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Continuous, Emission, Absorption Spectra

Continuous spectrum

Emission line spectrum

Absorption line spectrum
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http://home.achilles.net/~ypvsj/data/elements/index.html

Courtesy:
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Sample of Spectra
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Radiogalaxy 3C435A, Plot courtesy: Universite de Lyon, Recent TIGER Scientific Results




Optical Spectrograph Components

Slit: reduce telescope image to one dimension
Collimator: collimate (make parallel) diverging light

Disperser: spectrally disperses the light

R

Camera: focus spectrum onto detector

slit
|
i

collimator

camera

grating lens

detector
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Long Slit Spectrum
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Main Characteristics of Spectrograph

Spectral resolution element: AA

Spectral resolution (or resolving power): R=A/AA

Instrumental profile P(A) broadens a theoretically infinitely narrow
line to the observed line width:

L(R)=8(A=2) 1(A)=P(2)*1,(2)

Usually the instrumental profile determines the spectral resolution
element, which is typically Nyquist-sampled

Transmission determines the throughput n(A)

n(1)= ?”t((f))



Spectral Resolution and S/N

For unresolved spectral lines, both the S/N and the line/
continuum contrast increase with increasing resolution

Relative flux
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Model spectra of C,H, at 900K and HCN at 600K (assumed Doppler broadening ~4 km/s) at
different spectrograph resolutions (figure provided by F. Lahuis).
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Diffraction Grating

Grating introduces an optical
path difference = f(angle to
surface normal)

D
O
—

Condition for constructive —
interference given by grating
equation:

mA =d-(sino £sin §)

m = order of diffraction

A = wavelength

d = distance between
equally spaced grooves

a = angle of incoming
beam

B = angle of reflected beam
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Grating Spectral Resolution

* Grating equation mA =d-(sino £sin )

e Gratings usually in collimated beam close to pupil
Image

* Maximum spectral resolution R given by R=mN
N = number of (illuminated) grooves
m = diffraction order

* Angular dispersion df/dA=

a
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Blaze Angle

* Periodic structure distributes energy over many orders m.
* Observing only one arbitrary order is inefficient

* For blazed gratings the directions of constructive interference and
specular reflection coincide:

a+p=2a+6,) = 0, _pP-a

Advantage
* High efficiency
Disadvantage:

* Blaze angle 6; (and hence blaze
wavelength A;) are fixed by
construction.
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Free Spectral Range ...
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Different diffraction orders overlap with each other:

mA=d(sino+sinfB)=(m+1)A’
The free spectral range is the largest wavelength range for a given order that does

not overlap the same range in an adjacent order. ,

M, =A-X=2
m
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...and Cross-Dispersion

To spatially separate the orders and avoid overlap, an additional
optical element will be needed: A low-dispersion prism/grating with
a dispersion direction perpendicular to that of the high-dispersion

grating \
j
< I

high dispersion

\

Cross
dispersion

Echelle grating



Echelle Gratings

dp m  sino+sinf

Want high dispersion _ _
dA dcosf Acosf3

and high spectral resolution R=Nm

a and B large, high order m (= 50), and therefore large a

| n

Grating equation in Littrow configuration (a=B): mA;=2d sinf
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Echelle Spectrograph

Operation in high order = pre-disperser essential

The Light Path of the High-Resolution Echelle Spectrograph

H 2b. Collimator

A

. |

Collimator

3. Echelle Grating

1. Viewing Slit

6. Mirror

5. Correction Lenses

7. Field Flattener
8. CCD (hidden behind field flattener in this view)



Echelle Spectrographs

Example: ESO's VLT instrument CRIRES:

CRIRIES s el

de-rotator

2\

'S integratin
deformable mirror \ sphere

dichroic window

focal reducer by
'7\,

o i wavefront
slit|viewer Sensor

& pre-disperser

“detector mosaic

_ 3 mirror TMA
collimator / camera

The ruled echelle grating of the SOFIA Facility Spectrometer AIRES. Two images of the engineer are seen reflected from the facets of the grooves
thdtlaié latdrigles of 90 degrees from each bttHeo,
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Grisms

Grism = transmission GRating + prISM

For one wavelength and diffraction order, refraction of grating and
prism may compensate and optical axis remains (almost)
unchanged.

Advantages: A

* ideal to bring in and out of a L
collimated beam (“filter wheel”) > )\2
* reduces coma (if in non-collimated

beam)

Disadvantages: )\3

e difficult to manufacture (replication
and gluing or by direct ruling.

* can be quite “bulky” (< filter wheel)
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Interference (Transmission) Filters

Principle: layers with thickness of ~A with different indices of
refraction deposited on a substrate.

