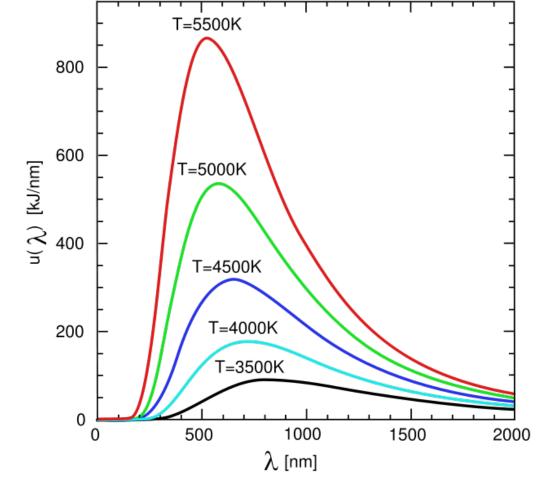
Astronomische Waarneemtechnieken (Astronomical Observing Techniques)

based on lectures by Bernhard Brandl



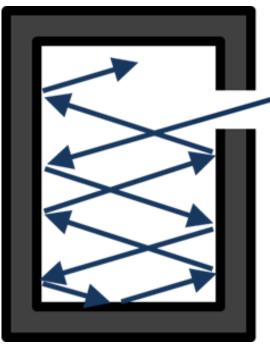
Lecture 1:

- Black body radiation
- Astronomical magnitudes
- Point \Rightarrow extended sources

Introduction

Kirchhoff (1860): "...imagine that bodies (...) completely absorb all incident rays, and neither reflect nor transmit any. I shall call such bodies perfectly black, or, more briefly, black bodies."

This shall be true of radiation for all wavelengths and for all angles of incidence.



(from Wikipedia)

Cavity at fixed temperature T in thermal equilibrium

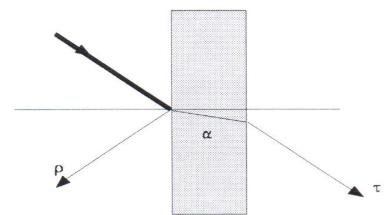
Radiation entering cavity will be "thermalized" by continuous absorption and re-emission of radiation by material in cavity or its walls.

Small hole \rightarrow escaping radiation will approximate black-body radiation independent of properties of cavity or hole.

Kirchhoff's Law

Conservation of power requires:

$$\alpha + \rho + \tau = 1$$



with a = absorptivity, $\rho = reflectivity$, $\tau = transmissivity$

cavity in thermal equilibrium with completely opaque sides:

$$\begin{array}{c} \varepsilon = 1 - \rho \\ \alpha + \rho + \tau = 1 \\ \tau = 0 \end{array} \end{array} \left\{ \begin{array}{c} \varepsilon = \text{emissivity} \\ \alpha = \varepsilon \end{array} \right.$$

Kirchhoff's law, applies to perfect black body

Radiator with $\varepsilon = \varepsilon(\Lambda) < 1$ often called grey body

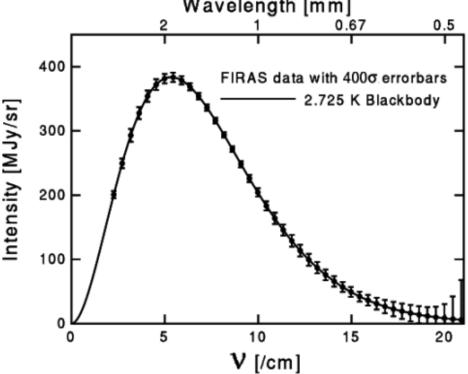
Definition of a Black Body

• Black body (BB) is idealized object that absorbs all EM radiation

- Cold (T~OK) BBs are black (no emitted or reflected light)
- At T > 0 K BBs absorb and re-emit characteristic EM spectrum ²^{Wavelength [mm]}

Many astronomical sources emit close to a black body.

