Lecture 4: Astronomical Measurement 2

Outline

- Time Filtering
- First-Order Transfer Function
- Aliasing

Finite Exposure and Time Resolution

- measurement of stochastic process always takes place
 - over finite time period T, e.g. due to limited hours in one night
 - with time resolution ΔT , e.g. due to finite exposure time
- sampling interval does not have to be the same as exposure time, e.g. CCD needs time to read out image
- duty cycle of measurement (typically expressed in %): ratio of exposure time to sampling interval
- in the following: assume 100% duty cycle

Limited Measuring Time

 limitation in measuring time *T* corresponds to *multiplication in time domain* of stochastic variable *X*(*t*) with window function Π(*t*/*T*)

$$\Pi\left(\frac{t}{T}\right) \equiv 1 \quad \text{for} \quad |t| \le \frac{1}{2}T$$

$$\Pi\left(\frac{t}{T}\right) \equiv 0 \quad \text{for} \quad |t| > \frac{1}{2}T$$

Limited Measuring Time (continued)

• new, time filtered, stochastic variable Y(t)

$$Y(t) = \Pi\left(\frac{t}{T}\right)X(t)$$

all measurements are limited in time

Time Resolution

- measurement at time t with temporal resolution ΔT
- is integration of stochastic variable Y(t) between $t \Delta T/2$ and $t + \Delta T/2$, divided by ΔT (running average)

$$Z(t) \equiv Y_{\Delta T}(t) = \frac{1}{\Delta T} \int_{t-\Delta T/2}^{t+\Delta T/2} Y(t') dt' = \frac{1}{\Delta T} \int_{-\infty}^{+\infty} \Pi\left(\frac{t-t'}{\Delta T}\right) Y(t') dt'$$

Time Resolution (continued)

• express previous equation as convolution in time:

$$Z(t) \equiv Y_{\Delta T}(t) = \frac{1}{\Delta T} \int_{-\infty}^{+\infty} \Pi\left(\frac{t-t'}{\Delta T}\right) Y(t') dt'$$
$$Z(t) = \frac{1}{\Delta T} \Pi\left(\frac{t}{\Delta T}\right) * Y(t) = \frac{1}{\Delta T} \Pi\left(\frac{t}{\Delta T}\right) * \Pi\left(\frac{t}{T}\right) X(t)$$

Time Resolution (continued)

• low-frequency (or 'low-pass') filtering of stochastic variable Y(t)

- limitation in time resolution always due to frequency-limited transmission characteristic of any physical measuring device
- μ_T, R_T(τ) for ergodic process obtained from finite measuring period T will slightly differ from true μ, R(τ)
- error introduced by measuring sample average μ_{T} instead of μ

Error Assessment in Sample Average μ_T

- accuracy with which approximate value μ_T approaches real value μ
- determining average corresponds to convolution in time domain with block function

$$X(t)
ightarrow rac{1}{T} \Pi\left(rac{t}{T}
ight)
ightarrow X_T$$

 in Fourier domain averaging corresponds to multiplication with sinc-function

Transfer Function

- influence of measuring device on signal described in Fourier domain: Y(f) = X(f)H(f), Y*(f) = X*(f)H*(f)
- *H*(*f*) is transfer function
- therefore $|Y(f)|^2 = |X(f)|^2 |H(f)|^2$
- *transfer function* used both for H(f) (signal transfer function) and $|H(f)|^2$ (power transfer function)

Autocorrelation in Fourier Domain

Fourier transform of autocorrelation:

$$S_{X_T}(f) = |H(f)|^2 S_{X(t)}(f) = \operatorname{sinc}^2(Tf) \cdot S_{X(t)}(f)$$

transforming back to time domain

$$R_{X_{\tau}}(\tau) = h(\tau) * h(\tau) * R_{X(t)}$$

Autocorrelation in Fourier Domain

• $h \equiv (1/T)\Pi(t/T)$ is real function

• convolution of block with itself is a triangle

$$h(\tau) * h(\tau) \equiv \rho(\tau) \equiv \frac{1}{T} \Lambda\left(\frac{\tau}{T}\right)$$

Autocorrelation (continued)

• from before

$$R_{X_{\tau}}(\tau) = h(\tau) * h(\tau) * R_{X(t)}$$

rewrite as

$${m R}_{X_{T}}(au) = rac{1}{T} \Lambda\left(rac{ au}{T}
ight) st {m R}_{X(t)} \equiv rac{1}{T} \int\limits_{-\infty}^{+\infty} \Lambda\left(rac{ au'}{T}
ight) {m R}_{X(t)}(au- au') d au'$$

12

Autocorrelation (continued)

$$\mathcal{C}_{X_{\mathcal{T}}}(au) = rac{1}{\mathcal{T}} \int\limits_{-\infty}^{+\infty} \Lambda\left(rac{ au'}{\mathcal{T}}
ight) \mathcal{C}_{X(t)}(au- au') d au'$$

