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Summary of Linear Least Squares Problem

Linear Models
model y given by linear combination of M functions of x
general form

y(x) =
M∑

k=1

akXk (x)

X1(x), . . . ,XM(x) arbitrary (non-linear!) fixed functions of x
minimize

χ2 =
N∑

i=1

yi −
∑M

k=1 akXk (xi)

σ2
i

design matrix

Aij =
Xj(xi)

σi
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Solution for Linear Models
A typically has more rows than columns (N > M)
vector ~b of length N:

bi =
yi

σi

minimum of χ2 where all M partial derivatives with respect to
parameters are zero leads to normal equations

(AT A)~a = AT~b

inverse matrix of positive definite matrix AT A

C = (AT A)−1

errors in parameters then given by

σ2(aj) = Cjj

off-diagonal elements Cjk are covariances between aj and ak
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Singular Value Decomposition

Singular Fitting Problems

normal equations often very close to singular
in Gauss elimination, zero or very small pivot element⇒ large
values for ak that largely cancel each other in fitted function
observations often do not clearly distinguish between two or more
basis functions
if two functions, or two different combinations of functions, fit data
about equally well, design matrix A becomes singular
least-squares problems are both

overdetermined (number of data points greater than number of
parameters)
underdetermined (ambiguous combinations of parameters exist)

complicated problems⇒ extremely hard to notice ambiguities a
priori
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Minimization Problem
overdetermined system⇒ SVD produces solution that is best
approximation in least-squares sense
underdetermined system⇒ SVD produces solution where ak are
smallest in least-squares sense
combination of basis functions is irrelevant to fit⇒ corresponding
combination of basis functions will be driven down to small value,
rather than pushed up to delicately canceling infinities
using design matrix A and vector ~b minimization of χ2 can be
written as:

find ~a that minimizes χ2 = |A~a− ~b|2
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Singular Value Decomposition

any M × N matrix A with M ≥ N can be written as product of
M × N column-orthogonal matrix U, N × N diagonal matrix W
with positive or zero elements (singular values), and transpose of
N × N orthogonal matrix V

orthonormal columns of U, V : for all 1 ≤ k ≤ N, 1 ≤ n ≤ N

M∑
i=1

UikUin = δkn

N∑
j=1

VjkVjn = δkn

in matrix form: UT U = V T V = VV T = 1
problem with infinite number of solutions ~x ⇒ SVD returns
solution with smallest |~x |2
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SVD Applied to Fitting

U, V , wi from SVD of A
vectors Ui , i = 1, ...,M are columns of U (vector of length N)
vectors Vi ; i = 1, ...,M are columns of V (vector of length M)
solution of least-squares problem

~a =
M∑

i−1

(
~Ui · ~b
wi

)
~Vi

fitted parameters ~a are linear combinations of columns of V ,
coefficients obtained from scalar products of columns of U with
weighted data vector
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SVD and Errors
errors in fitted parameters also linear combinations of columns of
V
standard deviations are all mutually independent (uncorrelated)
vectors ~Vi are principal axes of error ellipsoid of fitted parameters
~a
variance in estimate of parameter aj :

σ2(aj) =
M∑

i=1

(
Vji

wi

)2

covariances given by

Cov(aj ,ak ) =
M∑

i=1

(
VjiVki

w2
i

)
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SVD Avoids Singularities

SVD overcomes singularities: if wi = 0, 1
wi

should be set to zero
adds zero multiple of any linear combination of basis functions
that are degenerate in the fit
if singular value wi is nonzero but very small, set its reciprocal to
zero, asit is probably an artifact of roundoff error
typically: remove all singular values whose ratio to the largest
singular value is less than N times the machine precision
also: SVD identifies linear combinations of variables that just
happen not to contribute much to reducing the χ2

can sometimes reduce the probable error on coefficients quite
significantly, while increasing minimum χ2 only negligibly
always use SVD: great advantage, that it (theoretically) cannot
fail, more than makes up for speed disadvantage
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Multidimensional Models

model y is function of vector ~x ⇒ basis functions will be functions
of a vector X1(~x), ...,XM(~x)

χ2 merit function becomes

χ2 =
N∑

i=1

[
yi −

∑M
k=1 akXk (~x)