... : 2nd 1
The transmission is maximal where 1 +5 =2krx
Refractive indices _ | |
n,(A)
m() \ JM h[/\\

N

- spectral resolution typically R ~ 3 © 1000

System Responsd (a/photan)
®) [
T T

* typically many interference layers F] JL

.8 7
Waveléngth (um),

* filters are often tilted with respect to the op’ricdl axis to
avoid reflections > shift of A,

* wavelengths farther from A, (for which the above equation
is also satisfied) need a blocking or absorbing filter.
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Fabry-Perot Etalon

Two parallel plates (Fabry-Perot etalon) of high et

reflectivity rand fransmission t = 1-r. g
o

The ftransmission is: _ ~

2 -1
I=1, o+ 4 2si112(2ﬂ'a’kcosz')
l1—r (l—r)
and has transmission peaks where k& = % R, R!

Here, mis the order of the interferometer, dis the separation of the
plates, and Ak =1/2d the free spectral range.

100% 0%
The spectral resolution is given by
! o
: T g 5
1. The finesse [ = , - 2
-7
. k =
2. Theresolution R=—=mF : |
Ak = .
0% 100%
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OH Suppression Spectrographs

OHS filter out the wavelengths of atmospheric OH lines, which
contribute the major part of the near-IR background.

Entry Slit High Dispersion  Night Line Mask High Dispersion Image without Near Infrared Imager
Spectoaraph Spectoaraph Night Lines and Spectograph

CISCO

(L) OH Z AR Kk  Suporessed OH arglow

‘ Before Removing Night Lines After Removing Night Lines T llfilicm“”il"lllglllllI"
: Il

: ; (c) ML Afte

T 1 '~ W&EIRE 4C+4036 DANZ L Spectrum of Radio Galaxy 4C+40.36

1.62 1.64 1.66 1.68 1.62 1.64 1.66 1.68
Wavel m Wavelength (um)

http://subarutelescope.org/Introduction/instrument/img/OHS_concept.gif



Multi-Object Spectrographs

13 1

Use numerous "slits” in the focal plane
simultaneously > multiple source plck ups
using fibers or mirrors. -

Needs different slit masks
for different fields.
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Multi-Object Spectrographs

13 1.

Use numerous "slits” in the focal plane
simultaneously > multiple source plck ups
using fibers or mirrors.

Needs different slit masks
for different fields.

11/11/2014
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Hydra Arbitrary Fiber Positioning

-
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Multi-Object Spectrograph Spectra
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Integral Field Spectrographs

Cut area on sky into adjacent slices or sub-portions, realign them
optically into one long slice and treat it as a long slit spectrograph.

Telescope Spectrograph ~ Spectrograph

focus mput output
Lenslets W .
N R Datacube

Lenslets slit §
+ fibres 3
Image 1 1 slit
slicer ;

o
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Leiden Observatory plIFU

Venus
(Rodenhuis
2013)

450-900 nm, R~25

polarization grating: polarizing beamsplitter and transmission grating
polychromatic modulation at up to 50Hz

solves all wavelength-dependent effects
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Fourier Transform Spectrometer

* Assume a single pixel
fixed mirror detector

beamsplitter ¢ FTS or Michelson
interferometer is a
two-wave
interferometer (grating

. has N waves from N
moving
. grooves )
MIrror

detector
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FTS — Output Signal
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Mirror position (mm)
* For each moving mirror position, broadband (integrated
over wavelength) intensity is measured
* Measured signal is an interferogram
* Interferogram is Fourier transform of object spectrum
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FTS — Measured Intensity

Exit intensity /(x) for a monochromatic input intensity /,
(with wave number k=2rt/A and path length difference

X) IS: IO

I1(x) , (1+ coskx)
Source with spectrum /,(k) in range [k,,k,] produces
signal 1%

I(x)= 5-[[0 (k)(1+ coskx)dk

For each value of x, all spectral elements of incident
spectrum contribute to signal, but only one Fourier
component is measured at any given point

Spectral resolution with maximum path length
difference x,_, is R=2x__ /A






Pros and Cons of the Different Types

Spectrometer

Long-slit

Echelle

Integral field

Multi-object

Fabry-Perot

Fourier-
transform (FTS)

* relatively simple = high
throughput
* easy to calibrate

* high spectral resolution
* efficient use of detector

e instantaneous 2D info
* ideal for resolved objects

* up to thousands of spectra
* ideal for spectral surveys

* ideal for large objects
* high spectral resolution
* more compact than FTS

* very high resolution
* absolute wavelengths
* imaging FTS possible

Disadvantages

* only one object at a time
* inefficient use of detector space

« challenging grating/optics
« limited instantaneous A range

« complex optics
» single objects only

« complex mechanisms to select
fields
« fibre transmission limits A

* not practical for large A range

* line and continuum observed at
different times = calibration

* needs pre-disperser

* less gain with high background
* high resolution <& wide interval
e difficult in cryo instruments



