Astronomical Observing Techniques

Lecture 1: Black Bodies in Space

Christoph U. Keller keller@strw.leidenuniv.nl

Outline

- 1. Black Body Radiation
- 2. Astronomical Magnitudes
- 3. Point Sources and Extended Sources

Blackbody Radiation

Kirchhoff (1860): black body completely absorbs all incident rays: no reflection, no transmission for all wavelengths and for all angles of incidence.

Cavity at fixed T, thermal equilibrium

Incoming radiation is "thermalized" by continuous absorption and re-emission of radiation by cavity wall

Small hole → escaping radiation will approximate black-body radiation independent of properties of cavity or hole.

Kirchhoff's Law

Conservation of power requires:

$$\alpha + \rho + \tau = 1$$

with $\alpha = absorptivity$, $\rho = reflectivity$, $\tau = transmissivity$

cavity in thermal equilibrium with completely opaque sides:

$$\left. egin{aligned} arepsilon = 1 -
ho \ lpha +
ho + au = 1 \ au = 0 \end{aligned}
ight. \qquad arepsilon = ext{emissivity}$$

Kirchhoff's law, applies to perfect black body

Radiator with $\varepsilon = \varepsilon(\lambda) < 1$ often called grey body

Definition of a Black Body

- Black body (BB) is idealized object that absorbs all EM radiation
- Cold (T~OK) BBs are black (no emitted or reflected light)
- At T > 0 K BBs absorb and re-emit characteristic EM spectrum

Many astronomical sources emit close to a black body.

Example: COBE measurement of

Example: COBE measurement of the cosmic microwave background

Solar Spectrum

http://en.wikipedia.org/wiki/Sunlight#mediaviewer/File:Solar_Spectrum.png

Black Body Emission

Specific intensity I_{v} of blackbody given by Planck's law:

$$I_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\exp(\frac{h\nu}{kT}) - 1}$$
 in units of [W m⁻² sr⁻¹ Hz⁻¹]

In wavelength units:

$$I_{\lambda}(T) = \frac{2hc^{2}}{\lambda^{5}} \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right) - 1} \quad \text{in units of [W m-3 sr-1]}$$

Conversion of frequency ⇔ wavelength units:

$$dv = \frac{c}{\lambda^2} d\lambda$$
 or $d\lambda = \frac{c}{v^2} dv$

Useful Approximations

Planck:

$$I_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}$$

High frequencies $(h\nu >> kT)$ \rightarrow Wien approximation:

$$I_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \exp\left(-\frac{h\nu}{kT}\right)$$

Low frequencies (hv << kT) → Rayleigh-Jeans approximation:

$$I_{\nu}(T) \approx \frac{2\nu^2}{c^2} kT = \frac{2kT}{\lambda^2}$$

Emission \Leftrightarrow **Power** \Leftrightarrow **Temperature**

Total radiated power per unit surface (radiant exitance) is proportional to fourth power of temperature T:

$$\iint_{\Omega, V} I_{\nu}(T) d\nu d\Omega = M = \sigma T^{4}$$

 $\sigma = 5.67 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ (Stefan-Boltzmann constant)

Assuming BB radiation, astronomers often specify the emission from objects via their effective temperature.

Effective Temperatures

Temperature corresponding to maximum specific intensity given by Wien's displacement law:

$$\frac{c}{v_{\text{max}}}T = 5.096 \cdot 10^{-3} \text{ mK}$$
 or $\lambda_{\text{max}}T = 2.98 \cdot 10^{-3} \text{ mK}$

Cooler BBs have peak emission (effective temperatures) at longer wavelengths and at lower

Grey Bodies

Many emitters close to but not perfect black bodies. With wavelength-dependent emissivity ε <1:

$$I_{\lambda}(T) = \varepsilon(\lambda) \cdot \frac{2hc^{2}}{\lambda^{5}} \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right) - 1}$$

Example: the Sun (like many stars)

Brightness Temperature

Brightness temperature is temperature a perfect black body would have to reproduce the observed intensity of a grey body object at frequency *v*.

For low frequencies ($h\nu \ll kT$):

$$T_b = \varepsilon(v) \cdot T = \varepsilon(v) \cdot \frac{c^2}{2kv^2} I_v$$

Only for perfect BBs is T_b the same for all frequencies.

Lambert's Cosine Law

Lambert's cosine law: radiant intensity from an ideal, diffusively reflecting surface is directly proportional to the cosine of the angle θ between the surface normal and the observer.

