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Time Filtering

Finite Exposure and Time Resolution
measurement of stochastic process always takes place

over finite time period T , e.g. due to limited hours in one night
with time resolution ∆T , e.g. due to finite exposure time

sampling interval does not have to be the same as exposure time,
e.g. CCD needs time to read out image
duty cycle of measurement (typically expressed in %): ratio of
exposure time to sampling interval
in the following: assume 100% duty cycle
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Limited Measuring Time

limitation in measuring time T corresponds to multiplication in time
domain of stochastic variable X (t) with window function Π(t/T )

Π

(
t
T

)
≡ 1 for |t | ≤ 1

2
T

Π

(
t
T

)
≡ 0 for |t | > 1

2
T
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Limited Measuring Time (continued)

new, time filtered, stochastic variable Y (t)

Y (t) = Π

(
t
T

)
X (t)

all measurements are limited in time
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Time Resolution

measurement at time t with temporal resolution ∆T
is integration of stochastic variable Y (t) between t −∆T/2 and
t + ∆T/2, divided by ∆T (running average)

Z (t) ≡ Y∆T (t) =
1

∆T

t+∆T/2∫
t−∆T/2

Y (t ′)dt ′ =
1

∆T

+∞∫
−∞

Π

(
t − t ′

∆T

)
Y (t ′)dt ′
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Time Resolution (continued)

express previous equation as convolution in time:

Z (t) ≡ Y∆T (t) =
1

∆T

+∞∫
−∞

Π

(
t − t ′

∆T

)
Y (t ′)dt ′

Z (t) =
1

∆T
Π

(
t

∆T

)
∗ Y (t) =

1
∆T

Π

(
t

∆T

)
∗ Π

(
t
T

)
X (t)
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Time Resolution (continued)

low-frequency (or ‘low-pass’) filtering of stochastic variable Y (t)
limitation in time resolution always due to frequency-limited
transmission characteristic of any physical measuring device
µT , RT (τ) for ergodic process obtained from finite measuring
period T will slightly differ from true µ, R(τ)

error introduced by measuring sample average µT instead of µ
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Error Assessment in Sample Average µT

accuracy with which
approximate value µT
approaches real value µ
determining average
corresponds to convolution in
time domain with block
function

X (t)→ 1
T Π
( t

T

)
→ XT

in Fourier domain averaging
corresponds to multiplication
with sinc-function
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Transfer Function

influence of measuring device on signal described in Fourier
domain: Y (f ) = X (f )H(f ) , Y ∗(f ) = X ∗(f )H∗(f )

H(f ) is transfer function
therefore |Y (f )|2 = |X (f )|2|H(f )|2

transfer function used both for H(f ) (signal transfer function) and
|H(f )|2 (power transfer function)
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Autocorrelation in Fourier Domain

Fourier transform of autocorrelation:

SXT (f ) = |H(f )|2SX(t)(f ) = sinc2(Tf ) · SX(t)(f )

transforming back to time domain

RXT (τ) = h(τ) ∗ h(τ) ∗ RX(t)
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Autocorrelation in Fourier Domain

h ≡ (1/T )Π(t/T ) is real function
convolution of block with itself is a triangle

h(τ) ∗ h(τ) ≡ ρ(τ) ≡ 1
T

Λ
( τ

T

)
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Autocorrelation (continued)

from before
RXT (τ) = h(τ) ∗ h(τ) ∗ RX(t)

rewrite as

RXT (τ) =
1
T

Λ
( τ

T

)
∗ RX(t) ≡

1
T

+∞∫
−∞

Λ

(
τ ′

T

)
RX(t)(τ − τ ′)dτ ′
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Autocorrelation (continued)

consider µ = 0, i.e. R = C

CXT (τ) =
1
T

+∞∫
−∞

Λ

(
τ ′

T

)
CX(t)(τ − τ ′)dτ ′
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Variance
variance from time lag τ = 0 and C even

CXT (0) ≡
[
σXT

]2
=

1
T

+∞∫
−∞

Λ

(
τ ′

T

)
CX(t)(−τ ′)dτ ′

=
1
T

+∞∫
−∞

Λ

(
τ ′

T

)
CX(t)(τ ′)dτ ′

explicitly writing triangle function Λ

[
σXT

]2
=

1
T

+T∫
−T

(
1− |τ

′|
T

)
CX(t)(τ ′)dτ ′

integral over ±T , normalization still 1/T
autocovariance is always limited in frequency domain

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Astronomical Measurement 2 14



Example: First-Order Transfer Function

first-order system: described by first-order differential equation

τ0
dY (t)

dt
+ Y (t) = X (t)

RC circuit: τ0 = RC
Fourier transform differential equation

2πif τ0Y (f ) + Y (f ) = X (f )

first-order transfer function from Y (f ) = H(f ) ∗ X (f ):

H(f ) =
1

1 + 2πif τo
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Example: First-Order Transfer Function

first-order transfer function from before:

H(f ) =
1

1 + 2πif τo

f � 1/(2πτo) ≡ fo, complete transfer, |H(f )| = 1
f � fo, transfer inversely proportional to f , |H(f )| = fo/f
cut-off frequency fo of transfer function H(f )
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Auto-Covariance of First-Order System

without proof: autocovariance of first-order system drops
exponentially with |τ |:

CX(t)(τ) = CX(t)(0)e−|τ |/τo where τo ≡
1

2πfo

τ � τo ⇒ correlation virtually zero; integrate:[
σXT

]2
= 2

[
σX(t)