Example: COBE measurement of the cosmic microwave background



Black Body Emission

Specific intensity I_v of blackbody given by Planck's law:

$$I_{v}(T) = \frac{2hv^{3}}{c^{2}} \frac{1}{\exp\left(\frac{hv}{kT}\right) - 1}$$

in units of [W m⁻² sr⁻¹ Hz⁻¹] (see course on Radiative Processes)

In wavelength units:

$$I_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right) - 1}$$

in units of [W m⁻³ sr⁻¹]

Conversion of frequency \Leftrightarrow wavelength units:

$$dv = \frac{c}{\lambda^2} d\lambda$$
 or $d\lambda = \frac{c}{v^2} dv$

Useful Approximations

$$I_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}$$

High frequencies $(hv \gg kT) \rightarrow Wien's$ approximation:

$$I_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \exp\left(-\frac{h\nu}{kT}\right)$$

Low frequencies (hv $\langle kT \rangle \rightarrow Rayleigh-Jeans'$ approximation:

$$I_{v}(T) \approx \frac{2v^{2}}{c^{2}}kT = \frac{2kT}{\lambda^{2}}$$

Emission \Leftrightarrow Power \Leftrightarrow Temperature

Total radiated power per unit surface (radiant exitance) is proportional to fourth power of temperature T:

$$\iint_{\Omega_{V}} I_{V}(T) dV d\Omega = M = \sigma T^{4}$$

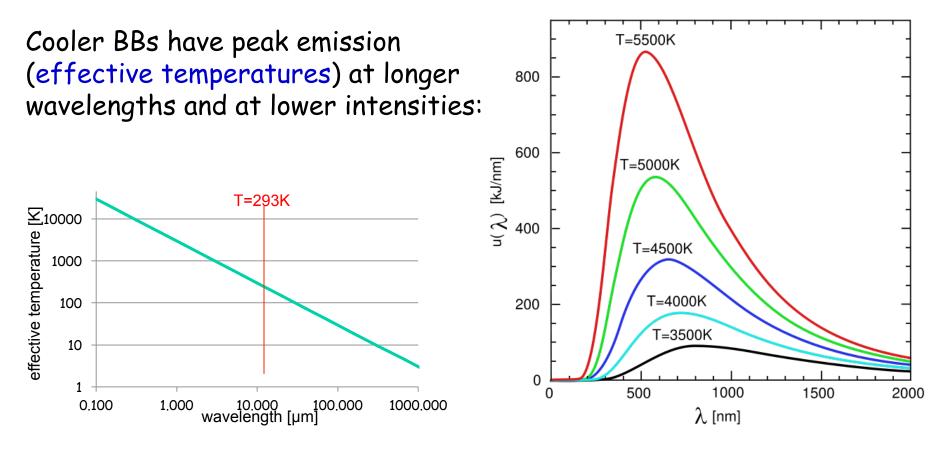
 $\sigma = 5.67 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ (Stefan-Boltzmann constant)

Assuming BB radiation, astronomers often specify the emission from objects via their effective temperature.

Effective Temperatures

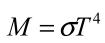
Temperature corresponding to maximum specific intensity given by Wien's displacement law:

$$\frac{c}{v_{\text{max}}}T = 5.096 \cdot 10^{-3} \text{ mK}$$
 or $\lambda_{\text{max}}T = 2.98 \cdot 10^{-3} \text{ mK}$



$$\left. \begin{array}{c} \varepsilon = 1 - \rho \\ \alpha + \rho + \tau = 1 \\ \tau = 0 \end{array} \right\} \quad \alpha = \varepsilon$$

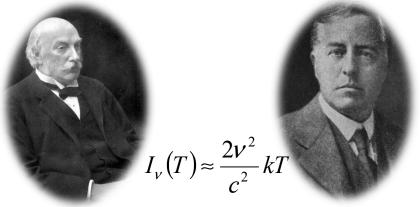
Gustav Kirchhoff (1824 – 1887)



