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Overview

@ fitting: compare measurements with model predictions
@ fitting method depends on

@ errors in observations
e how model depends on free parameters
o definition of best fit

@ to determine errors in observations, need to propagate errors
through data acquisition and reduction

@ need to define what
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Errors

Accuracy and Precision

@ accuracy of observation measures correctness of result,
measures of how close observational result comes to true value

@ precision of observation measures how reproducible result is,
measures how exactly the result is determined without reference
to what that result means

@ absolute precision: magnitude of uncertainty in result in same
units as result

@ relative precision: uncertainty in terms of fraction of value of result

@ both accuracy and precision need to be considered
simultaneously

@ useless to determine something with high precision but highly
inaccurately

@ observation cannot be considered accurate if precision is low
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Random and Systematic Errors

@ systematic error: reproducible inaccuracy introduced by faulty
equipment, calibration, or technique

@ accuracy generally depends on how well one can control or
compensate for systematic errors

@ random error: Indefiniteness of result due to a priori finite
precision of observation, measures fluctuation in repeated
observations

@ precision depends on how well one can overcome or analyse
random errors

@ random errors require repeated trials to yield precise results

given accuracy implies a precision at least as good =- depends
somewhat on random errors
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Distributions
Characterizing Distributions

@ parent distribution: infinite number of measurements =
observations distributed according to frue probability distribution

@ actual observations are sample of infinite number of possible

measurements
@ observations estimate parameters of parent distribution
@ average:
1N
i=1
@ variance:
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Independent Measurements

@ estimate of average assumes that all measurements x; are
independent

@ for variance, already used x; values to estimate average = N — 1
independent measurements left

@ reason that sum of (x; — X)? is divided by N — 1

@ single measurement (N = 1)

e best value for average given by single measurement
@ no measure for variance
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Sample Average

@ consider x as variable in definition of variance
@ try to find value of X for which s2 is minimal
@ set derivative of s? with respect to X to zero:

08 _ -2 NNy
ox  N-1 :

i=1

X

-2 N
N -1 =

@ therefore
1N

@ definition for sample average minimizes sample variance

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Fitting Observed Data 1



Average and Variance for Binned Data

@ astronomical data often binned or discrete
@ all digital data is binned
@ definitions
B number of bins, b=1,... B
Xp value of x in bin b
Np number of measurements in bin b
@ normalize N, by total number of measurements
@ probability that measurement falls into bin bis P, = Np/ 2521 Np
@ average:
B
X = Z PbXb
b=1
@ variance:
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Higher-Order Moments of Distributions

@ higher-order moments of distributions very sensitive to outliers

@ large x; — X value dominates much more in distribution of (x; — X)?
than in distribution of |x; — X|
@ therefore do not use even higher moments such as

e Skewness: ]
= NG > (xi—%)?°
o Kurtosis ’
= WZ(X,-—Y)A'—S

@ o is standard deviation
@ subtraction of 3 in kurtosis makes kurtosis of Gaussian zero
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Computing Distributions

NUMVIERICAL
RECIPES

in EORTRAN @ funamental book on numerical

The Art of Scientific Computing algorith ms
Second Edition

@ exists for different programming
languages

@ 2nd edition available online at
www.nr.com/oldverswitcher.html

@ Chapter 6 contains algorithms to
calculate special functions
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Gamma Function
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commons.wikimedia.org/wiki/File:Gamma-function.svg

o I(z)= [ t* e tdt
@ integer z: gamma function equals factorial with offset of one

n=r(n+1)
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@ small n = compute factorial directly as n x (n—1) x (n—2)...
@ large values = gamma-function

@ large n, factorial larger than largest number allowed by computer
e single precision (IEEE 754 32-bit decimal) has maximum
exponents of -126, +127
e double precision (EEE 754 64-bit declimal) has maximum
exponents of -1022, 1023
e calculate logarithm of factorial or logarithm of gamma function

