Astronomical Observing Techniques

Lecture 2: Trouble is in the Air

Christoph U. Keller keller@strw.leidenuniv.nl

Outline

- 1. Atmospheric Structure
- 2. Absorption
- 3. Emission
- 4. Scattering, Refraction & Dispersion
- 5. Turbulence & Seeing

1. Atmospheric Structure

- Assumptions:
	- $-$ atmosphere in local radiative equilibrium
	- $-$ homogeneous composition
- Hydrostatic equilibrium structure described by:
	- $-$ altitude *z*
	- temperature $T(z)$
	- density *ρ(z)*
- Pressure $P(z)$ described by: $P(z) = P_0 e$ − *z* H , $H =$ *kT* µ*g*

 $H =$ scale height (about 8km), μ = mean molecular weight

8-2-2016 **Astronomical Observing Techniques: Trouble is in the Air** 3 and 3

Vertical Profile

8-2-2016 Astronomical Observing Techniques: Trouble is in the Air **All All August Everest** 4

Mixing Ratio of Atmospheric Gases

ruc.noaa.gov/AMB_Publications_bj/2009%20Schlatter_Atmospheric%20Composition%20and%20Vertical %20Structure_eae319MS-1.pdf

Atmospheric Composition

- $O₂$, N₂ main constituents, constant proportions up to 100 km
- Ozone mainly absorbs in UV
	- $-$ distribution depends on latitude, season
- $CO₂$ important component for (mid)-infrared absorption $-$ mixing independent of altitude
- $Ions vary$ strongly with altitude and solar activity
	- $-$ relevant > 60km (reactions with UV photons)

- 2 $O_2 + h\nu \rightarrow O_2^{+*} + e^-$ and $O_2 + h\nu \rightarrow O^+ + O + e^-$

- $-$ electron showers along magnetic fields cause Aurora
- at $100 300$ km height: $n_e \approx 10^5 10^6$ cm⁻³
- H_2O highly variable, very strong absorption bands

2. Absorption

- Atomic, molecular transitions -> absorption features:
	- pure rotational molecular transitions: H_2O , CO₂, O₃,
	- $-$ rotation-vibrational molecular transitions: $CO₂$, NO, CO
	- electronic molecular transitions: CH_a , CO, H₂O, O₂, O₃, OH
	- $-$ electronic atomic transitions: O, N, ...
- Attenuation at altitude z_0 and zenith distance θ: $(z_0) = I_0(\infty) \cdot \exp \left(-\frac{1}{\cos \theta} \sum \tau_i(\lambda, z_0)\right)$ $\overline{}$ $\left|-\frac{1}{\cos\theta}\sum\tau_i(\lambda,z_0)\right|$ \lfloor L $= I_0(\infty) \cdot \exp \left(-\frac{1}{\cos \theta} \sum_{\theta} \right)$ *i* $I(z_0) = I_0(\infty) \cdot \exp(-\frac{1}{\cos \theta} \sum_i \tau_i (\lambda, z_0))$ cos 1 $\exp \left(-\frac{1}{\epsilon_0} \sum_i \tau_i(\lambda),\right)$ θ
- for *i* absorbing species with optical depth $τ_i$ \overline{t} $\tau_i(\lambda, z_0) = \int r_i(z) \rho_0(z) \kappa_i(\lambda) dz$ *z* 0 ∞ =

κ: absorption coefficient; $ρ_0$: mass density of air; $r_i(z)$ the mixing ratio $r_i = n_i/(n_{\text{tot}} - n_i)$ where n is the amount in mol

www.pvlighthouse.com.au/resources/ courses/altermatt/The%20Solar %20Spectrum/figures/Sources%20of %20absorption%20in%20AM1-5d.png

Atmospheric Bands

Two cases of absorption:

- total absorption \rightarrow atmospheric transmission windows
- partial absorption \rightarrow reduced transmission due to narrow telluric lines of terrestrial origin

Atmospheric opacity defines atmospheric transmission bands (wavelengths accessible to ground-based observations)

Ground based astronomy is limited to visible, near/mid-IR and radio wavelengths. Space astronomy provides access to y-rays, X-rays, UV, FIR, sub-mm