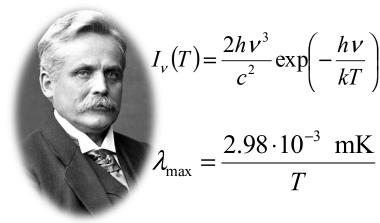
Josef Stefan (1835 – 1893) Ludwig Eduard Boltzmann (1844 – 1906)

 $I_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\exp\left(\frac{h\nu}{kT}\right) - 1}$

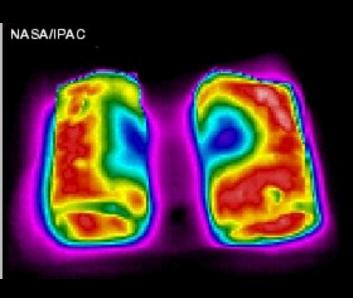
Max Planck (1858 - 1947)

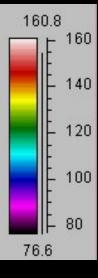


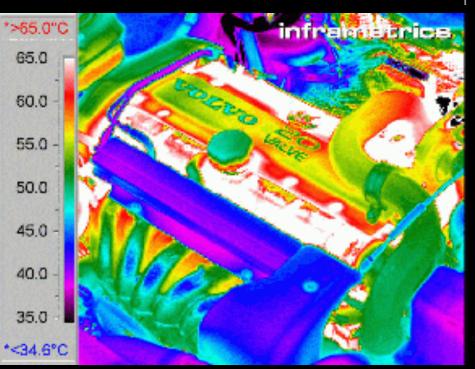
John William Strutt, Sir James Hopwood Jeans 3rd Baron Rayleigh (1842 – 1919) (1877 – 1946)

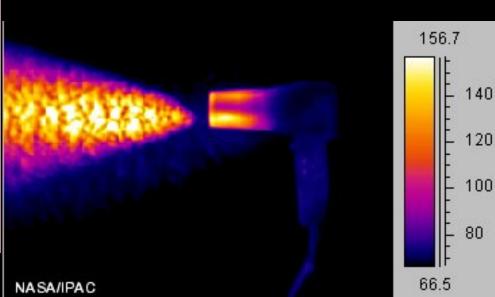


Wilhelm Wien(1864 – 1928)

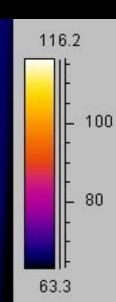






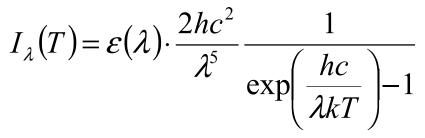


NASA/IPAC

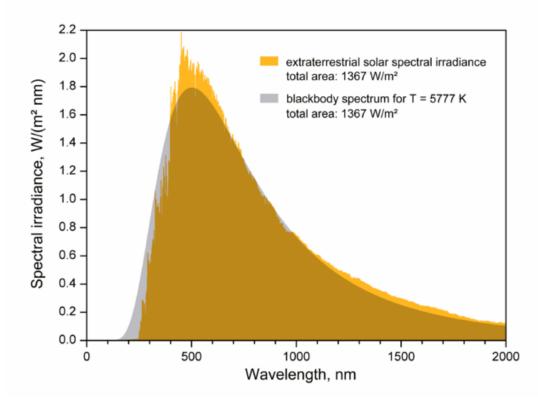


Grey Bodies

Many emitters close to but not perfect black bodies. With wavelength-dependent emissivity ε <1:



Example: the Sun (like many stars)



Brightness Temperature

Brightness temperature is temperature a perfect black body would have to be at to duplicate the observed intensity of grey body object at frequency *v*.