@ useful function routines from Numerical Recipes:

@ function gammln (x) returns InT(x) for input x
@ function factrl (n) returns real n! for input integer n
@ function factln (n) returns real Inn! for input integer n

n . .
@ function bico (n, k) returns real < K ) for integer inputs n, k

@ useful to compute large number of frequently used distributions
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Cummulative Poisson Distribution
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@ cumulative Poisson probability describes probability that Poisson
process will lead to result between 0 and k — 1 inclusive:

k—1
Px(< k)= _ Pp(k,X)
n=0

@ incomplete gamma function:

X
P(a,x):1/ t2- e ldt
0
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Cummulative Poisson Distribution (continued)
@ complement also called incomplete gamma function

Qa,x)=1-P(a,x) = r(1a)/ t3- e ldt

@ cumulative Poisson probability:
Py(< k) = Q(k, x)

@ corresponding routines in Numerical Recipes are:
@ function gammp (a, x) returns P(a, x) for input a, x
@ function gammg(a,x) returns Q(a, x) for input a, x
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Cummulative Gauss Distribution
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@ integral probability of Gauss function from error function:

erfix f/

@ complementary error function:

erfc(x \F /
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Cummulative Gauss Distribution (continued)
@ error functions given by incomplete gamma functions:

erf(x) = P(1/2,x?) (x> 0)
erfc(x) = Q(1/2, x?) (x >0)

@ corresponding routines in Numerical Recipes are:

@ function erf (x) returns erf(x) for input x, using gammp

@ function erfc(x) returns erfc(x) for input x, using gammg

@ function erfcc(x) returns erfc(x) based on direct series
development
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Error Propagation

@ function f depends on variables u, v, .. .:

f=1f(u,v,...)

@ estimate variance of f

1 N
o = Jim NZf—f
=1

knowing variances o, 0y, ... of variables u, v, . ..

@ assumption, usually only approximately correct, that average of f
is well approximated by value of f for averages of variables:

f=1fwv,...)
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Basics (continued)
@ Taylor expansion of f around average:

- _.Of _.Of
f,-—f:(u,-—u)—aqu(v,-— v)—aer
@ variance in f:
N 2
0 _.Of
2 ~Y JR— . 17 PR
o —N'E“OONZ [(“’ Dy T Vi=Vg, + ]
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Basics (continued)

@ variances of u and v

2

@ covariance of uand v

;N
2= Jim & Z(Ui —u)(vi — V)

i=1

Ouv

@ use these defintions to obtain

of\ 2 of\? of of

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl

Astronomical Data Analysis 2011: Fitting Observed Data 1




Basics (continued)
@ from before
af\? af\? of of
2 200 2 (O 291 971
or = ou <8u) oy <8v> MSCArTr v

o if differences u; — U and v; — v not correlated = sign of product as
often positive as negative = covariance small compared to other
terms

o if differences are correlated = most products (u; — U)(v; — V)
positive = cross-correlation term can be large
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Examples of Error Propagation
Weighted Sum: f = au + bv

@ partial derivatives

of of

w2 Evie b
@ variance

o2 = a0 ,? + bPo,? + 2aboy,?

@ aand b can be positive or negative
@ signs only affect cross-correlation term
@ cross-correlation term can be negative = makes variance smaller
@ example: if each u; is accompanied by a v; such that

Vi — v = —(b/a)(uy, — u), then f = au + bv for all u;, v; pairs, and
2
of=0

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Fitting Observed Data 1



Product: f = auv

@ partial derivative
or _ av or _ au
ou ov
@ variance
0’f2 . 0U2 O-V2 2qu2
2 U2 V2 uv

@ partial derivatives

of a of au

ou_ v’ v v2
@ variance

O'f2 o O-u2 O-V2 2UUV2

2 U2 V2 uv
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Exponent: f = ae?
@ partial derivatives
O _
ou
@ variance
Ir _ bo
f u
@ partial derivatives
o _bf
ou u
@ variance
9i _ p9u
f “u
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Fitting Observations with Gaussian Error Distributions