]2 τo

T

[
1− τo

T

(
1− e−T/τo

)]
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Auto-Covariance of First-Order System (continued)
limiting case 1: duration of measurement much longer than
correlation time, T � τo

in general: [
σXT

]2
= 2

[
σX(t)

]2 τo

T

[
1− τo

T

(
1− e−T/τo

)]
in limiting case 1

[
σXT

]2
= 2

[
σX(t)

]2 τo

T
=

[
σX(t)

]2
πfoT

variance proportional to variance of incoming signal
variance approaches zero when duration of measurement goes to
infinity
variance approaches zero when measurement frequency goes to
infinity
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Auto-Covariance of First-Order System (continued)
from before [

σXT

]2
= 2

[
σX(t)

]2 τo

T
=

[
σX(t)

]2
πfoT

measured signal is ergodic in the mean
limit can be understood by noting that foT is number of cycles
during T with a frequency fo, i.e. it gives number of measurements
analogous to equation for variance of average σ2

µ = σ2/N
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Auto-Covariance of First-Order System (continued)
limiting case 2: duration of measurement equals correlation time,
T = τo

from before[
σXT

]2
= 2

[
σX(t)

]2 τo

T

[
1− τo

T

(
1− e−T/τo

)]
in this limiting case:

σXT
2 = 2σX(t)

2e−1 ' σX(t)
2

understandable in terms of determining average in case of single
measurement (N = 1)
duration of measurement should be much longer than correlation
time, T � τo, to avoid large errors in estimates of average and
variance
must take into account errors in average and variance when
looking for really small effects
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Nyquist Frequency

signal S(x) subject to
instrument response R(x)

resulting measurement

M(x) = S(x) ∗ R(x)

finite frequency response of
instrument⇒ M(x) always
bandwidth limited
Fourier transform
M(s)⇔ M(x) is
bandwidth-limited function
characterized by cut-off
frequency smax , critical or
Nyquist frequency (sc)
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Nyquist Frequency (continued)
gaussian response:
impossible because no
physical system transmits
frequencies to∞
Shannon and Nyquist
established theorem for
optimum sampling of
band-limited observations
theorem states that no
information is lost if sampling
occurs at intervals τ = 1/(2sc)
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Regular Sampling

M(x) sampled at regular
intervals, M(x)→ M(nτ)

n integer
τ sampling interval

describe sampling process
quantitatively with Dirac comb
(series of δ functions at
regular distances equal to 1):

⊥⊥⊥(x) ≡
∞∑

n=−∞
δ(x − n)

extended comb to arbitrary
distances:
a⊥⊥⊥(ax) =

∑
n δ(x − n/a)
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Regular Sampling

write sampled signal Ms(x) as

Ms(x) =
∑

n

M(nτ)δ(x − nτ)

=
1
τ
⊥⊥⊥

(x
τ

)
M(x)
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Regular Sampling (continued)

Fourier transform pair
Ms(s)⇔ Ms(x)

Ms(s) = ⊥⊥⊥(τs) ∗M(s)

=
1
τ

∑
n

M
(

s − n
τ

)
except for factor 1/τ , Ms(s) is
series of replications of M(s)
at intervals 1/τ
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Regular Sampling (continued)

M(s) bandwidth-limited
function with cut-off frequency
s = sc ⇒ fully recover single
(i.e. not repeated) function
M(s) from series by
multiplication with τ and by
filtering with gate function
Π(s/2sc):

Π

(
s

2sc

)
τ⊥⊥⊥(τs) ∗M(s)

⇔
2scsinc2scx ∗ ⊥⊥⊥

(x
τ

)
M(x)
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Regular Sampling (continued)

reconstruct M(x) exactly if series of M(s) functions in frequency
domain touch without overlap
only possible by sampling at τ = 1/(2sc) (optimum sampling
interval)
convolution to fully reconstruct M(x):

M(x) =

+∞∫
−∞

sinc
(

x − x ′

τ

)∑
n

M(nτ)δ(x ′ − nτ)dx ′

=
∑

n

sinc
(

x − nτ
τ

)
M(nτ)

check result for one sampling point x = jτ , with sinc(j − n) = 1 for
j = n and = 0 for j 6= n:

M(x) = M(jτ)
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Aliasing

Press et al. (1992)

function h(t) shown in top
panel is undersampled
sampling interval ∆ larger
than 1

2fmax

lower panel shows that power
in frequencies above 1

2∆ is
’mirrored’ with respect to this
frequency
produces aliased transform
that deviates from true Fourier
transform
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Aliasing (continued)

calculation of intermediate points from samples does not depend
on calculating Fourier transforms
equivalent operation in x-domain is direct convolution of
2scsinc2scx with ⊥⊥⊥(x/τ)M(x)

omission of 1/τ factor ensures proper normalization in s-domain
superposition of series of sinc-functions with weight factors M(nτ),
i.e. the sample values, at intervals τ exactly reconstruct the
continuous function M(x)

sinc-functions provide proper interpolation between consecutive
sample points
sinc-function referred to as interpolation function
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Aliasing (continued)

discrete Fourier transform causes no loss of information if
sampling frequency 1

τ is twice the highest frequency in continuous
input function
maximum frequency smax for given sampling interval is 1

2τ

input signal sampled too slowly (contains frequencies higher than
1

2τ )⇒ source signal cannot be determined after sampling process
loss of fine details
must apply low-pass filter before sampling:

electronic low-pass filter for electrical signals
defocusing of telescope for imaging
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Aliasing in Fourier Domain

http://en.wikipedia.org/wiki/File:AliasingSines.svg

unresolved, high frequencies beat with measured frequencies
produce spurious components in frequency domain below Nyquist
frequency
may give rise to major problems and uncertainties in the
determination of source function
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