Astronomical Observing Techniques

Lecture 1: Black Bodies in Space

Christoph U. Keller keller@strw.leidenuniv.nl

Outline

- 1. Black Body Radiation
- 2. Astronomical Magnitudes
- 3. Point Sources and Extended Sources

Blackbody Radiation

Kirchhoff (1860): black body completely absorbs all incident rays: no reflection, no transmission for all wavelengths and for all angles of incidence.

Cavity at fixed T, thermal equilibrium

Incoming radiation is "thermalized" by continuous absorption and re-emission of radiation by cavity wall

Small hole \rightarrow escaping radiation will approximate black-body radiation independent of properties of cavity or hole.

Kirchhoff's Law

Conservation of power requires:

$$
\alpha+\rho+\tau=1
$$

with α = absorptivity, ρ = reflectivity, τ = transmissivity

cavity in thermal equilibrium with completely opaque sides:

$$
\begin{array}{c}\n\varepsilon = 1 - \rho \\
\alpha + \rho + \tau = 1 \\
\tau = 0\n\end{array}\n\bigg\} \quad \begin{array}{c}\n\varepsilon = \text{emissivity} \\
\alpha = \varepsilon\n\end{array}
$$

Kirchhoff's law applies to perfect black body at all wavelengths

Radiator with $\epsilon = \epsilon(\lambda) < 1$ often called grey body

The Color of Telescope Domes

Credit NOAO/AURA/NSF: www.noao.edu/image_gallery/telescopes.html

Definition of a Black Body

- Black body (BB) is idealized object that absorbs all EM radiation
- Cold (T~0K) BBs are black (no emitted or reflected light)
- At $T > 0$ K BBs absorb and re-emit characteristic EM spectrum

Many astronomical sources emit close to a black body.

Example: COBE measurement *of the cosmic microwave background*

Black Body Emission

Specific intensity *I_v* of blackbody given by Planck's law:

$$
I_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}
$$

in units of $[W \, m^{-2} \, sr^{-1} \, Hz^{-1}]$

In wavelength units:

$$
I_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right) - 1}
$$
 in units of [W m⁻³ sr⁻¹]

Conversion of frequency \Leftrightarrow wavelength units:

$$
dv = \frac{c}{\lambda^2} d\lambda
$$
 or $d\lambda = \frac{c}{v^2} dv$

Emission ⇔ Power ⇔ Temperature

Total radiated power per unit surface proportional to fourth power of temperature T:

$$
\iint_{\Omega_V} I_{\nu}(T) dV d\Omega = M = \sigma T^4
$$

 σ = 5.67 \cdot 10⁻⁸ W m⁻² K⁻⁴ (Stefan-Boltzmann constant)

Assuming BB radiation, astronomers often specify the emission from *<i>objects* via their effective temperature.

Effective Temperatures

Temperature corresponding to maximum specific intensity given by Wien's displacement law:

$$
\frac{c}{v_{\text{max}}}T = 5.096 \cdot 10^{-3} \text{ mK} \quad \text{or} \quad \lambda_{\text{max}}T = 2.98 \cdot 10^{-3} \text{ mK}
$$

$$
\lambda_{\text{max}} T = 2.98 \cdot 10^{-3} \text{ mK}
$$

Cooler BBs have peak emission (effective temperatures) at longer wavelengths and at lower intensities:

Useful Approximations

Planck:

$$
I_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}
$$

High frequencies $(hv \gg kT) \rightarrow W$ ien approximation:

$$
I_{\nu}(T) = \frac{2h\nu^3}{c^2} \exp\left(-\frac{h\nu}{kT}\right)
$$

Low frequencies (hv << kT) \rightarrow Rayleigh-Jeans approximation:

$$
I_{\nu}(T) \approx \frac{2\nu^2}{c^2} kT = \frac{2kT}{\lambda^2}
$$

NASA/IPAC

Solar Spectrum

http://en.wikipedia.org/wiki/Sunlight#mediaviewer/File:Solar_Spectrum.png

Grey Bodies

Many emitters close to but not perfect black bodies. With wavelength-dependent emissivity ε <1:

Brightness Temperature

Brightness temperature is temperature a perfect black body would have to reproduce the observed intensity of a grey body object at frequency *v.*

For low frequencies (hv << kT):

$$
T_b = \mathcal{E}(v) \cdot T \underset{\text{Jeans}}{\overset{\text{Rayleigh-}}{=}} \mathcal{E}(v) \cdot \frac{c^2}{2kv^2} I_v
$$

Only for perfect BBs is T_b the same for all frequencies.

Lambert's Cosine Law

Lambert's cosine law: radiant intensity from an ideal, diffusively reflecting surface is directly proportional to the cosine of the angle θ between the surface normal and the observer.

Johann Heinrich Lambert $(1728 - 1777)$

Lambertian Emitters

Radiance of Lambertian emitters is independent of direction θ of observation (i.e., isotropic). A f(0)

Two effects that cancel each other:

- 1. Lambert's cosine law \rightarrow radiant intensity and *dΩ* are reduced by cos(θ)
- 2. Emitting surface area dA for a given $d\Omega$ is increased by $cos^{-1}(\theta)$

Perfect black bodies are Lambertian emitters!

