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Overview
fitting: compare measurements with model predictions
fitting method depends on

errors in observations
how model depends on free parameters
definition of best fit

to determine errors in observations, need to propagate errors
through data acquisition and reduction
need to define what
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Errors

Accuracy and Precision
accuracy of observation measures correctness of result,
measures of how close observational result comes to true value
precision of observation measures how reproducible result is,
measures how exactly the result is determined without reference
to what that result means
absolute precision: magnitude of uncertainty in result in same
units as result
relative precision: uncertainty in terms of fraction of value of result
both accuracy and precision need to be considered
simultaneously
useless to determine something with high precision but highly
inaccurately
observation cannot be considered accurate if precision is low
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Random and Systematic Errors
systematic error : reproducible inaccuracy introduced by faulty
equipment, calibration, or technique
accuracy generally depends on how well one can control or
compensate for systematic errors
random error : Indefiniteness of result due to a priori finite
precision of observation, measures fluctuation in repeated
observations
precision depends on how well one can overcome or analyse
random errors
random errors require repeated trials to yield precise results
given accuracy implies a precision at least as good⇒ depends
somewhat on random errors
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Distributions

Characterizing Distributions

parent distribution: infinite number of measurements⇒
observations distributed according to true probability distribution
actual observations are sample of infinite number of possible
measurements
observations estimate parameters of parent distribution
average:

µ ' x ≡ 1
N

N∑
i=1

xi

variance:

σ2 ' s2 ≡ 1
N − 1

N∑
i=1

(xi − x)2 =
1

N − 1

(
N∑

i=1

xi
2 − Nx2

)
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Independent Measurements
estimate of average assumes that all measurements xi are
independent
for variance, already used xi values to estimate average⇒ N − 1
independent measurements left
reason that sum of (xi − x)2 is divided by N − 1
single measurement (N = 1)

best value for average given by single measurement
no measure for variance
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Sample Average

consider x as variable in definition of variance
try to find value of x for which s2 is minimal
set derivative of s2 with respect to x to zero:

∂s2

∂x
=
−2

N − 1

N∑
i=1

(xi − x) =
−2

N − 1

(
N∑

i=1

xi − Nx

)
= 0

therefore

x ≡ 1
N

N∑
i=1

xi

definition for sample average minimizes sample variance
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Average and Variance for Binned Data

astronomical data often binned or discrete
all digital data is binned
definitions

B number of bins, b = 1, . . . ,B
xb value of x in bin b
Nb number of measurements in bin b

normalize Nb by total number of measurements
probability that measurement falls into bin b is Pb ≡ Nb/

∑B
b=1 Nb

average:

x =
B∑

b=1

Pbxb

variance:

s2 =
N

N − 1

(
B∑

b=1

Pbxb
2 − x2

)
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Higher-Order Moments of Distributions

higher-order moments of distributions very sensitive to outliers
large xi − x value dominates much more in distribution of (xi − x)2

than in distribution of |xi − x |
therefore do not use even higher moments such as

Skewness:
≡ 1

Nσ3

∑
(xi − x)3

Kurtosis
≡ 1

Nσ4

∑
(xi − x)4 − 3

σ is standard deviation
subtraction of 3 in kurtosis makes kurtosis of Gaussian zero
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Computing Distributions

Numerical Recipes

funamental book on numerical
algorithms
exists for different programming
languages
2nd edition available online at
www.nr.com/oldverswitcher.html
Chapter 6 contains algorithms to
calculate special functions

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Fitting Observed Data 1 10

http://www.nr.com/oldverswitcher.html


Gamma Function

commons.wikimedia.org/wiki/File:Gamma-function.svg

Γ(z) =
∫∞

0 tz−1e−tdt
integer z: gamma function equals factorial with offset of one

n! = Γ(n + 1)
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Factorial
small n⇒ compute factorial directly as n × (n − 1)× (n − 2) . . .

large values⇒ gamma-function
large n, factorial larger than largest number allowed by computer

single precision (IEEE 754 32-bit decimal) has maximum
exponents of -126, +127
double precision (EEE 754 64-bit declimal) has maximum
exponents of -1022, 1023
calculate logarithm of factorial or logarithm of gamma function

useful function routines from Numerical Recipes:
function gammln(x) returns ln Γ(x) for input x
function factrl(n) returns real n! for input integer n
function factln(n) returns real ln n! for input integer n

function bico(n,k) returns real
(

n
k

)
for integer inputs n, k

useful to compute large number of frequently used distributions
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Cummulative Poisson Distribution

en.wikipedia.org/wiki/Poisson_distribution

cumulative Poisson probability describes probability that Poisson
process will lead to result between 0 and k − 1 inclusive:

Px (< k) ≡
k−1∑
n=0

PP(k , x)

incomplete gamma function:

P(a, x) ≡ 1
Γ(a)

∫ x

0
ta−1e−tdt
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Cummulative Poisson Distribution (continued)
complement also called incomplete gamma function

Q(a, x) ≡ 1− P(a, x) ≡ 1
Γ(a)

∫ ∞
x

ta−1e−tdt

cumulative Poisson probability:

Px (< k) = Q(k , x)

corresponding routines in Numerical Recipes are:
function gammp(a,x) returns P(a, x) for input a, x
function gammq(a,x) returns Q(a, x) for input a, x
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Cummulative Gauss Distribution

en.wikipedia.org/wiki/Normal_distribution

integral probability of Gauss function from error function:

erf(x) =
2√
π

∫ x

0
e−t2

dt

complementary error function:

erfc(x) =
2√
π

∫ ∞
x

e−t2
dt
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Cummulative Gauss Distribution (continued)
error functions given by incomplete gamma functions:

erf(x) = P(1/2, x2) (x ≥ 0)

erfc(x) = Q(1/2, x2) (x ≥ 0)

corresponding routines in Numerical Recipes are:
function erf(x) returns erf(x) for input x , using gammp
function erfc(x) returns erfc(x) for input x , using gammq
function erfcc(x) returns erfc(x) based on direct series
development
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Error Propagation

Basics
function f depends on variables u, v , . . .:

f ≡ f (u, v , . . .)

estimate variance of f

σf
2 ≡ lim

N→∞

1
N

N∑
i=1

(fi − f )2

knowing variances σu, σv , . . . of variables u, v , . . .
assumption, usually only approximately correct, that average of f
is well approximated by value of f for averages of variables:

f = f (u, v , . . .)
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Basics (continued)
Taylor expansion of f around average:

fi − f ' (ui − u)
∂f
∂u

+ (vi − v)
∂f
∂v

+ . . .

variance in f :

σf
2 ' lim

N→∞

1
N

N∑
i=1

[
(ui − u)

∂f
∂u

+ (vi − v)
∂f
∂v

+ . . .

]2

= lim
N→∞

1
N

N∑
i=1

[ (ui − u)2
(
∂f
∂u

)2
+ (vi − v)2

(
∂f
∂v

)2
+

2(ui − u)(vi − v) ∂f
∂u

∂f
∂v + . . .

]
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Basics (continued)
variances of u and v

σu
2 ≡ lim

N→∞

1
N

N∑
i=1

(ui − u)2; σv
2 ≡ lim

N→∞

1
N

N∑
i=1

(vi − v)2

covariance of u and v

σuv
2 ≡ lim

N→∞

1
N

N∑
i=1

(ui − u)(vi − v)

use these defintions to obtain

σf
2 = σu

2
(
∂f
∂u

)2

+ σv
2
(
∂f
∂v

)2

+ 2σuv
2 ∂f
∂u

∂f
∂v

+ . . .
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Basics (continued)
from before

σf
2 = σu

2
(
∂f
∂u

)2

+ σv
2
(
∂f
∂v

)2

+ 2σuv
2 ∂f
∂u

∂f
∂v

+ . . .

if differences ui − u and vi − v not correlated⇒ sign of product as
often positive as negative⇒ covariance small compared to other
terms
if differences are correlated⇒ most products (ui − u)(vi − v)
positive⇒ cross-correlation term can be large
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Examples of Error Propagation

Weighted Sum: f = au + bv
partial derivatives

∂f
∂u

= a,
∂f
∂v

= b

variance
σf

2 = a2σu
2 + b2σv

2 + 2abσuv
2

a and b can be positive or negative
signs only affect cross-correlation term
cross-correlation term can be negative⇒ makes variance smaller
example: if each ui is accompanied by a vi such that
vi − v = −(b/a)(uu − u), then f = au + bv for all ui , vi pairs, and
σf

2 = 0
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Product: f = auv
partial derivative

∂f
∂u

= av ,
∂f
∂v

= au

variance
σf

2

f 2 =
σu

2

u2 +
σv

2

v2 +
2σuv

2

uv

Division: f = au/v

partial derivatives

∂f
∂u

=
a
v
,

∂f
∂v

= −au
v2

variance
σf

2

f 2 =
σu

2

u2 +
σv

2

v2 −
2σuv

2

uv
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Exponent: f = aebu

partial derivatives
∂f
∂u

= bf

variance
σf

f
= bσu

Power: f = aub

partial derivatives
∂f
∂u

=
bf
u

variance
σf

f
= b

σu

u
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Fitting Observations with Gaussian Error Distributions