Least Squares Method

@ series of measurements y; with associated errors distributed
according to Gaussian with width o;

@ same as each measurement drawn from Gaussian with width o;
around model value yn,

@ probability P(y;) = P; of obtaining a single measurement y; in
interval Ay given by

f(y,'fym)z

e 20,2 Ay

PiAy =
nd V2ro;

@ different measurements have different associated errors o;
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Least Squares Method (continued)
@ probability P of obtaining series of N measurements

N

N (v y)2
P(AY)N = H(P,‘Ay) = (27-‘-)/\//121_10- exp !; Z (ylo-é/m)] Ay,
i=1 v =1 i

=

@ highest probability P for smallest

o 2
X2 _ inz _ Z (yi é’m)

@ determine most probable model value for y,, for series of
measurements y; by finding value(s) for y, for which sum of
squares (¥ — ym)?/o;? is minimal

@ method of least squares, first described by Gauss
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Chi-Squared Distribution

@ if errors are gaussian, each y; is random draw from normal
distribution

@ sum of x;? is called chi-square

@ N measurements fit by model with M parameters: N — M
independent measurements

@ probability distribution for x? is chi-square distribution for N — M
degrees of freedom

@ distribution obtained by drawing N — M random samples from
normal distribution and add squares

@ probability of given x? from gammg-function

@ probability that observed x2, or greater is reached for N — M
degrees of freedom is P(x2,) = gammg(0.5(N — M), 0.5x2,,)
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Chi-Squared Distribution (continued)

@ if probability is very small = something is wrong

e wrong model
@ errors underestimated
@ errors not distributed as Gaussians

@ probability of 0.05 is often acceptable

@ wrong models produce much smaller probabilities (< 0.000001)
@ probability of 5% occurs, on average, once every 20 trials

@ finding 0.05 probability due to chance quite common

@ consistently low probabilities must be investigated
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Negative Results

@ apparently significant results can arise from ignoring negative
results

@ lottery winner is person with correct six-digit number

@ probability for one person to have winning number is one in a
million

@ if several million people participate we expect several to have
guessed the correct number

less obvious: repeated experiment, i.e. stock broker
ten million people predict how stocks change in value
after one year, select top 10% predictors

repeat for total of six rounds = (on average) ten brokers will have
predicted among top 10% for six years in a row, even if prediction
process is purely random!

@ must know total number of brokers to decide wether they are
better than random
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Model Fitting

@ fit model to data set, present 3 parts:
@ Dbest-fit values of parameters ay, ao, . ..
@ errors in these parameters
© probability that measured x? is obtained by chance; i.e. the
probability that model adequately describes measurements

@ 5 cases for ypy

@ constant (y,, same for all /)

@ straight line y,, = a + bx where y,, depends on variable x and
model parameters a, b

@ straight line y,,, = a + bx where y,, depends on variables x, y,
model parameters a, b

@ linear function y,, = f(x,a, b, c, ... where y, depends on variable x
and linearly on model parameters a, b, ...

© general (non-linear) case where y,, depends on variable x and
parameters ai, a, .... Ym = ym(Xx; )
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Weighted Averages
@ constant model y, = a = a best estimate for average y of y;

@ most probable value of a by minimizing x? with respect to a

N N
0 (vi—a@| yi—a
S U oy M2,

913 2
9a | 5 ! i=1
@ least squares found for
N1 Y
— 1= o
Y = amin = N71'
Y1 52
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Weighted Averages (continued)
@ determine estimate of errorin y
@ y is function of variables yy, yo, . ..

