
Astronomische Waarneemtechnieken 
(Astronomical Observing Techniques)  

based on lecture by Bernhard Brandl 

Lecture 5: Fourier 

1. Fourier Series 

2. Fourier Transform 

3. FT Examples in 
•  1D 
•  2D 

4. Telescope ó PSF 

5.  Important Theorems 



Jean Baptiste Joseph Fourier  
 From Wikipedia: 
 Jean Baptiste Joseph Fourier (21 
March 1768 – 16 May 1830), French 
mathematician and physicist best known 
for initiating the investigation of 
Fourier series and their applications to 
problems of heat transfer and 
vibrations.  

 Fourier series decomposes any periodic function or signal 
into sum of sines and cosines (or complex exponentials).  

 
 Application: harmonic analysis of functions to study 
spatial or temporal frequencies. 



Fourier series: 
 
 
 
Fourier coefficients: 
 
 
 
 
Period:     P 
Frequency:    1/P 
Angular frequency:  2π/P 

Fourier Series 
Fourier analysis = decomposition using sines and cosines as 
orthonormal basis set. 
Consider periodic function:  
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Orthonormal Basis Set 
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Example: Sawtooth Function 
Sawtooth function: 

( )
( ) ( )xfxf

xxxf
=+

<<−=
π

ππ
2

for         

Fourier coefficients are: 
 
 
 
 
 
 
 
 
and hence: 
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Example: Sawtooth Function  (2) 



Side note:  Euler’s Formula 
 Wikipedia:  Leonhard Euler (1707 – 1783), pioneering Swiss 
mathematician and physicist, made important discoveries in 
fields as diverse as infinitesimal calculus and graph theory.  
Introduced much of the modern mathematical terminology 
and notation. 
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Euler’s formula: relation between trigonometric 
functions and complex exponential function: 

Rewrite Fourier series in terms of 
waves with amplitudes and phases: 
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Fourier Transform 
 Functions f(x) and F(s) are Fourier pairs if: 
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 Here scalar x, but can be generalized to more dimensions. 
 Fourier transform is reciprocal, back-transformation is: 

 Requirements: 
•  f(x) is bounded 
•  f(x) is square-integrable 
•  f(x) has a finite number of extremas and 

discontinuities 
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Fourier Transform Properties: Symmetry 

f x( ) = feven x( ) + fodd x( )
feven −x( ) = feven x( )    fodd −x( ) = − fodd x( )

⇒ F s( ) = 2 feven x( )cos 2π xs( )
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If f(x) is real, the even part of f(x) corresponds to 
the (even) real part of the Fourier transform F(s), and 
the odd part of f(x) corresponds to the (odd) 
imaginary part of F(s). 



Fourier Transform Properties: Symmetry (2) 



Fourier Transform Properties: Symmetry (3) 



Fourier Transform Properties: Similarity 
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Expansion of function f(x) causes contraction of its transform F(s): 



Other Fourier Transform Properties 
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LINEARITY:  

TRANSLATION: 

 

DERIVATIVE: 

 

INTEGRAL: 

 

ADDITION:   
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Important 1-D Fourier Pairs 



Important 1-D Fourier Pairs (2) 



Special 1-D Pairs (1):  Box Function 

 Box function: 
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 and using the similarity relation: 

( )asa
a
x  sinc⋅⇔⎟
⎠
⎞⎜

⎝
⎛Π

a - a 

(as) 

a - a 



Special 1-D Pairs (2):  Dirac Comb 
 Dirac’s delta “function”: 
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 Dirac comb: infinite series of delta-functions 
spaced at intervals of T: 

Ξ(x) 

Ξ(x)×f(x) 

•  Fourier transform of Dirac comb is also a 
Dirac comb 

•  Because of its shape, the Dirac comb is also 
called impulse train or sampling function. 



Sampling  (1) 
Sampling: signal at discrete values of x:  

  
Interval between two successive readings is sampling rate. 
Critical sampling given by Nyquist-Shannon theorem: 
 
Function f(x), its Fourier Transform F(s) 
with bounded support [-smax, +smax]                   .    

Sampled distribution of the form 

  

 

with a sampling rate of Δx=1/(2smax) 
is enough to reconstruct f(x) for all x. 
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Sampling  (2) 
 Sampling at any rate above or below the critical sampling is called 
oversampling or undersampling, respectively. 

 
 Oversampling:   redundant measurements, often lowering the S/N 
 Undersampling:  signal contains frequencies higher than 1/(2smax), 

      � source signal cannot be determined after sampling 

      � loss of fine details 

      � must apply low-pass filter before sampling 



Aliasing 

•  unresolved, high frequencies beat with measured 
frequencies 

•  produce spurious components in frequency domain below 
Nyquist frequency 

•  may give rise to major problems and uncertainties in the 
determination of source function 



Bessel Functions  (1) 
 Friedrich Wilhelm Bessel (1784 – 1846), German mathematician, 
astronomer, and systematizer of the Bessel functions.  “His” functions 
were first defined by the mathematician Daniel Bernoulli and then 
generalized by Friedrich Bessel. 

 Bessel functions are canonical solutions  
 y(x) of Bessel's differential equation: 

 
 

 for an arbitrary real or complex number n, the so-called 
order of the Bessel function. 
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Bessel Functions  (2) 
 Bessel functions are also known as cylinder functions or cylindrical 
harmonics because they are found in the solution to Laplace's 
equation in cylindrical coordinates. 



