambda) dz$

κ: absorption coefficient; $ρ_0$: mass density of air; $r_i(z)$ the mixing ratio $r_i = n_i / (n_{tot} - n_i)$ where n is the amount in mol

www.pvlighthouse.com.au/resources/ courses/altermatt/The%20Solar %20Spectrum/figures/Sources%20of %20absorption%20in%20AM1-5d.png

Atmospheric Bands

Two cases of absorption:

total absorption partial absorption

- \rightarrow atmospheric transmission windows
- → reduced transmission due to narrow telluric lines of terrestrial origin

Atmospheric opacity defines atmospheric transmission bands (wavelengths accessible to ground-based observations)

Ground based astronomy is limited to visible, near/mid-IR and radio wavelengths. Space astronomy provides access to γ-rays, X-rays, UV, FIR, sub-mm

UV Absorption

ruc.noaa.gov/AMB_Publications_bj/2009%20Schlatter_Atmospheric%20Composition%20and%20Vertical%20Structure_eae319MS-1.pdf

Absorption by Water Vapour

- Water vapor strongly depends on T and z
- **Precipitable water** vapor (PWV) = depth of water in column of atmosphere (if liquid)

 $w(z_0) = \int_{z_0}^\infty N_{H_2O} dz ,$

Absorption by Water Vapour

Scale height for PWV is only ~3 km → observatories at high altitudes

0.1 mm PWV, 0.4 mm PWV, 1.0 mm PWV, 3.0 mm PWV

FIR/sub-mm astronomy is also possible from airplanes, e.g. the Stratospheric Observatory for Infrared Astronomy (SOFIA)

PL

3. Atmospheric Emission

- Fluorenscence = recombination of electrons with ions
- Recombination probability low; takes several hours → part of night
 - Produces both continuum + line emission = airglow
 - Occurs mainly at ~ 100 km height
 - Main sources of emission: O I, Na I, O₂, OH (in NIR), H
- Emission intensity measured in Rayleigh:

1 Rayleigh = 10⁶ photons cm⁻² s⁻¹ sr⁻¹ =
$$\frac{1.58 \cdot 10^{-11}}{\lambda [nm]}$$
 W cm⁻² sr⁻¹

Airglow

Thermal Atmospheric Emission

- Atmosphere in local thermodynamic equilibrium (LTE) <60 km, i.e. excitation levels are thermally populated
- Full radiative transfer calculation needed
- For *τ* << 1 use approximation:

$$I_{\lambda}(z) = \frac{\tau_{\lambda} B_{\lambda}(T_{\text{mean}})}{\cos \theta}$$

 $B_{\lambda}(T_{\text{mean}})$: Planck function at mean temperature T_{mean} of atmosphere For T = 250 K and θ = 0

Spectral band (cf. Sect. 3.3)	L	M	N	Q
Mean wavelength [µm]	3.4	5.0	10.2	21.0
Mean optical depth $ au$	0.15	0.3	0.08	0.3
Magnitude [arcsec ⁻²]	8.1	2.0	-2.1	-5.8
Intensity [Jy arcsec ⁻²] ^a	0.16	22.5	250	2 100

Fluorescent and Thermal Emission

Astronomical Observing Techniques: Trouble is in the Air

Emission from Space

www.ipac.caltech.edu/Outreach/Gallery/IRAS/allsky.html

Total Emission in Near-Infrared

Molecular Scattering

 Molecular scattering in visible and NIR is Rayleigh scattering; scattering cross-section given by:

$$\sigma_{R}(\lambda) = \frac{8\pi^{3}}{3} \frac{\left(n^{2} - 1\right)^{2}}{N^{2} \lambda^{4}}$$

where N is the number of molecules per unit volume and n is the refractive index of air $(n-1 \sim 8.10^{-5} \text{ P/T})$.

• Rayleigh scattering is not isotropic:

$$I_{scattered} = I_0 \frac{3}{16\pi} \sigma_R (1 + \cos^2 \theta) d\omega$$

Aerosol Scattering

- Aerosols (sea salt, hydrocarbons, volcanic dust) much larger diameter *d* than than air molecules → NOT Rayleigh scattering
- Aerosol scattering described by Mie theory (classical electrodynamics, "scattering efficiency factor" Q):

$$Q_{\text{scattering}} = \frac{\sigma_M}{\pi a^2} = \frac{\text{scattering cross section}}{\text{geometrical cross section}}$$

$$d >> \lambda: Q_{\text{scattering}} \sim Q_{\text{absorption}}$$

- scattered power equal to absorbed power
- effective cross section is twice the geometrical size
- $d \sim \lambda$: $Q_s \sim 1/\lambda$ (for dielectric spheres):
 - scattered intensity goes
 with 1/λ