UV Absorption

ruc.noaa.gov/AMB_Publications_bj/2009%20Schlatter_Atmospheric%20Composition%20and%20Vertical%20Structure_eae319MS-1.pdf

Absorption by Water Vapour

- Water vapor strongly depends on T and z
- Precipitable water $vapor (PWV) = depth$ of water in column of atmosphere (if liquid)

 $(z_0) = | N_{H_2O} dz$, $\big)_0\big)=\int_{z_0} N_{H_2}$

∞

z $W(z_0) = \int z dZ$

=

Absorption by Water Vapour

Scale height for PWV is only \sim 3 km \rightarrow observatories at high altitudes

0.1 mm PWV, 0.4 mm PWV, 1.0 mm PWV, 3.0 mm PWV

FIR/sub-mm astronomy is also possible from airplanes, e.g. the Stratospheric Observatory for Infrared Astronomy (SOFIA)

 $\overrightarrow{P}_{\text{out}}$

 $\frac{m}{m}$

3. Atmospheric Emission

- Fluorenscence = recombination of electrons with ions
- Recombination probability low; takes several hours \rightarrow part of night
	- Produces both continuum $+$ line emission = airglow
	- Occurs mainly at \sim 100 km height
	- Main sources of emission: O I, Na I, O₂, OH (in NIR), H
- Emission intensity measured in Rayleigh:

1 Rayleigh =
$$
10^6
$$
 photons cm⁻² s⁻¹ sr⁻¹ = $\frac{1.58 \cdot 10^{-11}}{\lambda \text{[nm]}}$ W cm⁻² sr⁻¹

Airglow

Thermal Atmospheric Emission

- Atmosphere in local thermodynamic equilibrium (LTE) $<$ 60 km, i.e. excitation levels are thermally populated
- Full radiative transfer calculation needed
- **For** *τ* << 1 use approximation:

$$
I_{\lambda}(z) = \frac{\tau_{\lambda} B_{\lambda}(T_{\text{mean}})}{\cos \theta}
$$

*B*_λ(T_{mean}): Planck function at mean temperature T_{mean} of atmosphere

For T = 250 K and $\theta = 0$

Fluorescent and Thermal Emission

Emission from Space

www.ipac.caltech.edu/Outreach/Gallery/IRAS/allsky.html

Total Emission in Near-Infrared

Molecular Scattering

• Molecular scattering in visible and NIR is Rayleigh scattering; scattering cross-section given by:

$$
\sigma_R(\lambda) = \frac{8\pi^3}{3} \frac{\left(n^2 - 1\right)^2}{N^2 \lambda^4}
$$

where N is the number of molecules per unit volume and *n* is the refractive index of air $(n-1 \sim 8 \cdot 10^{-5} P/T)$.

Rayleigh scattering is not isotropic:

$$
I_{scattered} = I_0 \frac{3}{16\pi} \sigma_R (1 + \cos^2 \theta) d\omega
$$

Aerosol Scattering

scattering $=\frac{U_M}{\pi a^2}$

 $Q_{\text{scattering}} = \frac{O_M}{A}$

a

π

σ

- Aerosols (sea salt, hydrocarbons, volcanic dust) much larger diameter d than than air molecules \rightarrow NOT Rayleigh scattering
- Aerosol scattering described by Mie theory (classical electrodynamics, "scattering efficiency factor" Q):

•
$$
d \gg \lambda
$$
: Q_{scattering} \sim Q_{absorption}

- scattered power equal to absorbed power
- effective cross section is twice the geometrical size
- $d \sim \lambda$: Q_s ~ 1/ λ (for dielectric spheres):
	- scattered intensity goes with $1/\lambda$

geometrical cross section

scattering cross section

Refraction

Atmospheric Refraction

Atmospheric refraction -> *apparent* location of source significantly altered (up to 0.5 degree near horizon) \rightarrow telescope pointing must correct for refraction

