Lecture 9: Detectors

Christoph U. Keller

Overview

- 1. Solid State Physics
- 2. Intrinsic Photoconductors
- 3. Extrinsic Photoconductors
- 4. Readout & Operations
- 5. Detector Noise
- 6. Flatfielding Techniques

Modern Detectors

1. Photon detectors

Respond directly to individual photons -> releases bound charge carriers. Used from X-ray to infrared.

Examples: photoconductors, photodiodes, photoemissive detectors

2. Thermal detectors

Absorb photons and thermalize their energy-> changes resistance -> modulates electrical current. Used mainly in IR and sub-mm detectors. *Examples: bolometers*

3. Coherent receivers

Respond directly to electrical field and preserve phase information (but need a reference phase "local oscillator"). Mainly used in the sub-mm and radio regime.

Examples: heterodyne receivers

Astronomical Observing Techniques: Detectors 1

PERIODIC TABLE OF THE ELEMENTS

GROUP

	1 IA						/ /	///		+++	$\rightarrow \rightarrow$		http	://www.ktf-	split.hr/peri	odni/en/		18 VIIIA
8	1 1.0079	REI			VE ATOMIC N	AASS (1)	Me	Metal Semimetal Nonmetal										2 4.0026
PERIC	H		GRO	OUP IUPAC GROUP CAS				Alkali metal			oens elemen	He					He	
	HYDROGEN	DROGEN 2 IIA			<u>13 IIIA</u>			2 Alkaline earth metal 17 Haloo			logens element		14 IVA 15 VA 16 VIA 17 VIIA			HELIÚM		
	3 6.941	4 9.0122	ATOMIC N	UMBER - 5	10.811	10.811		Transition metals		18 Noble gas			5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
	Li	Be	s	SYMBOL -	-B	/ /		Lanthanide	STAN	DARD STATE	(25 °C: 101)	(Pa)	B	C	N	0	F	Ne
	LITHIUM	BERYLLIUM		BORON		Cartinide Ne			- gas Fe - solid		BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON		
_	11 22.990	12 24.305	/	ELEVENT VILLE		/	/	~ <u> </u>		Ga - liquid Tc - synthet			13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
3	Na	Μσ		ELE	MENI NAME		/			/			A 1	Si	Р	S	CI	Ar
	SODIUM	MAGNESIUM	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	VIIIB -	10	11 18	12 118	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON
/	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80
4	K	Ca	Se	Ti	V	Cr	Mn	Fe	Co	Ni	Cn	Zn	Ca	Ce	As	Se	Br	Kr
	IN DOTACOUNT	Ca	SCANDUM	TTANUUM	VANADAUNA	CHROMINA	IVIII	IPON	CU	1 VI	Cu	2011	Ga	GERMANN	ADOCHIO	OC CNULLA	PROMINE	INI KOVOTONI
/	37 85.468	38 87.62	39 88.906	40 91,224	41 92,906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
<u> </u>	Dh	S.	V	7.	NIh	Mo	MTCon	Du	Dh	Dd	Aa	Cd	In	C.	Ch	То	T	Vo
	KU	Sr	I	Lr	IND	IVIO	ПС	Ku	KI	Fu	Ag	Cu	111	511	SD	Ie	1	ле
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	TA 492 94	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN 92 007.0	ANTIMONY	TELLURIUM	IODINE	XENON
	55 152.51	D.	57-71	TTC	75 160.95	103.04	D .	10 190.23	T 192.22	76 195.06 D4	19 190.97	30 200.59	701	DL	D:	D 0	03 (210)	D
	CS	ва	La-Lu Lanthanide	HI	Ia	W	ке	Us	Ir	Pt	Au	Hg	11	PD	BI	PO	At	RN
	CAESIUM	BARIUM	Lanchande	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
	87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	TU9 (268)	110 (281)	111 (272)	112 (285)		114 (289)				
	Fr	Ka	Ac-Lr	IRII	DD	Sg	IRIU	IHIS	1MIC	Uum	Uuu	Uub	$\langle \rangle$	Quq				
	FRANCIUM	RADIUM	Actinide	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM		UNUNQUADIUM				3
	/													ani@itif calit he				
(1) Pt Ri Si	ire Appl. Chem., 7	3, No. 4, 667-6	33 (2001)	57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97
	stative atomic mass is shown with five inificant figures. For elements have no stable clides, the value enclosed in brackets dicates the mass number of the longest-lived			La	Ce	Pr	Nd	11Dmm	Sm	Fu	Cd	Th	Dv	Ho	Fr	Tm	Vh	In
nu in				La	CEDUIN		NEODYNUM		CAMADUM	Eupopuu	Gu	TEODUIN	Dysonosium		FORMA	1 111	TEODUM	Lu
H	xope of the element wever three such	elements (Th, I	Pa, and U)	ACTINIDE											LOTETIOM			
d0 00	 have a charact mposition, and for hydrated 	eristic terrestria these an atomi	s isotopic cweight is	89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
13				Ac	Th	Pa	U	Nm	1Pnn	Am	Cm	Blk	Cf	IE.s	TRim	Md	No	TI nº
E	litor: Aditya Vardh	or Aditus Vardhan (adiuar@natilian com)			THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
28 Oct 2014																		