σi

]2

repeat same procedure as before with x replaced by ~x
xi only used to calculate values of basis functions at ~xi
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Non-Linear Models
model with parameter a that enters model ym and χi non-linearly
⇒ cannot execute summation without having (an estimate for)
value of a
example: y = sin(ax) with partial derivative

∂χ2

∂a
= −2

N∑
i=1

[yi − sin(axi)]xi cos(axi)

σi
2

no summation without value for a
model y(x , ~a) that is non-linear in ~a can be fitted to a set of data
only iteratively
need a first set of values for ~a, and then find successive
improvements of these values
first a one-dimensional case with single parameter a, χ2 = χ2(a)

find a such that χ2(a) is minimized
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Taylor Approximations

far from minimum⇒ use derivative ∂χ2/∂a to decide in which
direction to look for the improved value:

an+1 = an − K
∂χ2

∂a

K is a constant
close to minimum of χ2 first derivative approaches zero
close to minimum approximate χ2 as quadratic function of a:
χ2(a) = p + q(a− amin)2, where p is the minimum value of χ2,
reached at a = amin

combine derivatives ∂χ2/∂a = 2q(a− amin), ∂2χ2∂a2 = 2q

a− amin =
∂χ2/∂a
∂2χ2/∂a2 ⇒ an+1 = an −

∂χ2/∂a
∂2χ2/∂a2
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Multi-Dimensional Non-Linear Problem
more-dimensional case (more than one parameter)

χ2(~a) ' p − ~q · ~a +
1
2
~a · ~~D · ~a

model ym = ym(x , ~a):

qk ≡
∂χ2

∂ak
= −2

N∑
i=1

[yi − ym]

σi
2

∂ym

∂ak
≡ −2βk

and

Dkl ≡
∂χ2

∂ak∂al
= 2

N∑
i=1

1
σi

2

[
∂ym

∂ak

∂ym

∂al
− [yi − ym]

∂2ym

∂ak∂al

]
≡ 2αkl
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(continued)
from before

Dkl ≡
∂χ2

∂ak∂al
= 2

N∑
i=1

1
σi

2

[
∂ym

∂ak

∂ym

∂al
− [yi − ym]

∂2ym

∂ak∂al

]
≡ 2αkl

second term on RHS small with respect to first one because
yi − ym will almost equally often be positive as negative⇒
subsequent terms in summation will almost cancel
dropping second term reduces computing time and makes
iteration to best solution more stable
rewrite first and second-order approximations:

βk = λαkkδak βk =
M∑

l=1

αklδal

proportionality constant K is scaled with second derivative, where
λ is constant
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Levenberg-Marquardt

from before:

βk = λαkkδak βk =
M∑

l=1

αklδal

Levenberg-Marquardt method adds two equations:

βk =
M∑

l=1

α′klδal where

α′kl = αkl (if k 6= l);

α′kl = αkl(1 + λ) (if k = l)

approaches linear descent for large λ
approaches quadratic approximation for small λ
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Levenberg-Marquardt Algorithm
1 pick initial solution
2 pick small value for λ (i.e. one hopes that the solution is already

close enough for the quadratic approximation)
3 compute χ2 for initial solution,
4 compute new value for ~a
5 if χ2 for the new solution is smaller (larger) than for the old one,

then the quadratic approach does (doesn’t) work, and one should
decrease (increase) λ to get closer to the purely quadratic (linear)
method

6 iterated until minimum χ2 is found
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Parameter Errors

errors on best-fit parameters ~a from general relation (near
minimum)

δχ2 = δ~a · ~~α · δ~a
if best-fit parameters are not correlated⇒

matrix α close to diagonal
off-diagonal elements αkl are much smaller than elements αkk on
diagonal

inverse matrix C almost given by Ckk = 1/αkk

distance δak to best value ak

δak
2 =

∆χ2

αkk

to estimate a 1-sigma error in ak we enter ∆χ2 = 1
correltaed errors: matrix C gives correlation between deviations of
parameters from best-fit values
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Errors with Poisson Distribution