Refraction

Refractive index of air depends on wavelength λ : (dry air, 1 atm pressure, $T \sim 290K$, λ_0 in [µm]) $\left[n(\lambda)-1\right] \times 10^6$ 2 $\boldsymbol{0}$ 2 $\bf{0}$ $41 - \frac{1}{2}$ 255.4 $146 - \frac{1}{2}$ $n(\lambda)-1 \times 10^6 = 64.328 + \frac{29498.1}{1} +$ λ_0^2 λ_0^2 −

Green Flash

upload.wikimedia.org/wikipedia/commons/2/2b/Development_of_Green_Flash.jpg

Atmospheric Dispersion

www.skyinspector.co.uk/Atm-Dispersion-Corrector-ADC(2587060).htm

Atmospheric Dispersion

Dispersion: Elongation of points in broadband filters due to $n(\lambda)$ \rightarrow "rainbow"]. The magnitude of the dispersion is a strong function of airmass and wavelength.

No problem if dispersion $\langle \lambda/D \rangle \leftarrow$ o.k. for small or seeing limited telescopes, but big problem for large, diffraction limited telescopes

Atmospheric Dispersion Corrector

To counterbalance atmospheric dispersion use:

- 1. a refractive element (e.g., prism)
- 2. a second prism (different material with different dispersion) to maintain the optical axis
- 3. use a second (identical) double prism assembly to adjust the strength of the $S-LHH64$ correction for different

Benefits of ADC

www.skyinspector.co.uk/Atm-Dispersion-Corrector-ADC(2587060).htm

5. Atmospheric Turbulence

Komogorov Turbulence

- kinetic energy of large scale (\sim *L*) movements transferred to smaller and smaller scales, down to minimum scale length I_{Q} , where energy is dissipated by viscous friction
- local velocity field decomposed into spatial harmonics of wave vector *κ* (Fourier domain)
- $1/\kappa$ is length scale under consideration
- mean spectrum of kinetic energy (Kolmogorov spectrum)

$$
E(\kappa) \propto \kappa^{-5/3}
$$

• I_0 = inner scale, L_0 = outer scale with 1 1 $L_0^{-1} < \kappa < l_0^-$

0

Air Refractive Index Fluctuations

- winds mix layers of different temperature \rightarrow fluctuations of temperature $T \rightarrow$ fluctuations of density $\rho \rightarrow$ fluctuations of refractive index *n*
- 1K temperature difference changes *n* by 1×10⁻⁶
- variation of 0.01K along path of 10km: 10^4 m \times 10^{-8} = 10^{-4} m = 100 waves at 1µm
- refractive index of water vapour is less than that of air \rightarrow moist air has smaller refractive index

Index Fluctuations with Altitude

- $C_n^2(z)$ · Δz is a measure for index fluctuation contributions from layer Δz at altitude z
- typical value: C_n^2 · $\Delta z \sim 4 \cdot 10^{-13}$ cm^{1/3} for a 3 km altitude layer
- turbulence often occurs in layers

Median seeing conditions on Mauna Kea r_0 \sim 0.23 meters at 0.55 microns. The 10% best seeing conditions are $r_0 \approx 0.40$ m.

www.gemini.edu/sciops/instruments/ adaptiveOptics/mk_cn2.jpg

Fried Parameter ro

- r_0 is average scale over which rms optical phase distortion is 1 rad
- angle $\Delta\theta = \lambda/r_0$ is the seeing in arcsec
- r_0 at good sites: 10 30 cm (at 0.5µm)
- seeing is roughly equivalent to FWHM of long-exposure image of a point source (Point Spread Function)

Aspects of Image Degradation

Scintillation

energy received by pupil varies in time (stars flicker)

Image Motion

average slope of wavefront at pupil varies ("tip-tilt", stars move around)

Image Blurring wavefront is not flat ("seeing")

Long Exposure through Turbulence

atmospheric coherence (or Greenwood delay) time: maximum time delay for RMS wavefront error to be less than 1 rad (v is mean wind velocity)

$$
\tau_0 = 0.314 \frac{r_0}{\overline{\nu}}
$$

- integration time $t_{int} \gg \tau_0$ \rightarrow image is mean of instantaneous images
- long-exposure image is smeared
- angular resolution $\gamma\lambda/r_0$ instead of $\gamma\lambda/D$
- for $D > r_0$, bigger telescopes will *not* provide sharper images!