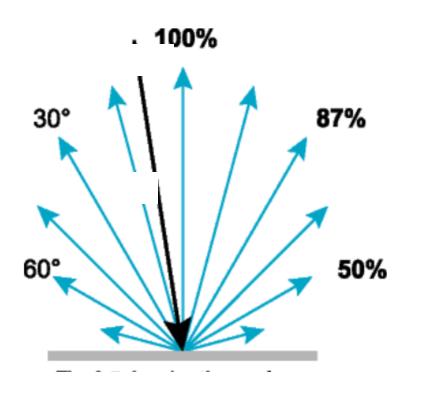
For low frequencies (hv << kT):

$$T_b = \mathcal{E}(v) \cdot T \stackrel{\text{Rayleigh-}}{=}_{\text{Jeans}} \mathcal{E}(v) \cdot \frac{c^2}{2kv^2} I_v$$

Only for perfect BBs is T_b the same for all frequencies.

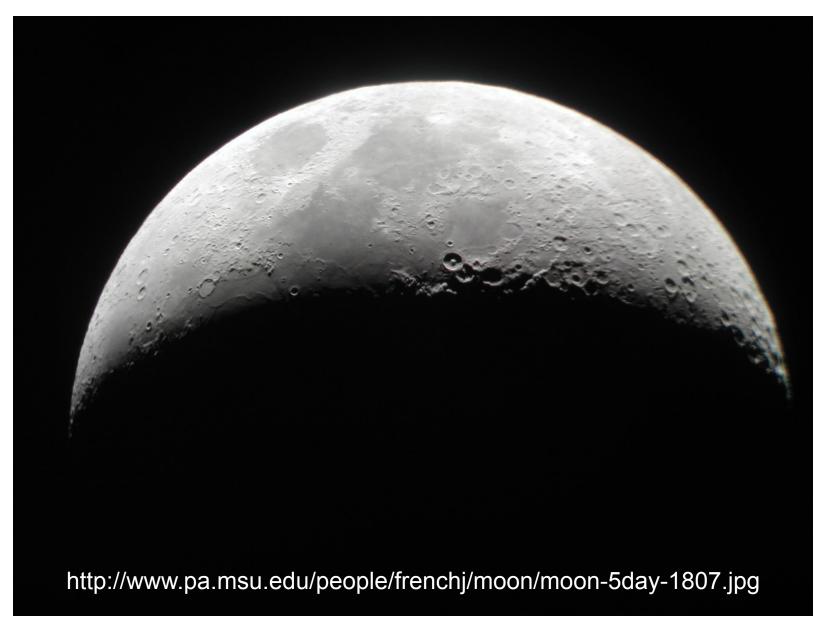
Lambert's Cosine Law

(Wikipedia:) Lambert's cosine law states that the radiant intensity from an ideal diffusively reflecting surface is directly proportional to the cosine of the angle θ between the surface normal and the observer.



Johann Heinrich Lambert (1728 – 1777)

The Moon: Lambertian Scatterer?



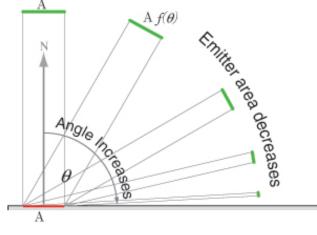
Lambertian Emitters

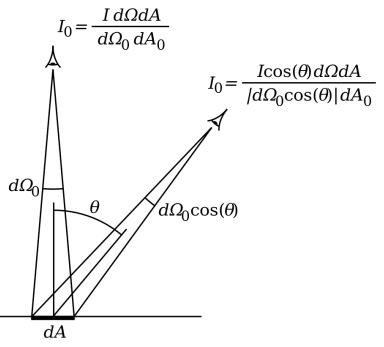
Radiance of Lambertian emitters is independent of direction θ of observation (i.e., isotropic).

