Astronomical Observing Techniques

Lecture 2: Earth Atmosphere

Christoph U. Keller keller@strw.leidenuniv.nl

Outline

- 1. Atmospheric Structure
- 2. Absorption
- 3. Emission
- 4. Scattering, Refraction & Dispersion
- 5. Turbulence & Seeing

1. Atmospheric Structure

- Assumptions:
 - atmosphere in local radiative equilibrium
 - homogeneous composition
- Hydrostatic equilibrium structure described by:
 - altitude z
 - temperature T(z)
 - density $\rho(z)$
- Pressure P(z) described by: $P(z) = P_0 e^{-\frac{\zeta}{H}}$, $H = \frac{kT}{\mu g}$

 $H = \text{scale height ($^{\sim}$ 8km)}, \mu = \text{mean molecular weight}$

Vertical Profile

www.geog.ucsb.edu/~joel/g110_w08/lecture_notes/stability/agburt01_09.jpg

lonosphere

Mixing Ratio of Atmospheric Gases

ruc.noaa.gov/AMB_Publications_bj/2009%20Schlatter_Atmospheric%20Composition%20and%20Vertical %20Structure eae319MS-1.pdf

Atmospheric Composition

- O₂, N₂ main constituents, constant proportions up to 100 km (78.1% N₂, 20.9% O₂)
- Ozone mainly absorbs in UV
 - distribution depends on latitude, season
 - maximum concentration around 16 km height
- CO₂ important component for (mid)IR absorption
 - mixing independent of altitude
- Ions varies strongly with altitude and solar activity
 - relevant > 60km (reactions with UV photons)

$$O_2 + h\nu \rightarrow O_2^{+*} + e^-$$
 and $O_2 + h\nu \rightarrow O^+ + O + e^-$

- electron showers along magnetic fields cause Aurora
- at 100 300 km height: $n_e \sim 10^5 10^6$ cm⁻³
- H₂O highly variable, very strong absorption bands

2. Absorption

- Atomic, molecular transitions -> absorption features:
 - pure rotational molecular transitions: H₂O, CO₂, O₃
 - rotation-vibrational molecular transitions: CO₂, NO, CO
 - electronic molecular transitions: CH₄, CO, H₂O, O₂, O₃, OH
 - electronic atomic transitions: O, N, ...
- Attenuation at altitude z_0 : $I(z_0) = I_0(\infty) \cdot \exp\left[-\frac{1}{\cos \theta} \sum_i \tau_i(\lambda, z_0)\right]$
- for i absorbing species with optical depth τ_i

$$\tau_i(\lambda, z_0) = \int_{z_0} r_i(z) \rho_0(z) \kappa_i(\lambda) dz$$

 θ is the zenith distance; κ is the absorption coefficient; ρ_0 is the mass density of air, and $r_i(z)$ the mixing ratio

www.pvlighthouse.com.au/resources/ courses/altermatt/The%20Solar %20Spectrum/figures/Sources%20of %20absorption%20in%20AM1-5d.png

Atmospheric Bands

Two cases of absorption:

total absorption partial absorption

- → atmospheric transmission windows
- → reduced transmission due to narrow telluric lines of terrestrial origin

Atmospheric opacity defines atmospheric transmission bands (wavelengths accessible to ground-based observations)

Ground based astronomy is limited to visible, near/mid-IR and radio wavelengths. Space astronomy provides access to γ-rays, X-rays, UV, FIR, sub-mm

UV Absorption

ruc.noaa.gov/AMB_Publications_bj/2009%20Schlatter_Atmospheric%20Composition%20and%20Vertical%20Structure_eae319MS-1.pdf

Absorption by Water Vapour

- Water vapor strong function of *T* and *z*
- Precipitable water
 vapor (PWV) = depth
 of water in column of
 atmosphere (if liquid)
- PWV w above altitude z₀

$$w(z_0) = \int_{z_0}^{\infty} N_{H_2O} dz ,$$

$$N_{H_2O}$$
 $\left[\text{m}^{-3} \right] = 4.3 \times 10^{25} \frac{P}{P_0} \frac{T}{T_0} r(z)$

Absorption by Water Vapour

Scale height for PWV is only ~3 km → observatories at high altitudes

0.1 mm PWV, 0.4 mm PWV, 1.0 mm PWV, 3.0 mm PWV

FIR/sub-mm astronomy is also possible from airplanes, e.g. the Stratospheric Observatory for Infrared Astronomy (SOFIA)

3. Fluorescent Atmospheric Emission

- Fluorenscence = recombination of electrons with ions
- Recombination probability low; takes several hours

 part of night
 - Produces both continuum + line emission = airglow
 - Occurs mainly at ~ 100 km height
 - Main sources of emission: O I, Na I, O₂, OH (←NIR), H
- Emission intensity measured in Rayleigh:

1 Rayleigh =
$$10^6$$
 photons cm⁻² s⁻¹ sr⁻¹ = $\frac{1.58 \cdot 10^{-11}}{\lambda [\text{nm}]}$ W cm⁻² sr⁻¹

Airglow

Wavelength (Angstroms)

http://www.ing.iac.es/astronomy/observing/conditions/skybr/skybr.html

NASA/Dan Burbank - http://spaceflight.nasa.gov/gallery/images/station/crew-30/html/iss030e015472.html

3. Thermal Atmospheric Emission

- Atmosphere in local thermodynamic equilibrium (LTE)
 <60 km, i.e. excitation levels are thermally populated
- Full radiative transfer calculation needed
- For $\tau << 1$ use approximation:

$$I_{\lambda}(z) = \frac{\tau_{\lambda} B_{\lambda}(T_{\text{mean}})}{\cos \theta}$$

 $B_{\lambda}(T_{mean})$: Planck function at mean temperature T_{mean} of atmosphere

For T = 250 K and
$$\theta$$
 = 0

Spectral band (cf. Sect. 3.3)	L	M	N	Q
Mean wavelength [µm]	3.4	5.0	10.2	21.0
Mean optical depth $ au$	0.15	0.3	0.08	0.3
Magnitude [arcsec ⁻²]	8.1	2.0	-2.1	-5.8
Intensity [Jy arcsec ⁻²] ^a	0.16	22.5	250	2100

Fluorescent and Thermal Emission

Emission from Space

www.ipac.caltech.edu/Outreach/Gallery/IRAS/allsky.html

Total Emission in Near-Infrared

Molecular Scattering

 Molecular scattering in visible and NIR is Rayleigh scattering; scattering cross-section given by:

$$\sigma_R(\lambda) = \frac{8\pi^3}{3} \frac{\left(n^2 - 1\right)^2}{N^2 \lambda^4}$$

where N is the number of molecules per unit volume and n is the refractive index of air $(n-1 \sim 8.10^{-5} P/T)$.

Rayleigh scattering is not isotropic:

$$I_{scattered} = I_0 \frac{3}{16\pi} \sigma_R (1 + \cos^2 \theta) d\omega$$

Aerosol Scattering

- Aerosols (sea salt, hydrocarbons, volcanic dust) much bigger than air molecules
 Rayleigh scattering does not apply
- Aerosol scattering described by Mie theory (classical electrodynamics, "scattering efficiency factor" Q):

$$Q_{\text{scattering}} = \frac{\sigma_{M}}{\pi a^{2}} = \frac{\text{scattering cross section}}{\text{geometrical cross section}}$$

- $a \gg \lambda$: $Q_{\text{scattering}} \sim Q_{\text{absorption}}$
 - scattered power equal to absorbed power
 - effective cross section is twice the geometrical size
- $a \sim \lambda$: $Q_s \sim 1/\lambda$ (for dielectric spheres):
 - scattered intensity goes with 1/λ

Refraction

Atmospheric Refraction

Atmospheric refraction -> apparent location of source significantly altered (up to 0.5 degree near horizon) → telescope pointing must correct for refraction

Refraction

$$R = (n(\lambda) - 1) \tan \theta$$

Atmospheric Refraction

Refractive index of air depends on wavelength λ :

$$[n(\lambda)-1]\times 10^6 = 64.328 + \frac{29498.1}{146 - \frac{1}{2^2}} + \frac{255.4}{41 - \frac{1}{2^2}}$$

T ~ 290K, λ_0 in [µm])

(dry air, 1 atm pressure, T \sim 290K, λ_0 in [μ m])

Green Flash

Atmospheric Dispersion

http://www.skyinspector.co.uk/Atm-Dispersion-Corrector-ADC(2587060).htm

Atmospheric Dispersion

Dispersion: Elongation of points in broadband filters due to $n(\lambda)$ [\rightarrow "rainbow"]. The magnitude of the dispersion is a strong function of airmass and wavelength.

No problem if dispersion $< \lambda/D \leftarrow$ o.k. for small or seeing limited telescopes, but big problem for large, diffraction limited telescopes

Atmospheric Dispersion Corrector

To counterbalance atmospheric dispersion use:

- a refractive element (e.g., prism)
- a second prism (different material with different dispersion) to maintain the optical axis

3. use a second (identical) double prism assembly to adjust the strength of the correction for different