Diamond Lattice

Elements with 4 e⁻ in valence shell form crystals with diamond lattice structure (each atom bonds to four neighbors).

Diamond lattice not only formed by IV elements (C, Si, Ge) but also by III-V semiconductors (InSb, GaAs, AIP)

Astronomical Observing Techniques: Detectors 1

SHARING OF

Ð

molecule

covalent bond

Electronic States and Bands

Atomic crystal

Wavefunctions Ψ overlap

Single atomic system

Example: H atom

Electric Conductivity

Overcome bandgap E_g to lift e^- into conduction band:

- 1. external excitation, e.g. via a photon \leftarrow photon detector
- 2. thermal excitation

3. impurities

Fermi Energy

The Fermi energy E_F determines the concentration of thermally excited electrons in the conduction band.

Energy valence band: E_v ; Energy conduction band: E_c

Fermi function f(E): probability that state of energy E is occupied at temperature T.

Fermi energy = energy of the highest occupied quantum state in a system of fermions at T=0K

QM: fermions obey the Pauli exclusion principle \rightarrow two fermions cannot occupy the same quantum state. Fermions consecutively fill up the unoccupied quantum states starting with the lowest energy; when all the particles have been put in, the Fermi energy is the energy of the highest occupied state.

Fermi level = chemical potential

The Fermi level is the energy below which there is a 50% chance of finding an occupied energy state. The Fermi level can be calculated from the density of states in the conduction and valence bands. The Fermi level may increase, remain the same or decrease with increasing temperature, depending on the number of states in the conduction and valence bands.

Fermi energy and Fermi level are only the same at absolute zero. At absolute zero temperature the Fermi level can be thought of as the energy up to which available electron states are occupied. At higher temperatures, the Fermi level is the energy at which the probability of a state being occupied has fallen to 0.5.

The Fermi function f(E) gives the probability that a given available electron energy state will be occupied at a given temperature. Typically, most of the levels up to the Fermi level E_{F} are filled, and relatively few electrons have energies above the Fermi level.

The population of states depends upon the *product* of the Fermi function and the electron density of states:

- In the gap there are no electrons because the density of states is zero.
- In the conduction band at OK, there are no electrons even though there are plenty of available states, but the Fermi function is zero.
- At high temperatures, both the density of states and the Fermi function have finite values in the conduction band, so there is a finite conducting population.

Intrinisic Photo-Conductors: Basic Principle

- semi-conductor: few charge carriers \rightarrow high resistance -
- charge carriers = electron-hole pairs
- photon lifts e⁻ into conduction band -
- applied electric field drives charges to electrodes

 $n_0 = \frac{\psi \eta \tau}{w dl}$

where:

 R_d = resistance

w,d,l = geometric dimensions

q = elementary electric charge

 n_0 = number density of charge carriers

 ϕ = photon flux

- $\eta = quantum efficiency$
- τ = mean lifetime before recombination
- μ_n = electron mobility ~ mean time between collisions.
 - drift velocity $v=\mu_n E$, current density $j=n_0 qv$

Important Quantities and Definitions

Quantum efficiency $\eta = \frac{\# \text{ absorbed photons}}{\# \text{ incoming photons}}$

Responsivity $S = \frac{\text{electrical output signal}}{\text{input photon power}}$

Wavelength cutoff:
$$\lambda_c = \frac{hc}{E_g} = \frac{1.24 \,\mu m}{E_g [eV]}$$

Photo-current: $I_{ph} = q \varphi \eta G$

Photoconductive gain G:
$$G = \frac{I_{ph}}{q \varphi \eta} = \frac{\tau}{\tau_t} = \frac{\text{carrier lifetime}}{\text{transit time}}$$

The product nG describes the probability that an incoming photon will produce an electric charge that will reach an electrode.