Johann Heinrich Lambert (1728 – 1777)

Lambertian Emitters

Radiance of Lambertian emitters is independent of direction θ of

observation (i.e., isotropic).

Two effects that cancel each other:

- 1. Lambert's cosine law \rightarrow radiant intensity and $d\Omega$ are reduced by $\cos(\theta)$
- 2. Emitting surface area dA for a given $d\Omega$ is increased by $\cos^{-1}(\theta)$

Perfect black bodies are Lambertian emitters!

The Sun: Lambertian Emitter?

The Moon: Lambertian Scatterer?

Summary of Radiometric Quantities

Name	Symbol	Unit	Definition	Equation
Spectral radiance or specific intensity	L_{ν} , I_{ν}	$W m^{-2} Hz^{-1} sr^{-1}$	Power leaving unit projected surface area into unit solid angle and unit $\Delta \nu$	
Spectral radiance or specific intensity	L_{λ} , I_{λ}	$W m^{-3} sr^{-1}$	Power leaving unit projected surface area into unit solid angle and unit $\Delta\lambda$	
Radiance <i>or</i> Intensity	L , I	$W m^{-2} sr^{-1}$	Spectral radiance integrated over spectral bandwidth	$L = \int L_{\nu} d\nu$
Radiant exitance	М	$W m^{-2}$	Total power emitted per unit surface area	$M = \int L(\theta) d\Omega$
Flux or luminosity	Φ , L	W	Total power emitted by a source of surface area A	$\Phi = \int M \ dA$
Spectral irradiance or flux density	L_{ν} , F_{ν} , I_{ν}	$W m^{-2} Hz^{-1} *$	Power received at a unit surface element per unit $\Delta \nu$	
Spectral irradiance or flux density	L_{λ} , F_{λ} , I_{λ}	W m ^{−3} *	Power received at a unit surface element per unit $\Delta\lambda$	
Irradiance	Е	W m ^{−2}	Power received at a unit surface element	$E = \frac{\int M dA}{4\pi r^2}$

^{*} 10^{-26} W m⁻² Hz⁻¹ = 10^{-23} erg s⁻¹cm⁻² Hz⁻¹ is called 1 Jansky

Flux and Intensity

- Energy flux F of star = $\pi \times \text{intensity } I$ averaged over disk
- Stellar disk average in polar coordinates r, φ

$$\overline{I} = \frac{1}{\pi R^2} \int_0^{2\pi} \int_0^R I(r) r \, dr \, d\varphi$$

• Substitute r with $R\sin\theta$, $\mu=\cos\theta$

$$\overline{I} = 2 \int_{0}^{\pi/2} I(\theta) \sin \theta \cos \theta d\theta = 2 \int_{0}^{1} I \mu d\mu$$

$$F = \int_0^{2\pi} \int_0^{\pi/2} I(\theta) \cos \theta \sin \theta d\theta d\phi = 2\pi \int_0^1 I \mu d\mu$$

Optical Astronomers use 'Magnitudes'

Origins in Greek classification of stars according to their visual brightness. Brightest stars were m = 1, faintest detected with bare eye were m = 6.

Later formalized by Pogson (1856): 1^{st} mag $\sim 100 \times 6^{th}$ mag

Magnitude	Example	#stars brighter
-27	Sun	
-13	Full moon	
-5	Venus	
0	Vega	4
2	Polaris	48
3.4	Andromeda	250
6	Limit of naked eye	4800
10	Limit of good binoculars	
14	Pluto	
27	Visible light limit of 8m telescopes	

Apparent Magnitude

Apparent magnitude is *relative* measure of monochromatic flux density F_{λ} of a source:

$$m_{\lambda} - M_0 = -2.5 \cdot \log \left(\frac{F_{\lambda}}{F_0} \right)$$

 M_0 defines reference point (usually magnitude zero).

In practice, measurements through transmission filter $T(\lambda)$ that defines bandwidth:

$$m_{\lambda} - M = -2.5 \log \int_{0}^{\infty} T(\lambda) F_{\lambda} d\lambda + 2.5 \log \int_{0}^{\infty} T(\lambda) d\lambda$$

Photometric Systems

Filters usually matched to atmospheric transmission

- → different observatories = different filters
- → many photometric systems:

AB and STMAG Systems

For given flux density F_v , AB magnitude defined as:

$$m(AB) = -2.5 \cdot \log F_v - 48.60$$

- object with constant flux per unit frequency interval has zero color
- zero point defined to match zero points of Johnson V-band
- used by SDSS and GALEX
- F_{ν} in units of [erg s⁻¹ cm² Hz⁻¹]

STMAG system defined such that object with constant flux per unit wavelength interval has zero color.