Special 2-D Pairs (1):  Box Function 
 Consider 2-D box function with r2 = x2 + y2: 
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The similarity relation                                         means that  

larger telescopes produce smaller Point Spread Functions (PSFs)! 
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 Example: optical telescope 
 Aperture (pupil):                   Focal plane: 



Special 2-D Pairs (2):  Gauss Function 
 Consider a 2-D Gauss function with r2 = x2 + y2: 
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Gauss function is preserved under Fourier transform! 



 Important 2-D 
Fourier Pairs 



PUPIL (Telescope) ó IMAGE (PSFs) 



PUPIL (Telescope) ó IMAGE (PSFs) (2) 



Example 1: 
central obscuration, 

monolithic mirror (pupil) 
no support-spiders 

39m telescope pupil     à  FT = image of a point source   (log scale) 



Example 2: 
central obscuration, 

monolithic mirror (pupil) 
with 6 support-spiders 

39m telescope pupil     à  FT = image of a point source   (log scale) 



Example 3: 
central obscuration, 

segmented mirror (pupil) 
no support-spiders 

39m telescope pupil     à  FT = image of a point source   (log scale) 



Example 4: 
central obscuration, 

segmented mirror (pupil) 
with 6 support-spiders 

39m telescope pupil     à  FT = image of a point source   (log scale) 



Example 5: 
Star cluster observed with HST/NICMOS 



Convolution Theorem (1) 
Convolution of two 
functions, ƒ∗g, is integral of 
product of functions after 
one is reversed and shifted:  
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Convolution Theorem (2) 



Convolution Theorem (3) 
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 Convolution of two functions (distributions) is equivalent 
to product of their Fourier transforms: 



Convolution Theorem (4) 

Example: 
f(x) : star 
g(x) : telescope transfer function 
Then h(x) is the point spread function (PSF) of the system 
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Example: 
Convolution of f(x) with a smooth kernel g(x) can be used to 
smoothen f(x) 

Example: 
The inverse step (deconvolution) can be used to “disentangle” two 

components, e.g., removing the spherical aberration of a telescope. 



Cross-Correlation Theorem 
 Cross-correlation (or covariance) is measure of similarity 
of two waveforms as function of time-lag between them.  
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 The difference between cross-correlation and convolution is: 
•  Convolution reverses the signal (‘-’ sign) 
•  Cross-correlation shifts the signal and multiplies it with another 

 Interpretation:   By how much (x) must g(u) be shifted to match f(u)?  
 The answer is given by the maximum of k(x) 



Convolution and Cross-Correlation 
The cross-correlation is a 
measure of similarity of two 
waveforms as a function of 
an offset (e.g., a time-lag) 
between them. 
 
 
 
Example: search a long 
duration signal for a shorter, 
known feature.  

The convolution is similar in 
nature to the cross-correlation 
but the convolution first 
reverses the signal (“mirrors 
the function”) prior to 
calculating the overlap. 
 
 
 
Example: the measured signal 
is the intrinsic signal convolved 
with the response function 
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Whereas convolution involves reversing a signal, then shifting 
it and multiplying by another signal, correlation only involves 
shifting it and multiplying (no reversing). 



Auto-Correlation Theorem 
Auto-correlation is cross-correlation of function with itself: 
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Auto-Correlation (2) 
Auto-correlation is cross-correlation of function with itself: 

Wikipedia:  Auto-correlation 
yields the similarity between 
observations as a function of 
the time separation between 
them.  
 
Auto-correlation is a 
mathematical tool for finding 
repeating patterns, such as 
the presence of a periodic 
signal which has been buried 
under noise. 

+

+



Power Spectrum 

 Power Spectrum Sf of f(x)  (or the Power Spectral 
Density, PSD) describes how the power of a signal is 
distributed with frequency.   
 Power is often defined as squared value of signal: 
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Power spectrum is Fourier transform of autocorrelation and 
indicates what frequencies carry most of the energy.   

  
Total energy of a signal is: 
 

Applications: spectrum analyzers, calorimeters of light 

sources, …  
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Parseval’s Theorem 
 Parseval’s theorem (or Rayleigh’s Energy Theorem) states 
that the sum of the square of a function is the same as 
the sum of the square of the Fourier transform: 
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 Interpretation:  Total energy contained in signal f(x), 
summed over all x is equal to total energy of signal’s 
Fourier transform F(s) summed over all frequencies s. 



Wiener-Khinchin Theorem 
 Wiener–Khinchin theorem states that the power spectral 
density Sf of a function f(x) is the Fourier transform of 
its auto-correlation function: 
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Applications:  E.g. in the analysis of linear time-invariant systems, 
when the inputs and outputs are not square integrable, i.e. their 
Fourier transforms do not exist. 



Fourier Filtering – an Example 

 Top left:  signal – is I just random noise? 
 Top right: power spectrum: high-frequency components dominate the signal 
 Bottom left: power spectrum expanded in X and Y to emphasize the low-frequency region.  
  Then: use Fourier filter function to delete all harmonics higher than 20 
 Bottom right: reconstructed signal à signal contains two bands at x=200 and x=300. 

Example taken from http://terpconnect.umd.edu/~toh/spectrum/FourierFilter.html  



Overview 
Convolution 

Cross-correlation 

Auto-correlation 

Power spectrum 

Parseval’s theorem 

Wiener-Khinchin 
theorem 
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