@ if measurements y; not correlated: variance of y from error
propagation:

N —\ 2 2

5)’) 1/0;
2 _ 2(9Y\"| _ of Vo=
=3 |0 (8” 21 N\ s e

@ therefore
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Identical Errors

@ in case where all measurement errors are identical (o; = o)

e a
' 1o e Nny

@ therefore
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@ straight line: ym(x, a,b) = a+ bx = ym(x;,a,b) = a+ bx;
e fit a, b by minimizing x? with respect to a, b
@ set corresponding derivatives 2 to zero:

Oy li—a=bx)/ol? _ i <y,- ~a- in) 0o

6 2
a g
i=1 !
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Fitting Straight Line (continued)
@ all sums can be evaluated without knowing a or b

@ define the following sums

N 1 N Xi N X
Zﬁ S; ZU—IQESX; Z—Z

! i=1

—_

i=

N N
ZLZ , Z% E va AE SSXX_(S)()2
@ rewrite as two equations for two unknowns a and b:

aSX‘FbSXxf Sxy :O
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Fitting Straight Line (continued)
@ solutions
N A T A
@ errors in a, b from considering a, b to depend on independent
parameters y;

ayi BN dyi  oPA

@ use error propagation

2 _ Sxx. 2 S

Oa A

@ probability that good fit would produce observed X2, or bigger:

B 2
Q = gammq <N2 2, X 2°bs>
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Straight Line Fitting Example

* physics and |
astronom

R /i

* astronomy
+1(1)/ir

1000

number 1st—yr students
500
T

1990 1995 2000

year

@ number of new physics and astronomy students in Netherlands
@ errors in measured integer numbers: square root of number

@ actual number in year is drawn from distribution (here Poissonian)
around expected value

@ same in photon-counting observations
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Example (continued)
@ good choice of a, b

@ number of students as N(t) = a+ bt where t is the year = a gives
number of students for year 0

@ sums involving x;-values are very large = subtracting them from
one another (as in computing A) easily leads to roundoff errors

@ errors in a and b will be highly correlated: small change in b
changes a dramatically in one direction

@ prevent both problems by centering time interval around point of
fitting, i.e. N = a+ b(t — 1994)
@ avoids round-off errors and correlation of variations are minimized

@ good practice in astronomy to define time with respect to some
fiducial point near middle of measurements
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Linear Models with Errors in Both Coordinates

@ x; may also have errors = minimize

N 2
2 (yi —a— bx;)
a,b) = —
x'(a.b) ; 0}2,1. + b2o%,
@ weighted sum of variances in denominator from error propagation
@ adetermined from setting partial derivative to zero

— bx;)
a= Z( X2 /ZQ

i=1 UY/ UX/ i=1 0}’/

@ b determination more complicated because equation becomes
non-linear = numerical solution to minimize with respect to b

@ at each iteration ensure that minimum with respect to b is also
minimized with respect to a

@ complicated errors in parameter estimates = use apprach to be
discussed for general case
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General Linear Least Squares Problem

Linear Models

@ model y/™ is linear combination of M given functions of x

@ example: polynomial of degree M — 1:
y(x)=ay + ax + asx®>+ ... + ayxM
@ general form

N
y(x) =Y AcX
k=1

@ Xi(x),...,Xu(x) arbitrary (non-linear!) fixed functions of x

@ minimize N
N
2 Vi~ k=1 @Xk(Xi)
X = Z 52
i=1 i
@ design matrix
Xi(Xx;
oj
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Linear Models (continued)
@ in general, A has more rows than columns (N > M)

@ vector b of length N:
b — Vi
=

oj
@ minimum of chi-squared where derivatives with respect to all M
parameters vanishes leads to

(ATA)a=A"b
@ inverse matrix of positive definite matrix AT A
C=(ATA)™
@ errors in parameters then given by
o*(a) = G

@ off-diagonal elements Cj are covariances between a; and ay
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Linearizing Models

@ apparently nonlinear problems can be linearized

@ example: y(x) = ae®™ becomes log y(x) = ¢ + bx

@ warning: transformations does not make Gaussian errors into
Gaussian errors

@ warning: watch out for degenerate parameters, e.g.
y(x) — gebx+d
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