Two effects:

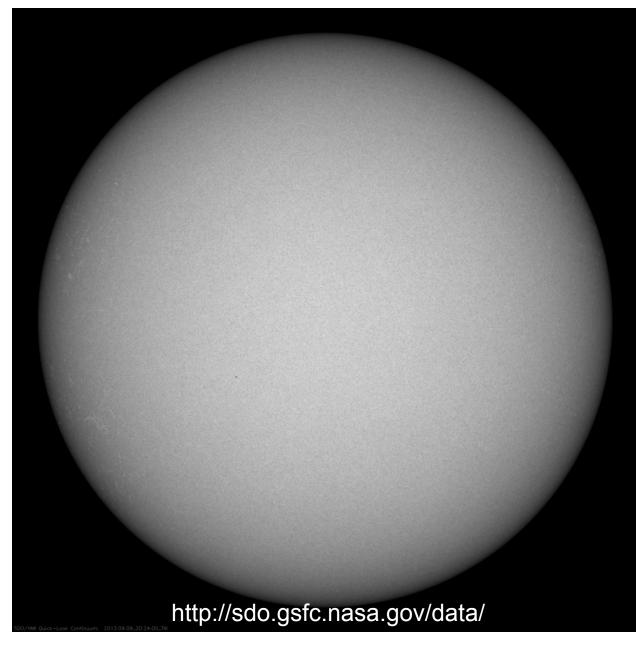
- 1. Lambert's cosine law \rightarrow radiant intensity and $d\Omega$ are reduced by cos(θ)
- 2. Emitting surface area dA for a given $d\Omega$ is increased by $\cos^{-1}(\theta)$
- \rightarrow Two effects cancel

Perfect black bodies are Lambertian emitters!





The Sun: Lambertian Emitter?



Astronomical Magnitudes

Summary of Radiometric Quantities

(see course on Radiative Processes!)

Name	Symbol	Unit	Definition	Equation
Spectral radiance or specific intensity	L_{v} , I_{v}	$W m^{-2} Hz^{-1} sr^{-1}$	Power leaving unit projected surface area into unit solid angle and unit Δv	
Spectral radiance <i>or</i> specific intensity	L_λ , I_λ	$W m^{-3} sr^{-1}$	Power leaving unit projected surface area into unit solid angle and unit $\Delta\lambda$	
Radiance <i>or</i> Intensity	L , I	$W m^{-2} sr^{-1}$	Spectral radiance integrated over spectral bandwidth	$L = \int L_{\nu} d\nu$
Radiant <u>exitance</u>	М	$W m^{-2}$	Total power emitted per unit surface area	$M=\int L(\theta)d\Omega$
Flux <i>or</i> luminosity	Φ, L	W	Total power emitted by a source of surface area A	$\Phi = \int M dA$
Spectral irradiance or flux density	L_{v}, F_{v}, I_{v}	$W m^{-2} H z^{-1}$	Power received at a unit surface element per unit $\Delta\nu$	
Spectral irradiance or flux density	L_λ , F_λ , I_λ	$W m^{-3}$	Power received at a unit surface element per unit $\Delta \lambda$	
Irradiance	Е	$W m^{-2}$	Power received at a unit surface element	$E = \frac{\int M dA}{4\pi r^2}$

Karl Guthe Jansky (1905 – 1950)

*10⁻²⁶ W m⁻² Hz⁻¹ = 10⁻²³ erg s⁻¹cm⁻² Hz⁻¹ is called 1 Jansky

Optical Astronomers use 'Magnitudes'

Origins in Greek classification of stars according to their visual brightness. Brightest stars were m = 1, faintest detected with bare eye were m = 6.

Later formalized by Pogson (1856): 1st mag ~ 100 × 6th mag

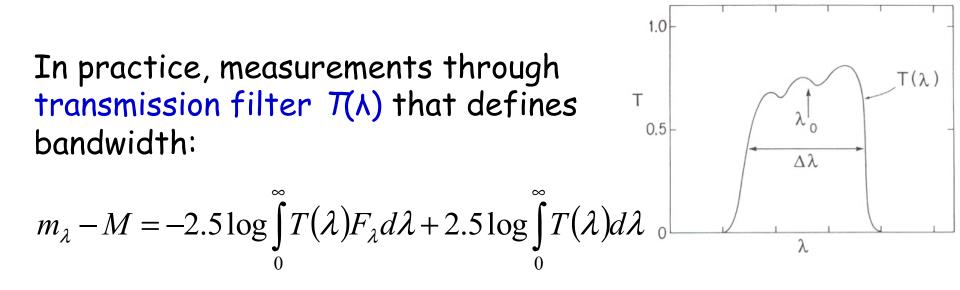
Magnitude	Example	#stars brighter
-27	Sun	
-13	Full moon	
-5	Venus	
0	Vega	4
2	Polaris	48
3.4	Andromeda	250
6	Limit of naked eye	4800
10	Limit of good binoculars	
14	Pluto	
27	Visible light limit of 8m telescopes	