•STMAGs are used by the HST photometry packages

Color Indices

Color index = difference of magnitudes at different wavebands = ratio of fluxes at different wavelengths

 Color indices of AOV star (Vega) about zero longward of V

• Color indices of blackbody in Rayleigh-16 Jeans tail are:

$$B-V = -0.46$$

$$U-B = -1.33$$

$$V-R = V-I = ... = V-N = 0.0$$

Color-magnitude diagram for a typical globular cluster, M15.

Absolute Magnitude

Absolute magnitude = apparent magnitude of source if it were at

distance D = 10 parsecs:

$$M = m + 5 - 5\log D$$

 $M_{Sun} = 4.83$ (V); $M_{Milky Way} = -20.5 \rightarrow \Delta mag = 25.3 \rightarrow \Delta lumi = 14$ billion L_o

However, interstellar extinction *E* or absorption A affects the apparent magnitudes

$$E(B-V) = A(B) - A(V) = (B-V)_{\text{observed}} - (B-V)_{\text{intrinsic}}$$

Need to include absorption to obtain correct absolute magnitude:

$$M = m + 5 - 5\log D - A$$

Bolometric Magnitude

Bolometric magnitude is luminosity expressed in magnitude units = integral of monochromatic flux over all wavelengths:

$$M_{bol} = -2.5 \cdot \log \frac{\int_{0}^{\infty} F(\lambda) d\lambda}{F_{bol}}$$
; $F_{bol} = 2.52 \cdot 10^{-8} \frac{W}{m^{2}}$

If source radiates isotropically:

$$M_{bol} = -0.25 + 5 \cdot \log D - 2.5 \cdot \log \frac{L}{L_{\Theta}}$$
 ; $L_{\Theta} = 3.827 \cdot 10^{26} \text{ W}$

Bolometric magnitude can also be derived from visual magnitude plus a bolometric correction BC: $M_{bol} = M_V + BC$

BC is large for stars that have a peak emission very different from the Sun's.

Photometric Systems and Conversions

Name	$\lambda_0 \; [\mu \mathrm{m}]$	$\Delta \lambda_0 \; [\mu \mathrm{m}]$	$F_{\lambda} [W m^{-2} \mu m^{-1}]$	F [Jy]	
U	0.36	0.068	4.35×10^{-8}	1 880	Ultraviolet
В	0.44	0.098	7.20×10^{-8}	4 650	Blue
V	0.55	0.089	3.92×10^{-8}	3 950	Visible
R	0.70	0.22	1.76×10^{-8}	2870	Red
I	0.90	0.24	8.3×10^{-9}	2240	Infrared
J	1.25	0.30	3.4×10^{-9}	1 770	Infrared
H	1.65	0.35	7×10^{-10}	636	Infrared
K	2.20	0.40	3.9×10^{-10}	629	Infrared
L	3.40	0.55	8.1×10^{-11}	312	Infrared
M	5.0	0.3	2.2×10^{-11}	183	Infrared
N	10.2	5	1.23×10^{-12}	43	Infrared
Q	21.0	8	6.8×10^{-14}	10	Infrared

 $^{1 \}text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$.

Point Sources and Extended Sources

Point sources = spatially unresolved

Brightness ~ 1 / distance²

Size given by observing conditions

Extended sources = well resolved

Surface brightness ~ const(distance)

Brightness ~ 1/d² and size ~ 1/d²

Surface brightness [mag/arcsec²] is constant with distance!

Calculating Surface Brightness

To describe the surface brightness of extended objects one uses units of mag/sr or mag/arcsec².

Surface brightness of area A in magnitudes:

$$S = m + 2.5 \cdot \log_{10} A$$

Observed surface brightness [mag/arcsec²] converted into physical surface brightness units:

$$S[\text{mag/arcsec}^2] = M_{\Theta} + 21.572 - 2.5 \cdot \log_{10} S[L_{\Theta}/\text{pc}^2]$$

with
$$L_{\Theta} = 3.839 \times 10^{26} \text{ W} = 3.839 \times 10^{33} \text{ erg s}^{-1}$$