Overview
counting of small number of events⇒ often Poisson distribution of
measurements
least-squares methods do not apply
here: maximum-likelihood method for errors with a Poissonian
distribution
in literature often referred to as the maximum-likelihood method
where Poissonian error distribution is implied
abbreviated name misleading as least-squares method is also
maximum-likelihood method for errors distributed as Gaussians
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Maximum-Likelihood Method
consider number of counts on photon-counting detector
number of counts detected in location i is ni

number of counts predicted for location by model as mi

probability at one location to obtain ni photons when mi are
predicted is

Pi =
mi

ni e−mi

ni !

if values of mi (and ni ) are large, probability may be approximated
with Gaussian and use least-squares method
typically value is 20 based on assumption that difference between
Poisson and Gaussian distributions for large µ is less important
than uncertainties due to systematic effects in measurements
assumption should be verified in each case
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Maximum-Likelihood Method (continued)
small values of mi (and ni ): use Possion distribution

Pi =
mi

ni e−mi

ni !

to maximize overall probability, maximize

L′ ≡
∏

i

Pi

easier to maximize logarithm

ln L′ ≡
∑

i

ln Pi =
∑

i

ni ln mi −
∑

i

mi −
∑

i

ln ni !

last term independent of model⇒ consider as constant
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Maximum-Likelihood Method (continued)
from before

ln L′ ≡
∑

i

ln Pi =
∑

i

ni ln mi −
∑

i

mi −
∑

i

ln ni !

maximizing L′ equivalent to minimizing

ln L ≡ −2

(∑
i

ni ln mi −
∑

i

mi

)

compare two models A and B with number of fitted parameters nA,
nB and likelihoods ln LA, ln LB, difference ∆L ≡ ln LA − ln LB is χ2

distribution with nA − nB degrees of freedom, for sufficient number
of photons
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Example 1: Constant Background
constant background: mi = A
Z pixels in total⇒ total number of photons in model is Nm = ZA
total observed number of photons is No

likelihood

ln L ≡ −2

(∑
i

ni ln mi −
∑

i

mi

)
minimize with respect to Nm

−0.5 ln L =
∑

ni ln A−
∑

A = No ln A− ZA = No ln(Nm/Z )− Nm

therefore
∂ ln L
∂Nm

= 0⇒ No

Nm
− 1 = 0⇒ No = Nm

best solution has equal number of photons in model and
observation
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Example 2: Constant Background plus One Source

source with strength B and fraction fi lands on pixel i
likelihood

ln L ≡ −2

(∑
i

ni ln mi −
∑

i

mi

)
here

−0.5 ln L =
∑

i

ni ln(A + Bfi)−
∑

i

(A + Bfi)

find minimum of L for variations in A and B:

∂ ln L
∂A

= 0⇒
∑

i

ni

A + Bfi
−
∑

i

(1) =
∑

i

ni

A + Bfi
− Z = 0

∂ ln L
∂B

= 0⇒
∑

i

ni fi
A + Bfi

−
∑

i

fi =
∑

i

ni fi
A + Bfi

− 1 = 0
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Example 2: Constant Background plus One Source (continued)

two equations for two unknowns A and B∑
i

ni

A + Bfi
−
∑

i

(1) =
∑

i

ni

A + Bfi
− Z = 0

∑
i

ni fi
A + Bfi

−
∑

i

fi =
∑

i

ni fi
A + Bfi

− 1 = 0

multiply first equation with A, second with B, and add:∑
i

ni = AZ + B

total number of counts in best model is equal to total number of
observed counts
may used this to fit only one parameter
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General Methods

Overview
several established methods to find best fit for Poissonian error
distributions
methods shown here do not use derivative of function but only
function value itself and minimization criterion
methods are equally suited for

least-squares problems with χ2 as criterion
maximum-likelihood problems with Poisson statistics

tend to be slower than Levenberg-Marquardt method for simple
problems
tend to be more efficient than Levenberg-Marquardt for

many variables⇒ matrix α is very big
problems in which the χ2 distribution has many local minima
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Downhill Simplex Method
Numerical Recipes (2nd ed.) chapter 10.4
often best method for models with small computational burden
simplex is geometrical figure consisting, in N dimensions, of N + 1
points (or vertices) and all interconnecting line segments,
polygonal faces, etc.
2D: triangle, 3D: (irregular) tetrahedron
non-degenerate simplexes enclose finite inner N-dimensional
volume
one point as origin, other N points define vector directions in N-D
vector space
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Downhill Simplex Method (continued)
start with N + 1 points in N-D hyperspace, defining initial simplex
one point is initial starting point P0