Apparent Magnitude

Apparent magnitude is *relative* measure of monochromatic flux density F_{Λ} of a source:

$$m_{\lambda} - M_0 = -2.5 \cdot \log \left(\frac{F_{\lambda}}{F_0}\right)$$

 M_o defines reference point (usually magnitude zero).



Photometric Systems

Filters usually matched to atmospheric transmission → different observatories = different filters

\rightarrow many photometric systems:	Name	$\lambda_0 \; [\mu { m m}]$	$\Delta\lambda_0 \; [\mu m]$
• Johnson UBV system>	U	0.36	0.068
• Gunn griz	В	0.44	0.098
Ounn griz	V	0.55	0.089
• USNO	R	0.70	0.22
. CNCC	Ι	0.90	0.24
• SDSS	J	1.25	0.30
• 2MASS JHK	Н	1.65	0.35
	Κ	2.20	0.40
 HST filter system (STMAG) 	L	3.40	0.55
 AB magnitude system 	Μ	5.0	0.3
	Ν	10.2	5
•	Q	21.0	8

http://en.wikipedia.org/wiki/Photometric_system

AB and STMAG Systems

For given flux density F_v , AB magnitude defined as:

$$m(AB) = -2.5 \cdot \log F_{\nu} - 48.60$$

• object with constant flux per unit frequency interval has zero color.

- zero points defined to match zero points of Johnson V-band
- used by SDSS and GALEX
- F_v in units of [erg s⁻¹ cm² Hz⁻¹]

STMAG system defined such that object with constant flux per unit wavelength interval has zero color.

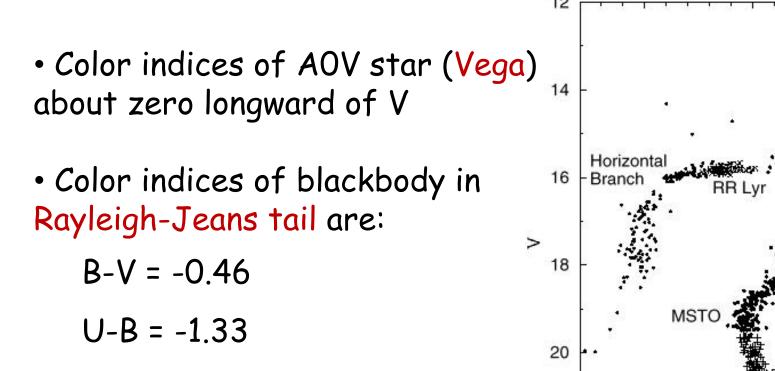
•STMAGs are used by the HST photometry packages.

Color Indices

Red Giant Branch

Main Sequence

Color index = difference of magnitudes at different wavebands = ratio of fluxes at different wavelengths.



V-R = V-I = ... = V-N = 0.0

Color-magnitude diagram for a typical globular cluster, M15. B-V

22

0.0

0.5

Absolute Magnitude

Absolute magnitude = apparent magnitude of source if it were at distance D = 10 parsecs: $M = m + 5 - 5\log D$

 M_{Sun} = 4.83 (V); $M_{Milky Way}$ = -20.5 $\rightarrow \Delta mag$ = 25.3 $\rightarrow \Delta lumi$ = 14 billion L_o

