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Hear the Difference
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See the Difference
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See the Periodic Signal




Fourier Series

Decomposition using sines and cosines as orthonormal basis set
Periodic function: f(x) = f(x-l- P)

a - 27Tnx . [ 2mnx
Fourier series: f(x)=—0+2{an cos( )+bn sm( ﬂ
2 n=1 P P
2 P/2 2
a,= J f(x)cos( inx)dx
Fourier coefficients: , _;/);2 ,
b =— J f(x)sin( n-nx)dx
P —-P/2 P
Period: P
Frequency: v=1/P

Angular frequency: w =2mr/P
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Orthonormal Basis Set

I I 1forn=
;_J;cos(mx)cos(nx)dx—{ 0 fo b2
1 T
2 (s dx =0
ﬂ_Lsm(mx)cos(nx) X
1% . [ 1€ _
;Jsm(mx)sm(nx)dx—{ Of(())rr’;lfz;é%

—7T



Example: Sawtooth Function

Sawtooth function: / / / /
flx)=x for —w<x<nm

fe+27)= £(x) I R R %

Fourier coefficients are:

!

a, =— J xcos(nx)dx:O (cos() 1s symmetric around 0)
T

-7

1 T . (_1)n+1
b =— dx =72
) ﬂjﬂxsm(nx) X .

n

and hence: f(x) %JFZ Mﬂ? sin(nx)]: 22 (_1)”“ sin(7x)
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Euler’s Formula

Euler’s formula: relation between

trigonometric functions and ' — cos(272'6’)+ l sin(2729)
complex exponential function:

Im‘

Rewrite Fourier series in terms of ; e'’= cos @ +ising
waves with amplitudes and
phases:
27wnx sin 0
ﬂw—ZceP ¢
-
H=—o00 Ofcos ¢ 1 Re
P/2 _i2717nx
= — J e P dx
—P/2

30/9/2014 Astronomical Observing Techniques: Fourier 12



Fourier Transformation

Functions f(x) and F(s) are Fourier pairs

F(s)= +jiof(x) e dx

f(x)= TF(S) €™ ds

* X, Scan be scalar or vector (xs becomes scalar product)
* Fourier transform is reciprocal (exponent sign changes)
* exponent sign and normalization are not well defined



Fourier Transform Properties: Symmetry

f(x) = Jeven (x) + foud (x)
foven (=X) = froen (%) fraa (=%) == fraa (%)

s F(5) =2 [ o (x)cos(2mas

—1 ZTfodd (x)sin(27wxs )dx

If f(x) is real, the even part of f(x) corresponds to the
(even) real part of the Fourier transform F(s), and the odd
part of f(x) corresponds to the (odd) imaginary part of F(s).



Fourier Transform Symmetries

flx)

Real
Imaginary
Real even
X
Real odd

Imag even

Imag odd

-l

E(s)

Real
Imaginary
Real even
5

Imag odd

Imag even\%

Real odd




Fourier Transform Symmetries
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Fourier Transform Properties: Similarity

Expansion of function f(x) causes contraction of its transform F(s):
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Other Fourier Transform Properties
LINEARITY: Flas)=a-F(s)

TRANSLATION:  f(x—a) & e ™™ F(s)

DERIVATIVE: 3"8f5x) PN (i2ﬂs)”F(s) f /\
X

INTEGRAL: / o

[ f(x)ox o (i27s)" F(s)+c8(s)  — ~_

N
e < v (N /DN
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Important 1-D Fourier Pairs

/

_/

X
sinc x I1(s)
\/ ) |
_ sinc2x Afs)
\. . /\
H() L s
] | |
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Important 1-D Fourier Pairs

/i\cos TX |> 1(s)
| I L/ l T t
/ \/
B sin mx ily(s)
/\ ¢
L —
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Special 1-D Pairs (1): Box Function

I1(x)
Box function: :
( a a
(x) I for -—<x<—
I — [=+ ) ) . '
a 0 elsewhere -a a
sin(zs)
With the Fourier pairs H(X) - =sInc (S)
V[AY
sinc (as)

and using the similarity relation:

n(ijﬁ\a\.smc (as) / \ _

a \_/ s

-a a S
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Dirac Comb

Dirac’s delta “function”:
f(x)=68(x)= j e’ ds — FT{5(X)} =

—00

Dirac comb: infinite series of delta functions
spaced at intervals of T:

Fourier

ET(x):iﬁ(x_kT _ _2 i27nx/T

series
k=—c0 J1=—o00

* Fourier transform of Dirac comb is also a
Dirac comb

* Dirac comb is also called impulse train or
sampling function
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Nyquist-Shannon Theorem
Sampling: signal at discrete values of x:  f(x)— f(x )E[Axx]

Interval between two successive readings is sampling rate

Critical sampling given by Nyquist-Shannon theorem

Given f(x), its Fourier Transform F(s)
with bounded support [-s

max’ max] '

Sampled distribution of the form

 x
£l)= ()=
with a sampling rate of Ax=1/(2s,__,)

is enough to reconstruct f(x) for all x.
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Oversampling

Undersampling

Sampling

Sampling rate above critical sampling rate:
- redundant measurements
- often lowering the S/N

Sampling rate below critical sampling rate:

- signal contains frequencies higher than 1/(2s_.,)
- source signal cannot be determined after sampling
- loss of fine details

- must apply low-pass filter before sampling

H = Sample Aaba 2 M&S
» = Sample Rate 20 MS/s



Aliasing

I l

| 34 ““ il

| | |
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* unresolved, high frequencies beat with measured frequencies

e produce spurious components in frequency domain below Nyquist
frequency

* may give rise to major problems and uncertainties in the
determination of original signal
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Bessel Functions

Bessel functions are canonical solutions
y(x) of Bessel's differential equation:

X %+x%+(x —n )y=0

for an arbitrary real or complex number n, the order of the Bessel

function.
2k+n
m <—1>’f(ﬂ

k! (k+n)!

Solutions = Bessel Functions:
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Bessel Functions J, J,, J,
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Special 2-D Pairs (1): Box Function

1 for r<l
2-D box function with r? = x? + y?: T L.
2 0 for r=>1
J 27w
Fourier Transform: H[gj@ 1( & ) (15t order Bessel function J,)
0,
Telescope Aperture: Focal plane:

! @) ,(2 naw)

Larger telescopes produce smaIIer Point Spread Functions (PSFs)!
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Special 2-D Pairs (2): Gauss Function

2-D Gauss function with r? = x? + y?:

5 5 similarity — ;z(
e

a exp [__ mrz (122 + ,02)]

Gauss function Fourier transforms into Gauss function
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28~ t, 00+ o+ 4,0
°
v u
Important 2-D Fourier
P [ J
cos [2n(x cos 8+ y sin 8)] - alrs
v -] u
exp [-7(x + y)] exp [-7(u? +v?))]
y x v u
cos 27x cos 27y
y o . Tv uT
T SiI‘lC2 X sinc Yy A(U)H(U)
“-l(1 Yy X v u
y x v u
M(y) 5(x)
x2 2
ex [-—77' 7 Aa exp [-7(A2u? + a?v?)]
(x,y) Py (AZ “2)] x v u
y x
sinc x sinc y 2w, 1 8(y) 8(w
y X v u Y ¥ ¢ "
sinc? x sinc? v AWAR H(v)
y * v U v % » Y
cos 7y 8(x)
30/9/2014 Astronomical Observing Techniques: Fourier 30




PUPIL (Telescope) & IMAGE (PSFs)

Amp{V(u,v)}
d Function _; Constant
Gaussian Gaussian




PUPIL (Telescope) & IMAGE (PSFs) (2)

Amp{V(u,v)}
- elliptical
Gaussian

—_\
- \_ . -

elliptical
Gaussian

Disk



Example 1:

central obscuration,
monolithic mirror (pupil)
no support-spiders

39m telescope pupil = FT = image of a point source (iogscale)




Example 2:
central obscuration,

monolithic mirror (pupil)
with 6 support-spiders

39m telescope pupil - FT =image of a p; int source (iog scale)

£

F




Example 3:
central obscuration,

segmented mirror (pupil)
no support-spiders

39m telescope pupil > FT = image of a point SOUICE " (log scale)
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Example 4:
central obscuration,

segmented mirror (pupil)
with 6 support-spiders

39m telescope pupil k) = image of a pi




Convolution

Convolution of two functions,

f*g, is integral of product of |
functions after one is reversed yaan
and shifted: ' ~

he)= 1 ()* 2(x)= [ £u)-gle—u) /




Convolution: Example

I I | [ T I I | |
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Convolution: Applications