The Sun: Lambertian Emitter?

Flux and Intensity

- Energy flux *F* of star = π × intensity *I* averaged over disk
- Stellar disk average in polar coordinates r, φ

$$
\overline{I} = \frac{1}{\pi R^2} \int\limits_{0}^{2\pi} \int\limits_{0}^{R} I(r)r \, dr \, d\varphi
$$

• Substitute *r* with *R*sinθ, μ=cosθ

$$
\overline{I} = 2 \int_{0}^{\pi/2} I(\theta) \sin \theta \cos \theta d\theta = 2 \int_{0}^{1} I \mu d\mu
$$

Flux integrated over hemisphere

$$
F = \int_0^{2\pi} \int_0^{\pi/2} I(\theta) \cos \theta \sin \theta d\theta d\phi = 2\pi \int_0^1 I \mu d\mu
$$

R

r

θ

Summary of Radiometric Quantities

*10⁻²⁶ W m⁻² Hz⁻¹ = 10^{-23} erg s⁻¹cm⁻² Hz⁻¹ is called 1 Jansky

Optical Astronomers use 'Magnitudes'

Origins in Greek classification of stars according to their visual brightness. Brightest stars were m = 1, faintest detected with bare eye were m = 6.

Formalized by Pogson (1856): $1st$ mag \sim 100 \times 6th mag

Apparent Magnitude

Apparent magnitude is *relative* measure of monochromatic flux density F_{λ} of a source:

$$
m_{\lambda} - M_0 = -2.5 \cdot \log\left(\frac{F_{\lambda}}{F_0}\right)
$$

 M_0 defines reference point (usually magnitude zero).

∞ ∞

0 0

In practice, measurements through transmission filter *T*(λ) that defines bandwidth:

 $-M = -2.5 \log |T(\lambda)F_{\lambda}d\lambda + 2.5 \log$

Photometric Systems

Filters usually matched to atmospheric transmission \rightarrow different observatories = different filters \rightarrow many photometric systems:

1-2-2016 Astronomical Observing Techniques: Blackbody Radiation 23

AB and STMAG Systems

For given flux density F_{v} , AB magnitude defined as:

$$
m(AB) = -2.5 \cdot \log F_v - 48.60
$$

- object with constant flux per unit frequency interval has zero color
- zero point defined to match zero points of Johnson V-band
- used by SDSS and GALEX
- F_v in units of [erg s⁻¹ cm² Hz⁻¹]

STMAG system defined such that object with constant flux per unit wavelength interval has zero color. STMAGs are used by the HST photometry packages.

Color Indices

Absolute Magnitude

 $M = m + 5 - 5 \log D$ Absolute magnitude $=$ apparent magnitude of source if it were at distance $D = 10$ parsecs:

 $M_{Sun} = 4.83$ (V); $M_{Milkv\ Wav} = -20.5 \rightarrow \Delta mag = 25.3 \rightarrow \Delta lumi = 14$ billion L_o

However, interstellar extinction *E* or absorption A affects the apparent magnitudes

$$
E(B-V) = A(B) - A(V) = (B-V)_{\text{observed}} - (B-V)_{\text{intrinsic}}
$$

Need to include absorption to obtain correct absolute magnitude:

$$
M = m + 5 - 5\log D - A
$$

Bolometric Magnitude

Bolometric magnitude is luminosity expressed in magnitude units = integral of monochromatic flux over all wavelengths:

$$
M_{bol} = -2.5 \cdot \log \frac{\int_{0}^{\infty} F(\lambda) d\lambda}{F_{bol}} \qquad ; F_{bol} = 2.52 \cdot 10^{-8} \frac{\text{W}}{\text{m}^2}
$$

If source radiates isotropically:

$$
M_{bol} = -0.25 + 5 \cdot \log D - 2.5 \cdot \log \frac{L}{L_{\Theta}} \qquad \qquad ; L_{\Theta} = 3.827 \cdot 10^{26} \text{ W}
$$

Bolometric magnitude can also be derived from visual magnitude plus a bolometric correction BC: $M_{bol} = M_V + BC$

BC is large for stars that have a peak emission very different from the Sun's.

Photometric Systems and Conversions

 $1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}.$

Point Sources and Extended Sources

Point sources $=$ spatially unresolved Brightness \sim 1 / distance²

Size given by observing conditions

Extended sources = well resolved Surface brightness \sim const(distance) Brightness $\sim 1/d^2$ and area size $\sim 1/d^2$

Surface brightness [mag/arcsec²] is constant with distance!

Calculating Surface Brightness

Surface brightness of extended objects in units of mag/sr or mag/arcsec²

Surface brightness S of area A in magnitudes:

$$
S = m + 2.5 \cdot \log_{10} A
$$

Observed surface brightness [mag/arcsec²] converted into physical surface brightness units:

$$
S\left[\text{mag/arcsec}^2\right] = M_\odot + 21.572 - 2.5 \cdot \log_{10} S\left[L_\odot/\text{pc}^2\right]
$$

with
$$
L_{\Theta} = 3.839 \times 10^{26}
$$
 W = 3.839×10^{33} erg s⁻¹