However, interstellar extinction *E* or absorption *A* affects the apparent magnitudes

$$E(B-V) = A(B) - A(V) = (B-V)_{\text{observed}} - (B-V)_{\text{intrinsic}}$$

Need to include absorption to obtain correct absolute magnitude:

$$M = m + 5 - 5\log D - A$$

Bolometric Magnitude

Bolometric magnitude is luminosity expressed in magnitude units = integral of monochromatic flux over all wavelengths:

$$M_{bol} = -2.5 \cdot \log \frac{\int_{0}^{\infty} F(\lambda) d\lambda}{F_{bol}}$$

;
$$F_{bol} = 2.52 \cdot 10^{-8} \frac{W}{m^2}$$

If source radiates isotropically:

$$M_{bol} = -0.25 + 5 \cdot \log D - 2.5 \cdot \log \frac{L}{L_{\Theta}} \qquad ; L_{\Theta} = 3.827 \cdot 10^{26} \text{ W}$$

Bolometric magnitude can also be derived from visual magnitude plus a bolometric correction BC:

$$M_{bol} = M_V + BC$$

BC is large for stars that have a peak emission very different from the Sun's.

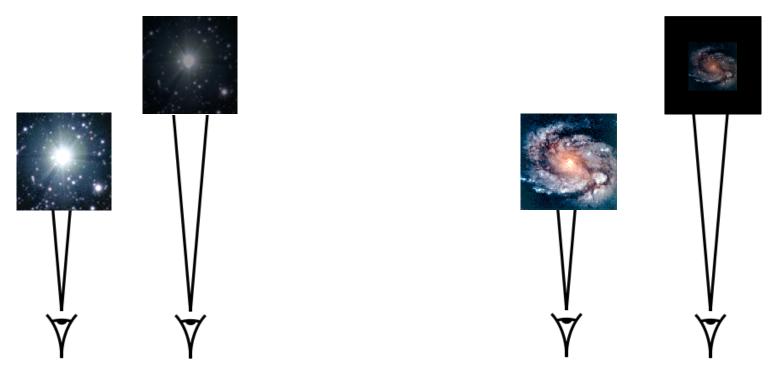
Photometric Systems and Conversions

Name	$\lambda_0 \; [\mu m]$	$\Delta\lambda_0 \; [\mu m]$	$F_{\lambda}~[\mathrm{W}~m^{-2}~\mu m^{-1}]$	F [Jy]	
U	0.36	0.068	4.35×10^{-8}	₩ 1880	Ultraviolet
В	0.44	0.098	7.20×10^{-8}	4650	Blue
V	0.55	0.089	3.92×10^{-8}	3950	Visible
R	0.70	0.22	1.76×10^{-8}	2870	Red
Ι	0.90	0.24	8.3×10^{-9}	2240	Infrared
J	1.25	0.30	3.4×10^{-9}	1770	Infrared
Н	1.65	0.35	7×10^{-10}	636	Infrared
Κ	2.20	0.40	3.9×10^{-10}	629	Infrared
L	3.40	0.55	8.1×10^{-11}	312	Infrared
М	5.0	0.3	2.2×10^{-11}	183	Infrared
Ν	10.2	5	1.23×10^{-12}	43	Infrared
Q	21.0	8	6.8×10^{-14}	10	Infrared

 $1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$.

Point Sources and Surface Brightness

Point Sources and Extended Sources



Point sources = spatially unresolvedExtended sources = well resolvedBrightness ~ 1 / distance²Surface brightness ~ const(distance)Size given by observationBrightness ~ 1/d² and size ~ 1/d²

Surface brightness [mag/arcsec²] is constant with distance!

Calculating Surface Brightness

To describe the surface brightness of extended objects one uses units of mag/sr or mag/arcsec².

Magnitudes are logarithmic units; to get the surface brightness of an area A:

 $S = m + 2.5 \cdot \log_{10} A$

The observed surface brightness [mag/arcsec²] can be converted into physical surface brightness units via

$$S[\text{mag/arcsec}^2] = M_{\Theta} + 21.572 - 2.5 \cdot \log_{10} S[L_{\Theta}/\text{pc}^2]$$

with $L_{\Theta} = 3.839 \times 10^{26} \text{ W} = 3.839 \times 10^{33} \text{ erg s}^{-1}$