other N points are
Pi = P0 + λei

ei are N unit vectors
λ a constant which is your guess of problem’s characteristic length
scale
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Downhill Simplex Method (continued)
downhill simplex method is series of steps:
point of simplex where function is largest through opposite face of
simplex to lower point
these reflections are constructed to conserve volume of simplex
(maintains nondegeneracy)
when possible, method expands simplex in one or another
direction to take larger steps
when it reaches valley floor, method contracts itself in transverse
direction and tries to ooze down the valley
when simplex passes through eye of needle, it contracts itself in
all directions, pulling itself in around its lowest (best) point

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Fitting Observed Data 2 28



Downhill Simplex Method

termination criteria can be delicate
terminate when vector distance
moved is fractionally smaller in
magnitude than some tolerance
could also require that decrease in
function value in terminating step be
fractionally smaller than some
tolerance
might be fooled by single anomalous
step that failed to get anywhere
good idea to restart at point where
minimum was found
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Simulated Annealing

Numerical Recipes (2nd ed.) chapter 10.9
suitable for large-scale problems and global minimum hidden
among many, poorer, local minima
also works well when functions are in discrete space where
derivatives are not available
analogy with thermodynamics: liquids freeze and crystallize,
metals cool and anneal:

at high temperatures, molecules of liquid move freely with respect
to one another
if liquid is cooled slowly, thermal mobility is lost; atoms are able to
line themselves up and form pure crystal that is completely ordered
over distance up to billions of times the size of individual atom in all
directions
crystal is state of minimum energy for system
slowly cooled systems: nature finds minimum energy state
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Simulated Annealing (continued)

if liquid metal is cooled quickly or quenched, it does not reach this
state but rather ends up in a polycrystalline or amorphous state
having somewhat higher energy
essence is slow cooling, allowing ample time for redistribution of
atoms as they lose mobility
this is technical definition of annealing; essential for ensuring that
a low energy state will be achieved
analogy not perfect, but provides sense in which all other
minimization algorithms correspond to rapid cooling or quenching
gone greedily for the quick, nearby solution: from the starting
point, go immediately downhill as far as you can go
often leads to local but not necessarily global minimum

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Fitting Observed Data 2 31



Simulated Annealing (continued)
Boltzmann probability distribution expresses the idea that a
system in thermal equilibrium at temperature T has its energy
probabilistically distributed among all different energy states E

Prob(E) ∼ e
−E
kT

Even at low temperature, there is a chance, albeit very small, of a
system being in a high energy state
Therefore, there is a corresponding chance for the system to get
out of a local energy minimum in favor of finding a better, more
global, one.
quantity k (Boltzmann’s constant) relates temperature to energy
system sometimes goes uphill as well as downhill; but the lower
the temperature, the less likely is any significant uphill excursion
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Simulated Annealing

first application by Metropolis et al. (1953)
simulated thermodynamic system changes configuration from
energy E1 to energy E2 with probability p = e−

E2−E1
kT

if E2 < E1 probability is greater than unity⇒ change get p = 1
(always takes this option)
general scheme of always taking a downhill step while sometimes
taking an uphill step is known as Metropolis algorithm
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Simulated Annealing (continued)

to use Metropolis algorithm need following elements:
1 description of possible system configurations
2 generator of random changes in the configuration that are

presented to system
3 objective function E (analog of energy) whose minimization is goal

of procedure
4 control parameter T (analog of temperature) and an annealing

schedule which tells how it is lowered from high to low values, e.g.,
after how many random changes in configuration is each downward
step in T taken, and how large is that step

meaning of high and low T and assignment of schedule may
require physical insight and/or trial-and-error experiments
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Genetic Algorithms

based on Charbonneau (1995, ApJ Supl.Ser. 101, 309-334)
1 construct random initial population and evaluate fitness of

members
2 construct a new population by breeding selected individuals from

population
3 evaluate fitness of each member of population
4 replace old population with new population
5 test convergence: if best member does not (yet) match required

criteria, go to step 2

breeding includes combination and mutation
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