Example:

flx) : star f(x)* glx)= hx)
g(x) : telescope transfer function

Then h(x) is the point spread function (PSF) of the system

Example:

Convolution of f(x) with a smooth kernel g(x) can be used to
smoothen f(x)

8(x)
f)

Example:

The inverse step (deconvolution) can be used to “disentangle” two components,
e.g., removing the spherical aberration of a telescope.
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Star cluster observed with HST/NICMOS




Deconvolution Example




Cross-Correlation

Cross-correlation (or covariance) is measure of similarity of two
waveforms as function of time-lag between them.

k(x)= £( Jf g(x+u)du

Difference between cross-correlation and convolution:
e Convolution reverses the signal (*-’ sign)
* Cross-correlation shifts the signal and multiplies it with another

S ()

J\ gu + x)
/Ammﬁn% u

\
jf(u) g(u + x) du

Interpretation: By how much (x) must g(u) be shifted to match f(u)?
Answer given by maximum of k(x)



Cross-Correlation in Fourier Space
f(x) < F(s)
g(x) = G(s)
h(x)=f(x)®g(x) = F(s)- G (s)=H(s)

In contrast to convolution, in general

J®g#gXf
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Convolution and Cross-Correlation

The cross-correlation is a
measure of similarity of two
waveforms as a function of
an offset (e.g., a time-lag)
between them.

k(x)= jf

x-I—u

Example: search a long

duration signal for a shorter,

known feature.

The convolution is similar in
nature to the cross-correlation
but the convolution first
reverses the signal ("mirrors
the function") prior to
calculating the overlap.

h<x>:f<x)*g<x>=ff<u> 2

Example: the measured signal
is the intrinsic signal convolved
with the response function

Whereas convolution involves reversing a signal, then shifting
it and multiplying by another signal, correlation only involves
shifting it and multiplying (no reversing).



Auto-Correlation Theorem

Auto-correlation is cross-correlation of function with itself:

k(x)=f Jf f(x+u)du




106

5%10°

Auto-Correlation: Application

Auto-correlation can
find repeating
patterns

Can be useful to find
periodic signal
hidden in noise

vvvvvvvvvvvvvvvvvvvvvv




Speckle Interferometry

* average auto-
correlation of
short-exposure
Images

* preserves high-
resolution
information

daverage cross-correlation

perfect image




Power Spectrum

Power Spectrum S; of f(x) (or the Power Spectral Density, PSD)
describes how the power of a signal is distributed with frequency.

Power is often defined as squared value of signal:

Sf (S) = ‘F(SY

Power spectrum is Fourier transform of autocorrelation and
indicates what frequencies carry most of the energy.

400
Total energy of a signal is: JSf (S)dS

Applications: spectrum analyzers, calorimeters of light sources, ...




Parseval’s Theorem

Parseval’s theorem (or Rayleigh’s Energy Theorem) states that the
sum of the square of a function is the same as the sum of the
square of the Fourier transform:

T‘f(x)‘zdx = T‘F(S)‘zdS

Interpretation: Total energy contained in signal f(x), summed over
all x is equal to total energy of signal’s Fourier transform F(s)
summed over all frequencies s.




Wiener-Khinchin Theorem

Wiener—Khinchin theorem states that the power spectral density S;
of a function f(x) is the Fourier transform of its auto-correlation
function:

F(s) = FT{f(x)® f(x)}
7
F(s)-F(s)

Applications: E.g. in the analysis of linear time-invariant systems,
when the inputs and outputs are not square integrable, i.e. their
Fourier transforms do not exist.
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Top left: signal —is | just random noise?

Top right: power spectrum: high-frequency components dominate the signal

Bottom left: power spectrum expanded in X and Y to emphasize the low-frequency region.
Then: use Fourier filter function to delete all harmonics higher than 20

Boticm ight: reconstructed signalr>osignalcontainstwa sandsiat x=200 and x=300.



Fourier Relation Summary

Convlution h(x)=f(X)*g(X)=Tf(u) olx—u)du
Cross-correlation k(x)= _[f glx+u)
Auto-correlation k(x)= J. fu)- f(x+u)du
Power spectrum S ; S — ‘ F SX

Parseval’s theorem T\ fx) dx = T\F(s){zd

Wiener-Khinchin

theorem |F(S)‘2 =FT{f(x)®f(x)}=F(s) r