Astronomical Observing Techniques: Detectors 1

Limitations of Intrinsic Semiconductors

 $\lambda_c = \frac{hc}{E_s}$

- long-wavelength cutoffs

 → Germanium: 1.85µm
 → Silicon: 1.12µm
 → GaAs: 0.87µm
- non-uniformity of material
- problems to make good electrical contacts to pure Si
- difficult to avoid impurities and minimize thermal (Johnson) noise

Extrinsic Semiconductors

- extrinsic semiconductors: charge carriers = electrons (n-type) or holes (p-type)
- achieved by addition of impurities at low concentration to provide excess electrons or holes
- → much reduced bandgap -> longer wavelength cutoff

Example: addition of boron to silicon in the ratio 18:100,000 increases its conductivity by a factor of 1000 1/2 1

Extrinsic Semiconductor Band Gaps

		Ge	Si
Impurity	Туре	Cutoff wavelength λ _c (μm)	Cutoff wavelength λ _c (μm)
Al	р		18.5 ^a
В	p	119 ^b	28 ^a
Be	P	52 ^b	8.3 ^a
Ga	р	115 ^b	17.2^{a}
In	р	111 ^b	7.9 ^a
As	n	98 ^b	23 ^a
Cu	р	31 ^b	5.2^{a}
Р	n	103 ^b	27^a
Sb	n	1 29 ^b	29 ^a

Problem: absorption coefficients much less than for intrinsic photoconductors \rightarrow low QE \rightarrow active volumes (pixels) must be Astronomical Observing Techniques: Detectors 1

Blocked Impurity Band (BIB) Detectors

Solution: use separate layers to optimize the optical and electrical properties independently:

- IR-active layer: heavily doped
- Blocking layer: thin layer
 of high purity (intrinsic
 photoconductor)
- Typical species are Si:As or
 Si:Sb BIBs

Astronomical Observing Techniques: Detectors 1

Photodiodes

- junction between two oppositely doped zones
- Two adjacent zones create a depletion region with high impedance

- 1. Photon gets absorbed e.g. in the p-type part
- 2. Absorption creates an e⁻-hole pair
- 3. The e⁻ diffuses through the material
- 4. Voltage drives the e[−] across the depletion region → photo-current 28 Oct. 2014 Astronomical Observing Techniques: Detectors 1 17

Charge Coupled Devices (CCDs)

CCDs = array of integrating capacitors.

Pixel structure: metal "gate" evaporated onto SiO₂ (isolator) on silicon = MOS

- 1. photons create free e⁻ in the photoconductor
- 2. e^- drift toward the electrode but cannot penetrate the SiO₂ layer
- 3. e^- accumulate at the Si-SiO₂ interface
- 4. the total charge collected at the interface is a measure of the number of photons during the exposure

5. -> read out the number of e⁻ 28 Oct. 2014 Techniques: Detectors 1

Charge Coupled Readouts

Collected charges are passed along the columns to the edge of the array to the output amplifier.

Be aware of charge transfer (in-)efficiencies (CTEs) due to electrostatic repulsion, thermal diffusion and fringing ufields tors 1 19

Astronomical Observing Techniques: Detectors 1 http://solar.physics.montana.edu/nuggets/2000/001201/ccd.png

Charge Transfer Efficiency (CTE)

Time-dependent mechanisms that influence the CTE:

- 1. Electrostatic repulsion causes electrons to drift to the neighbouring electrode with time constant for charge transfer τ_{sl} .
- 2. Thermal diffusion drives electrons across the storage well at τ_{th} .
- 3. "Fringing fields" due to dependency of the well on the voltages of neighbouring electrodes (τ_{ff}).