Refraction

8-2-2016

Atmospheric Refraction

Atmospheric refraction -> *apparent* location of source significantly altered (up to 0.5 degree near horizon) \rightarrow telescope pointing must correct for refraction

Refraction

Refractive index of air depends on wavelength λ : $[n(\lambda)-1] \times 10^{6} = 64.328 + \frac{29498.1}{146 - \frac{1}{\lambda_{0}^{2}}} + \frac{255.4}{41 - \frac{1}{\lambda_{0}^{2}}}$ (dry air, 1 atm pressure, T ~ 290K, λ_{0} in [µm])

Green Flash

upload.wikimedia.org/wikipedia/commons/2/2b/Development_of_Green_Flash.jpg

Atmospheric Dispersion

www.skyinspector.co.uk/Atm-Dispersion-Corrector-ADC(2587060).htm

Atmospheric Dispersion

Dispersion: Elongation of points in broadband filters due to $n(\lambda)$ [\rightarrow "rainbow"]. The magnitude of the dispersion is a strong function of airmass and wavelength.

No problem if dispersion < $\lambda/D \leftarrow$ o.k. for small or seeing limited telescopes, but big problem for large, diffraction limited telescopes

Atmospheric Dispersion Corrector

To counterbalance atmospheric dispersion use:

- 1. a refractive element (e.g., prism)
- 2. a second prism (different material with different dispersion) to maintain the optical axis
- 3. use a second (identical) double prism assembly to adjust the strength of the correction for different S-LAH64

Benefits of ADC

www.skyinspector.co.uk/Atm-Dispersion-Corrector-ADC(2587060).htm

5. Atmospheric Turbulence

Komogorov Turbulence

- kinetic energy of large scale (~L) movements transferred to smaller and smaller scales, down to minimum scale length I₀, where energy is dissipated by viscous friction
- local velocity field decomposed into spatial harmonics of wave vector κ (Fourier domain)
- $1/\kappa$ is length scale under consideration
- mean spectrum of kinetic energy (Kolmogorov spectrum)

$$E(\kappa) \propto \kappa^{-5/3}$$

• I_0 = inner scale, L_0 = outer scale with

 $L_0^{-1} < \kappa < l_0^{-1}$

Air Refractive Index Fluctuations

- winds mix layers of different temperature →
 fluctuations of temperature T → fluctuations of density
 ρ→ fluctuations of refractive index n
- 1K temperature difference changes *n* by 1×10⁻⁶
- variation of 0.01K along path of 10km: 10⁴ m × 10⁻⁸ = 10⁻⁴ m = 100 waves at 1μm
- refractive index of water vapour is less than that of air
 → moist air has smaller refractive index

Index Fluctuations with Altitude

- $C_n^2(z)\cdot\Delta z$ is a measure for index fluctuation contributions from layer Δz at altitude z
- typical value: $C_n^2 \cdot \Delta z \sim 4 \cdot 10^{-13} \text{ cm}^{1/3}$ for a 3 km altitude layer
- turbulence often occurs in layers

Median seeing conditions on Mauna Kea $r_o \sim 0.23$ meters at 0.55 microns. The 10% best seeing conditions are $r_o \sim 0.40$ m.

www.gemini.edu/sciops/instruments/ adaptiveOptics/mk_cn2.jpg

Fried Parameter r₀

- r₀ is average scale over which rms optical phase distortion is 1 rad
- angle $\Delta \theta = \lambda / r_0$ is the seeing in arcsec
- r₀ at good sites: 10 30 cm (at 0.5μm)
- seeing is roughly equivalent to FWHM of long-exposure image of a point source (Point Spread Function)

Aspects of Image Degradation

Scintillation

energy received by pupil varies in time (stars flicker)

Image Motion

average slope of wavefront at pupil varies ("tip-tilt", stars move around) Image Blurring wavefront is not flat ("seeing")

Long Exposure through Turbulence

 atmospheric coherence (or Greenwood delay) time: maximum time delay for RMS wavefront error to be less than 1 rad (v is mean wind velocity)

$$\tau_0 = 0.314 \frac{r_0}{\overline{v}}$$

- integration time t_{int} >> τ₀
 → image is mean of instantaneous images
- long-exposure image is smeared
- angular resolution $\sim \lambda/r_0$ instead of $\sim \lambda/D$
- for D > r₀, bigger telescopes will *not* provide sharper images!