Variance

• variance from time lag $\tau = 0$ and *C* even

$$C_{X_{T}}(0) \equiv \left[\sigma_{X_{T}}\right]^{2} = \frac{1}{T} \int_{-\infty}^{+\infty} \Lambda\left(\frac{\tau'}{T}\right) C_{X(t)}(-\tau') d\tau'$$
$$= \frac{1}{T} \int_{-\infty}^{+\infty} \Lambda\left(\frac{\tau'}{T}\right) C_{X(t)}(\tau') d\tau'$$

explicitly writing triangle function Λ

$$\left[\sigma_{X_{T}}\right]^{2} = \frac{1}{T} \int_{-T}^{+T} \left(1 - \frac{|\tau'|}{T}\right) C_{X(t)}(\tau') d\tau'$$

- integral over $\pm T$, normalization still 1/T
- autocovariance is always limited in frequency domain

Example: First-Order Transfer Function

• first-order system: described by first-order differential equation

$$au_0 rac{dY(t)}{dt} + Y(t) = X(t)$$

- RC circuit: $\tau_0 = RC$
- Fourier transform differential equation

$$2\pi i f \tau_0 Y(f) + Y(f) = X(f)$$

• first-order transfer function from Y(f) = H(f) * X(f):

$$H(f) = \frac{1}{1 + 2\pi i f \tau_o}$$

15

Example: First-Order Transfer Function

• first-order transfer function from before:

$$H(f) = \frac{1}{1 + 2\pi i f \tau_o}$$

- $f \ll 1/(2\pi\tau_o) \equiv f_o$, complete transfer, |H(f)| = 1
- $f \gg f_o$, transfer inversely proportional to f, $|H(f)| = f_o/f$
- cut-off frequency f_o of transfer function H(f)

Auto-Covariance of First-Order System

 without proof: autocovariance of first-order system drops exponentially with |\(\tau\)|:

$$C_{X(t)}(\tau) = C_{X(t)}(0)e^{-|\tau|/\tau_o}$$
 where $\tau_o \equiv \frac{1}{2\pi f_o}$

• $\tau \gg \tau_o \Rightarrow$ correlation virtually zero; integrate:

$$\left[\sigma_{X_{T}}\right]^{2} = 2\left[\sigma_{X(t)}\right]^{2} \frac{\tau_{o}}{T} \left[1 - \frac{\tau_{o}}{T} \left(1 - e^{-T/\tau_{o}}\right)\right]$$

Auto-Covariance of First-Order System (continued)

- limiting case 1: duration of measurement much longer than correlation time, $T \gg \tau_o$
- in general:

$$\left[\sigma_{X_{T}}\right]^{2} = 2\left[\sigma_{X(t)}\right]^{2} \frac{\tau_{o}}{T} \left[1 - \frac{\tau_{o}}{T} \left(1 - e^{-T/\tau_{o}}\right)\right]$$

in limiting case 1

$$\left[\sigma_{X_{T}}\right]^{2} = 2 \left[\sigma_{X(t)}\right]^{2} \frac{\tau_{o}}{T} = \frac{\left[\sigma_{X(t)}\right]^{2}}{\pi f_{o}T}$$

- variance proportional to variance of incoming signal
- variance approaches zero when duration of measurement goes to infinity
- variance approaches zero when measurement frequency goes to infinity

Auto-Covariance of First-Order System (continued)

from before

$$\left[\sigma_{X_T}\right]^2 = 2 \left[\sigma_{X(t)}\right]^2 \frac{\tau_o}{T} = \frac{\left[\sigma_{X(t)}\right]^2}{\pi f_o T}$$

- measured signal is ergodic in the mean
- limit can be understood by noting that f_oT is number of cycles during T with a frequency f_o, i.e. it gives number of measurements
- analogous to equation for variance of average $\sigma_{\mu}^2 = \sigma^2/N$

Auto-Covariance of First-Order System (continued)

- limiting case 2: duration of measurement equals correlation time, $T = \tau_o$
- from before

$$\left[\sigma_{X_{T}}\right]^{2} = 2\left[\sigma_{X(t)}\right]^{2} \frac{\tau_{o}}{T} \left[1 - \frac{\tau_{o}}{T} \left(1 - e^{-T/\tau_{o}}\right)\right]$$

In this limiting case:

$$\sigma_{X_T}^2 = 2\sigma_{X(t)}^2 e^{-1} \simeq \sigma_{X(t)}^2$$

- understandable in terms of determining average in case of single measurement (N = 1)
- duration of measurement should be much longer than correlation time, $T \gg \tau_o$, to avoid *large* errors in estimates of average and variance
- must take into account errors in average and variance when looking for really *small* effects

Nyquist Frequency

- signal *S*(*x*) subject to instrument response *R*(*x*)
- resulting measurement