Least Squares Method
series of measurements yi with associated errors distributed
according to Gaussian with width σi

same as each measurement drawn from Gaussian with width σi
around model value ym

probability P(yi) ≡ Pi of obtaining a single measurement yi in
interval ∆y given by

Pi∆y =
1√

2πσi
e
−(yi−ym)2

2σi
2 ∆y

different measurements have different associated errors σi
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Least Squares Method (continued)
probability P of obtaining series of N measurements

P(∆y)N ≡
N∏

i=1

(Pi∆y) =
1

(2π)N/2
∏

i σi
exp

[
−1

2

N∑
i=1

(yi − ym)2

σi
2

]
∆yN

highest probability P for smallest

χ2 ≡
N∑

i=1

χi
2 ≡

N∑
i=1

(yi − ym)2

σi
2

determine most probable model value for ym for series of
measurements yi by finding value(s) for ym for which sum of
squares (yi − ym)2/σi

2 is minimal
method of least squares, first described by Gauss
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Chi-Squared Distribution
if errors are gaussian, each χi is random draw from normal
distribution
sum of χi

2 is called chi-square
N measurements fit by model with M parameters: N −M
independent measurements
probability distribution for χ2 is chi-square distribution for N −M
degrees of freedom
distribution obtained by drawing N −M random samples from
normal distribution and add squares
probability of given χ2 from gammq-function
probability that observed χ2

obs or greater is reached for N −M
degrees of freedom is P(χ2

obs) = gammq(0.5(N −M),0.5χ2
obs)
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Chi-Squared Distribution (continued)
if probability is very small⇒ something is wrong

wrong model
errors underestimated
errors not distributed as Gaussians

probability of 0.05 is often acceptable
wrong models produce much smaller probabilities (< 0.000001)
probability of 5% occurs, on average, once every 20 trials
finding 0.05 probability due to chance quite common
consistently low probabilities must be investigated
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Negative Results

apparently significant results can arise from ignoring negative
results
lottery winner is person with correct six-digit number
probability for one person to have winning number is one in a
million
if several million people participate we expect several to have
guessed the correct number
less obvious: repeated experiment, i.e. stock broker
ten million people predict how stocks change in value
after one year, select top 10% predictors
repeat for total of six rounds⇒ (on average) ten brokers will have
predicted among top 10% for six years in a row, even if prediction
process is purely random!
must know total number of brokers to decide wether they are
better than random
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Model Fitting

fit model to data set, present 3 parts:
1 best-fit values of parameters a1,a2, . . .
2 errors in these parameters
3 probability that measured χ2 is obtained by chance; i.e. the

probability that model adequately describes measurements
5 cases for ym

1 constant (ym same for all i)
2 straight line ym = a + bx where ym depends on variable x and

model parameters a, b
3 straight line ym = a + bx where ym depends on variables x , y ,

model parameters a, b
4 linear function ym = f (x ,a,b, c, . . . where ym depends on variable x

and linearly on model parameters a, b, . . .
5 general (non-linear) case where ym depends on variable x and

parameters a1,a2, . . .: ym = ym(x ;~a)
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Weighted Averages

constant model ym = a⇒ a best estimate for average y of yi

most probable value of a by minimizing χ2 with respect to a

∂

∂a

[
N∑

i=1

(yi − a)2

σi
2

]
= 0⇒

N∑
i=1

yi − a
σi

2 = 0

least squares found for

y ≡ amin =

∑N
i=1

yi
σi

2∑N
i=1

1
σi

2
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Weighted Averages (continued)

determine estimate of error in y
y is function of variables y1, y2, . . .

if measurements yi not correlated: variance of y from error
propagation:

σy
2 =

N∑
i=1

[
σi

2
(
∂y
∂yi

)2
]

=
N∑

i=1

σi
2

(
1/σi

2∑N
k=1(1/σk

2)

)2


therefore
σy

2 =
1∑N

i=1(1/σi
2)
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Identical Errors
in case where all measurement errors are identical (σi ≡ σ)

y =
(1/σ2)

∑N
i=1 yi

(1/σ2)
∑N

i=1(1)
=

1
N

N∑
i=1

yi

therefore

σy
2 =

σ2

N
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Fitting Straight Line

straight line: ym(x ,a,b) = a + bx ⇒ ym(xi ,a,b) = a + bxi

fit a, b by minimizing χ2 with respect to a, b
set corresponding derivatives χ2 to zero:

∂
∑N

i=1[(yi − a− bxi)/σi ]
2

∂a
= 0⇒

N∑
i=1

(
yi − a− bxi

σi
2

)
= 0⇒

N∑
i=1

yi

σi
2 − a

N∑
i=1

1
σi

2 − b
N∑

i=1

xi

σi
2 = 0

∂
∑N

i=1[(yi − a− bxi)/σi ]
2

∂b
= 0⇒

N∑
i=1

xi(yi − a− bxi)

σi
2 = 0⇒

N∑
i=1

xiyi

σi
2 − a

N∑
i=1

xi

σi
2 − b

N∑
i=1

xi
2

σi
2 = 0
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Fitting Straight Line (continued)
all sums can be evaluated without knowing a or b
define the following sums

N∑
i=1

1
σi

2 ≡ S;
N∑

i=1

xi

σi
2 ≡ Sx ;

N∑
i=1

xi
2

σi
2 ≡ Sxx

N∑
i=1

yi

σi
2 ≡ Sy ;

N∑
i=1

xiyi

σi
2 ≡ Sxy ; ∆ ≡ SSxx − (Sx )2

rewrite as two equations for two unknowns a and b:

aS + bSx − Sy = 0
aSx + bSxx − Sxy = 0
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Fitting Straight Line (continued)
solutions

a =
SxxSy − SxSxy

∆
; b =

SSxy − SxSy

∆

errors in a, b from considering a, b to depend on independent
parameters yi

∂a
∂yi

=
Sxx − xiSx

σi
2∆

;
∂b
∂yi

=
xiS − S
σi

2∆

use error propagation

σa
2 =

Sxx

∆
; σb

2 =
S
∆

probability that good fit would produce observed χ2
obs or bigger:

Q = gammq

(
N − 2

2
,
χ2

obs
2

)
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Straight Line Fitting Example

number of new physics and astronomy students in Netherlands
errors in measured integer numbers: square root of number
actual number in year is drawn from distribution (here Poissonian)
around expected value
same in photon-counting observations
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Example (continued)
good choice of a, b
number of students as N(t) = a + bt where t is the year⇒ a gives
number of students for year 0
sums involving xi -values are very large⇒ subtracting them from
one another (as in computing ∆) easily leads to roundoff errors
errors in a and b will be highly correlated: small change in b
changes a dramatically in one direction
prevent both problems by centering time interval around point of
fitting, i.e. N = a + b(t − 1994)

avoids round-off errors and correlation of variations are minimized
good practice in astronomy to define time with respect to some
fiducial point near middle of measurements
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Linear Models with Errors in Both Coordinates
xi may also have errors⇒ minimize

χ2(a,b) =
N∑

i=1

(yi − a− bxi)
2

σ2
yi

+ b2σ2
xi

weighted sum of variances in denominator from error propagation
a determined from setting partial derivative to zero

a =

[
N∑

i=1

(yi − bxi)
2

σ2
yi

+ b2σ2
xi

]
/

N∑
i=1

1
σ2

yi
+ b2σ2

xi

b determination more complicated because equation becomes
non-linear⇒ numerical solution to minimize with respect to b
at each iteration ensure that minimum with respect to b is also
minimized with respect to a
complicated errors in parameter estimates⇒ use apprach to be
discussed for general case
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General Linear Least Squares Problem

Linear Models
model ym

i is linear combination of M given functions of x
example: polynomial of degree M − 1:
y(x) = a1 + a2x + a3x2 + . . .+ aMxM

general form

y(x) =
N∑

k=1

AkXk

X1(x), . . . ,XM(x) arbitrary (non-linear!) fixed functions of x
minimize

χ2 =
N∑

i=1

yi −
∑N

k=1 akXk (xi)

σ2
i

design matrix

Aij =
Xj(xi)

σi
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Linear Models (continued)
in general, A has more rows than columns (N > M)
vector ~b of length N:

bi =
yi

σi

minimum of chi-squared where derivatives with respect to all M
parameters vanishes leads to

(AT A)~a = AT~b

inverse matrix of positive definite matrix AT A

C = (AT A)−1

errors in parameters then given by

σ2(aj) = Cjj

off-diagonal elements Cjk are covariances between aj and ak
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Linearizing Models
apparently nonlinear problems can be linearized
example: y(x) = aebx becomes log y(x) = c + bx
warning: transformations does not make Gaussian errors into
Gaussian errors
warning: watch out for degenerate parameters, e.g.
y(x) = aebx+d
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