Approximation for the CTE of a CCD with m phases: C

$$CTE = \left(1 - e^{-t/\tau}\right)^m$$

Noise from charge transfer inefficiency: $\varepsilon = (1-CTE)$

Orthogonal Transfer CCDs (OTCCD)

For TDI it would be desirable to move the charges in <u>any</u> direction to follow the image motion. This can be done with the OTCCD.

OTCCD operation:

To move a charge to the right, `3' is negative to act as channel stop, `1', `2', and `4' are operated as a conventional CCD.

To move a charge up, `4' is negative to act as channel stop, `1', `2', and `3' are operated as a conventional CCD.

Moving to the opposite directions: reversing the clocking.

CCD Color Sensors

- 1. Take three exposures through three filters subsequently only works for fixed targets (standard for astronomy).
- 2. Split the input beam in three channels, each with a separate and optimized CCD (professional video cameras).
- 3. Bayer mask over CCD each subset of 4 pixels has one filtered red, one blue, and two green.

Main Detector Noise Components

G-R noise

$$\left\langle I_{G-R}^{2}\right\rangle = 4q^{2}\varphi\eta G^{2}\Delta f$$

fundamental statistical noise due to the Poisson statistics of the photon arrival \rightarrow transferred into the statistics of the generated and recombined holes and electrons.

Johnson or kTC noise

$$\left\langle I_J^2 \right\rangle = \frac{4kT}{R} \Delta f$$

fundamental thermodynamic noise due to the thermal motion of the charge carriers. Consider a photo-conductor as an RC circuit. Since $\langle Q^2 \rangle = kTC$, the charge noise is also called kTC noise or reset noise.

1/f noise

increased noise at low frequencies, due to bad electrical contacts, temperature fluctuations, surface effects (damage), crystal defects, and JFETs, ...

The total noise in the system is: $\langle I_N^2 \rangle = \langle I_{G-R}^2 \rangle + \langle I_J^2 \rangle + \langle I_{1/f}^2 \rangle_{24}$

BLIP and NEP

Operationally, background-limited performance (BLIP) is always preferred: $\langle I_{G-R}^2 \rangle \gg \langle I_J^2 \rangle + \langle I_{1/f}^2 \rangle$

The noise equivalent power (NEP) is the signal power that yields an RMS S/N of unity in a system of $\Delta f = 1$ Hz: $NEP_{G-R} = \frac{2hc}{\lambda} \left(\frac{\varphi}{\eta}\right)^{1/2}$

In BLIP the NEP can only be improved by increasing the quantum efficiency η .

Detector Artefacts (1)

Dead, hot and rogue pixels. Mitigation: subtract off-source image and/or reduce bias voltage

Fixed pattern noise. Mitigation: "flat-fielding"

Muxbleed, pulldown and banding. Mitigation: avoid bright sources, short exposures.

Detector Artefacts (2): Fringing

In spectrographs: photons reflect off the back of the detector and interfere with the incoming light.

If the phase difference between l_1 and $n \cdot l_2$ is an even multiple of π constructive interference occurs. If an odd multiple destructive interference occurs \rightarrow fringes =

wave pattern. 28 Oct. 2014

General Flatfielding

Detector response (QE, bias) varies slightly from pixel to pixel → image has "structure", even with flat illumination
→ flat-fielding; common methods are:

- 1. Dome flats: illuminate a white screen within the dome (can be done during the day, but may introduce spectral artifacts)
- 2. Twilight flats: observe the twilight sky at two times during sunrise or sunset (high S/N but time is often too short to get FFs for all filters)
- Sky flats: use the observations themselves (spectrally best, but often low S/ N)

In all cases: use the difference between two flux levels F_1 , F_2 to compute the flatfield with which all images have to be multiplied.

$$FF = \left(\frac{F_1 - F_2}{\text{median}(F_1 - F_2)}\right)^{-1}$$

28 Oct. 2014

Astronomical Observing Techniques: Detectors 1

Dithering / Jittering

- 1. Observe the same field with many exposures, each offset by a small amount
- 2. Combine the image e.g., via median filtering

Astronomical Observing Techniques: Detectors 1

Chopping / Nodding

Astronomical Observing Techniques: Detectors 1

inverted

28 Oct. 2014