Astronomische Waarneemtechnieken (Astronomical Observing Techniques) Based on lectures by Bernhard Brandl

Lecture 11: Spectrographs

- 1. Spectral Lines
- 2. Optical Spectrograph
- 3. Gratings and Filters
- 4. Advanced Spectrometers
- 5. Spectral Line Analysis

Origins of Spectral Lines

- Electronic transitions due to electron orbit changes (→ visible, near-infrared).
- Electronic fine structure transitions due to coupling of electron spin and orbital angular momentum (\rightarrow far-IR, radio).
- Electronic hyperfine structure transitions due to interaction of nuclear and electron spins (→ radio, 21-cm line).
- Molecular transitions such as <u>rotational</u> and <u>vibrational</u> transitions (\rightarrow near-far-IR).
- Nuclear lines due to nuclear excitations or electronpositron annihilation (\rightarrow MeV range)
- Transitions in solids (ices) due to vibrations → phonons (→ near-far-IR).

Continuous, Emission and Absorption Spectra

Continuous spectrum

Emission line spectrum

Absorption line spectrum

Plot courtesy: SDSS

Spectral Line Maps

Radiogalaxy 3C435A radiogalaxy 3C435A Plot courtesy: Universite de Lyon, Recent TIGER Scientific Results

Ingredients of an Optical Spectrograph

- 1. A Slit (onto which the light of the telescope is focused)
- 2. A Collimator (diverging \rightarrow parallel/collimated light)
- 3. A Disperser (to spectrally disperse the light)
- 4. A Camera (to focus the spectrum onto the detector)

Long Slit Spectra

Main Characteristics of a Spectrograph

- Spectral resolution element $\Delta \lambda$
- Spectral resolution (or resolving power): $R=\lambda/\Delta\lambda$
- Instrumental profile $P(\Lambda)$ broadens a theoretically infinitely narrow line to the observed line width:

$$I_0(\lambda) = \delta(\lambda - \lambda_0) \quad I(\lambda) = P(\lambda) * I_0(\lambda)$$

- Usually the instrumental profile determines the spectral resolution element, which is typically Nyquist-sampled
- Transmission determines the throughput $\eta(\Lambda)$

$$\eta(\lambda) = \frac{I_{out}(\lambda)}{I_{in}(\lambda)}$$

Spectral Resolution and S/N

For <u>unresolved</u> spectral lines, both the S/N and the line/continuum contrast increase with increasing resolution:

Model spectra of C_2H_2 at 900K and HCN at 600K (assumed Doppler broadening ~4 km/s) at different spectrograph resolutions (figure provided by F. Lahuis).

Diffraction Grating

Use a device that introduces an optical path difference = f{angle to the surface}

The condition for constructive interference is given by the grating equation:

 $m\lambda = a \cdot (\sin \alpha \pm \sin \beta)$

- m = order of diffraction
- Λ = wavelength
- a = distance between equally spaced grooves
- a = angle of incoming beam
- β = angle of reflected beam

- Gratings usually in collimated beam close to pupil
- Maximum spectral resolution: R=mN
 N = number of (illuminated) grooves
- Angular dispersion

 $d\beta / d\lambda = \frac{m}{a\cos\beta}$

Blaze Angle

- Periodic structure distributes energy over many orders *m*.
- Observing only one arbitrary order is inefficient.
- For blazed gratings the directions of constructive interference and specular reflection coincide:

Free Spectral Range ..

A light bulb seen through a transmissive grating, showing three diffracted orders. m = 0 corresponds to direct transmission; colors with increasing wavelengths (from blue to red) are diffracted at increasing angles. Source: Wikipedia

Different diffraction orders overlap with each other:

$$m\lambda = a(\sin\alpha + \sin\beta) = (m+1)\lambda'$$

The free spectral range is the largest wavelength range for a given order that does not overlap the same range in an adjacent order.

$$\Delta \lambda_{free} = \lambda - \lambda' = \frac{\lambda'}{m}$$

...and Cross-Dispersion

To spatially separate the orders and avoid overlap, an additional optical element will be needed:

A low-dispersion prism/grating with a dispersion direction perpendicular to that of the high-dispersion grating

Echelle Gratings

Want high dispersion $\frac{d\beta}{d\lambda} = \frac{m}{a\cos\beta} = \frac{\sin\alpha + \sin\beta}{\lambda\cos\beta}$

and high spectral resolution R = Nm

a and β large, high order m (\approx 50), and therefore large a

Grating equation in Littrow configuration ($a=\beta$): $m\lambda_B=2a \sin\beta$

Echelle Spectrograph

Operation in high order \rightarrow pre-disperser essential

Echelle Spectrographs

Example: ESO's VLT instrument CRIRES:

The ruled echelle grating of the SOFIA Facility Spectrometer AIRES. Two images of the engineer are seen reflected from the facets of the grooves that are at angles of 90 degrees from each other.