Benefits of ADC

http://www.skyinspector.co.uk/Atm-Dispersion-Corrector-ADC(2587060).htm

Seeing

5. Atmospheric Turbulence

Komogorov Turbulence

- kinetic energy of large scale ($^{\sim}L$) movements transferred to smaller and smaller scales, down to minimum scale length I_0 , where energy is dissipated by viscous friction
- local velocity field decomposed into spatial harmonics of wave vector κ (Fourier domain)
- $1/\kappa$ is length scale under consideration
- mean spectrum of kinetic energy (Kolmogorov spectrum)

$$E(\kappa) \propto \kappa^{-5/3}$$

• I_0 = inner scale, L_0 = outer scale with

$$L_0^{-1} < \kappa < l_0^{-1}$$

Air Refractive Index Fluctuations

- Winds mix layers of different temperature →
 fluctuations of temperature T → fluctuations of density
 ρ→ fluctuations of refractive index n
- 1K temperature difference changes n by 1×10⁻⁶
- variation of 0.01K along path of 10km: $10^4 \, \text{m} \times 10^{-8} = 10^{-4} \, \text{m} = 100$ waves at 1µm
- refractive index of water vapour is less than that of air
 - moist air has smaller refractive index

Index Fluctuations with Altitude

- $C_n^2(h)\cdot\Delta h$ is a measure for index fluctuation contributions from layer Δh at h
- typical value: $C_n^2 \cdot \Delta h \sim 4 \cdot 10^{-13} \text{ cm}^{1/3}$ for a 3 km altitude layer
- turbulence often occurs in layers

Median seeing conditions on Mauna Kea are taken to be $r_o \sim 0.23$ meters at 0.55 microns. The 10% best seeing conditions are taken to be $r_o \sim 0.40$ meters. Figure taken from a paper by Ellerbroek and Tyler (1997).

Atmosphere and Image Quality

PHARO LGS Ks image 500s integ., 40" FOV, 150 mas FWHM

WIRO H image Kobulnicky et al. 2005, AJ 129, 239-250

Aspects of Image Degradation

Scintillation

energy received by pupil varies in time (stars flicker)

Image Motion

average slope of wavefront at pupil varies ("tip-tilt", stars move around)

Image Blurring

wavefront is not
flat ("seeing")

Fried Parameter r₀

• radius of spatial coherence area (of wavefront) given by Fried parameter r_0 :

$$r_0(\lambda) = 0.185 \lambda^{6/5} \left[\int_0^\infty C_n^2(z) dz \right]^{-3/5}$$

- r₀ increases as 6/5 power of wavelength
- r_0 decreases as -3/5 power of air mass
- r₀ is average scale over which rms optical phase distortion is 1 rad
- angle $\Delta\theta = \lambda/r_0$ is the seeing in arcsec
- seeing is roughly equivalent to FWHM of long-exposure image of a point source (Point Spread Function)

Short Exposure through Turbulence

Random intensity distribution of speckles in focal plane

Observed image given by convolution of I_0 (object without seeing) with Point Spread Function (PSF) T(θ ,t):

$$I(\theta,t) = I_0(\theta) * T(\theta,t)$$

Speckle Interferometry

Example: Real-time bispectrum speckle interferometry: 76 mas resolution. http://www3.mpifr-bonn.mpg.de/div/ir-interferometry/movie/speckle/specklemovie.html

Different but related techniques, e.g., Shift-and-Add, Lucky Imaging, Bispectrum analysis, Aperture masking, ...

Turbulence Correlation Time τ_c

Wind map showing likelihood (0 to 1) of a layer of frozen flow existing at a specific velocity vector (Poyneer et al. 2009, J. Opt. Soc. Am. A 26, pp 833

- 1. Turbulence does not change arbitrarily fast but with correlation time or coherence time τ_c
- Often turbulent time scales >> time for the turbulent medium to pass the telescope aperture (wind speed) → frozen turbulence

Seeing: r_0 , τ_0 , θ_0

• Fried parameter r_0 : average turbulent scale over which RMS optical phase distortion is 1 rad

$$r_0(\lambda) = 0.185 \lambda^{6/5} \left[\int_0^\infty C_n^2(z) dz \right]^{-3/5}$$

- r_0 increases as $\lambda^{6/5}$
- Seeing $\Delta\theta$ at good sites at 0.5 μ m: 10 30 cm

$$\Delta\theta = \frac{\lambda}{r_0} \sim \lambda^{-1/5}$$

- atmospheric coherence (or Greenwood delay) time: maximum time delay for RMS wavefront error to be $au_0=0.314 rac{r_0}{\overline{v}}$ less than 1 rad (v is mean propagation velocity)
- Isoplanatic angle θ_0 : angle over which RMS wavefront error is smaller than 1 rad

$$\theta_0 = 0.314 \cos \zeta \, \frac{r_0}{\overline{h}}$$

Long Exposure through Turbulence

• $t_{int} >> \tau_c -> image$ is mean of instantaneous intensity:

$$I(\theta) = \langle I_0(\theta) * T(\theta,t) \rangle = I_0(\theta) * \langle T(\theta,t) \rangle$$

- long-exposure image is smeared or spatially filtered (loss of high spatial frequencies)
- angular resolution $\sim \lambda/r_0$ instead of $\sim \lambda/D$
- As long as D > r₀, bigger telescopes will not provide sharper images