M(x) = S(x) * R(x)

- finite frequency response of instrument $\Rightarrow M(x)$ always bandwidth limited
- Fourier transform $M(s) \Leftrightarrow M(x)$ is bandwidth-limited function
- characterized by cut-off frequency s_{max}, critical or Nyquist frequency (s_c)

Nyquist Frequency (continued)

- gaussian response: impossible because no physical system transmits frequencies to ∞
- Shannon and Nyquist established theorem for optimum sampling of band-limited observations
- theorem states that no information is lost if sampling occurs at intervals τ = 1/(2s_c)

Regular Sampling

- M(x) sampled at regular intervals, $M(x) \rightarrow M(n\tau)$
 - n integer
 - au sampling interval
- describe sampling process quantitatively with Dirac comb (series of δ functions at regular distances equal to 1):

$$\perp \perp \perp (x) \equiv \sum_{n=-\infty}^{\infty} \delta(x-n)$$

• extended comb to arbitrary distances:

 $a \perp \perp \perp (ax) = \sum_{n} \delta(x - n/a)$

Regular Sampling

• write sampled signal $M_s(x)$ as

$$M_{s}(x) = \sum_{n} M(n\tau)\delta(x - n\tau)$$
$$= \frac{1}{\tau} \perp \perp \perp \left(\frac{x}{\tau}\right) M(x)$$

Regular Sampling (continued)

- Fourier transform pair $M_s(s) \Leftrightarrow M_s(x)$
 - $M_{s}(s) = \perp \perp \perp (\tau s) * M(s)$ $= \frac{1}{\tau} \sum_{n} M\left(s \frac{n}{\tau}\right)$
- except for factor 1/τ, M_s(s) is series of replications of M(s) at intervals 1/τ

Regular Sampling (continued)

• M(s) bandwidth-limited function with cut-off frequency $s = s_c \Rightarrow$ fully recover single (i.e. not repeated) function M(s) from series by multiplication with τ and by filtering with gate function $\Pi(s/2s_c)$:

$$\Pi\left(\frac{s}{2s_c}\right)\tau\perp\perp\perp(\tau s)*M(s)$$

$$\Leftrightarrow$$

$$2s_c \operatorname{sinc} 2s_c x*\perp\perp\perp\left(\frac{x}{\tau}\right)M(x)$$

Regular Sampling (continued)

- reconstruct *M*(*x*) exactly if series of *M*(*s*) functions in frequency domain touch without overlap
- only possible by sampling at τ = 1/(2s_c) (optimum sampling interval)
- convolution to fully reconstruct M(x):

$$M(x) = \int_{-\infty}^{+\infty} \operatorname{sinc}\left(\frac{x-x'}{\tau}\right) \sum_{n} M(n\tau) \delta(x'-n\tau) dx'$$
$$= \sum_{n} \operatorname{sinc}\left(\frac{x-n\tau}{\tau}\right) M(n\tau)$$

• check result for one sampling point $x = j\tau$, with $\operatorname{sinc}(j - n) = 1$ for j = n and = 0 for $j \neq n$:

$$M(x) = M(j\tau)$$

27

Aliasing

• function *h*(*t*) shown in top panel is undersampled

- sampling interval ∆ larger than ¹/_{2fmax}
- lower panel shows that power in frequencies above ¹/_{2Δ} is 'mirrored' with respect to this frequency
- produces aliased transform that deviates from true Fourier transform

Aliasing (continued)

- calculation of intermediate points from samples does not depend on calculating Fourier transforms
- equivalent operation in *x*-domain is direct convolution of 2s_csinc2s_cx with ⊥⊥⊥(x/τ)M(x)
- omission of $1/\tau$ factor ensures proper normalization in s-domain
- superposition of series of sinc-functions with weight factors *M*(*n*τ),
 i.e. the sample values, at intervals τ exactly reconstruct the continuous function *M*(*x*)
- sinc-functions provide proper interpolation between consecutive sample points
- sinc-function referred to as *interpolation function*

Aliasing (continued)

- discrete Fourier transform causes no loss of information if sampling frequency $\frac{1}{\tau}$ is twice the highest frequency in continuous input function
- maximum frequency s_{max} for given sampling interval is $\frac{1}{2\tau}$
- input signal sampled too slowly (contains frequencies higher than $\frac{1}{2\tau}$) \Rightarrow source signal cannot be determined after sampling process
- Ioss of fine details
- must apply low-pass filter before sampling:
 - electronic low-pass filter for electrical signals
 - defocusing of telescope for imaging

Aliasing in Fourier Domain

http://en.wikipedia.org/wiki/File:AliasingSines.svg

- unresolved, high frequencies beat with measured frequencies
- produce spurious components in frequency domain below Nyquist frequency
- may give rise to major problems and uncertainties in the determination of source function