Echelle Spectra

echelle spectrum of V454 Aur

Grisms

Grism = transmission GRating + prISM

For one wavelength and diffraction order, refraction of grating and prism may compensate and optical axis remains (almost) unchanged.

<u>Advantages:</u>

- ideal to bring in and out of a collimated beam ("filter wheel")
- reduces coma (if in non-collimated beam)

<u>Disadvantages:</u>

- difficult to manufacture (either by replication and gluing or by direct ruling.
- can be quite "bulky" (← filter wheel)

Interference (Transmission) Filters

20

 $\frac{2n_1d}{\lambda} + \frac{\pi}{2} = 2k\pi$

Principle: layers with thickness of $\sim \Lambda$ with different indices of refraction deposited on a substrate.

 \mathbf{N}

The transmission is maximal where

Refractive indices

 $n_1(\lambda)$ $n_2(\lambda)$

• spectral resolution typically R ~ 3 - 1000

- typically many interference layers
- filters are often tilted with respect to the optical axis to avoid reflections \rightarrow shift of Λ_0
- wavelengths farther from Λ_0 (for which the above equation is also satisfied) need a blocking or absorbing filter.

Fabry-Perot Etalon

Here, *m* is the order of the interferometer, *d* is the separation of the plates, and $\Delta k = 1/2d$ the free spectral range.

The spectral resolution is given by 1. The finesse $F = \frac{\pi \sqrt{r}}{1-r}$, 2. The resolution $R = \frac{k}{\Delta k} = mF$

OH Suppression Spectrographs

OHS filter out the wavelengths of atmospheric OH lines, which contribute the major part of the near-IR background.

http://subarutelescope.org/Introduction/instrument/img/OHS_concept.gif

Multi-Object Spectrographs

Use numerous "slits" in the focal plane $^{\circ}$ simultaneously \rightarrow multiple source pick-ups using fibers or mirrors.

Needs different slit masks for different fields.

Data Products (2): MOS Spectra

Integral Field Spectrographs

Cut an area on the sky in several adjacent slices or sub-portions, realign them optically into one long slice and treat it as a long slit spectrograph.

IFU Spectra

Fourier Transform Spectrometer

First, let's assume we only have a single pixel detector

FTS or Michelson interferometer is a <u>two-wave</u> interferometer (note: grating has N waves from N grooves). FTS - Output Signal

• For each moving mirror position, broadband intensity is measured.

• The signal is an interferogram. It is the Fourier transform of the spectrum of the object.

FTS - Measured Intensity

The exit intensity I(x) for a monochromatic input intensity I_0 (with wave number $k=2\pi/\lambda$ and path length difference x) is:

$$I(x) = \frac{I_0}{2} (1 + \cos kx)$$

A source with a spectrum $I_0(k)$ in the range $[k_1, k_2]$ produces a signal of: $I(m) = \frac{1}{k_2} \int_{0}^{k_2} I(k)(1 + \cos km) dk$

$$I(x) = \frac{1}{2} \int_{k_1} I_0(k) (1 + \cos kx) dk$$

Note that for each value of x, all spectral elements of the incident spectrum contribute to the signal, but only one Fourier component is measured at any given point.

Spectral resolution with maximum path length difference x_{max} is R=2x_{max}/\lambda

Pros and Cons of the Different Types

Spectrometer	Advantages	Disadvantages
Long-slit	 relatively simple → high throughput easy to calibrate 	 only one object at a time inefficient use of detector space
Echelle	high spectral resolutionefficient use of detector	 challenging grating/optics limited instantaneous & range
Integral field	instantaneous 2D infoideal for resolved objects	complex opticssingle objects only
Multi-object	up to thousands of spectraideal for spectral surveys	 complex mechanisms to select fields fibre transmission limits A
Fabry-Perot	 ideal for large objects high spectral resolution more compact than FTS 	 not practical for large A range line and continuum observed at different times → calibration needs pre-disperser
Fourier- transform (FTS)	 very high resolution absolute wavelengths imaging FTS possible 	 less gain with high background high resolution ⇔ wide interval difficult in cryo instruments