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Tales of a Photon: From Star to Astronomer

The Source
stellar spectrum
unpolarized
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Interstellar Travel
interstellar dust modifies spectrum (extinction)
aligned grains introduce linear polarization

http://en.wikipedia.org/wiki/File:Interstellar_extinction_ave_curves_local_group.png

Serkowski (1973)
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Earth Atmosphere – Spectral Absorption

absorption depends on
location
altitude
elevation of object
pressure
water vapor content
cirrus and clouds
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Earth Atmosphere – Refraction and Dispersion
refraction: from vacuum (n = 1) into air (n > 1)
dispersion due to wavelength-dependence of index of refraction of
air

http://cseligman.com/text/sky/atmosphericdispersion.htm http://www.isc.tamu.edu/ astro/research/sandiego.html
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Earth Atmosphere – Sky Emission
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Earth Atmosphere – Angular

seeing, scattering, point-spread function

Racine (1996)
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Telescope Optics
point-spread function depends on wavelength
optical aberrations
scattering
polarization

Racine (1996)
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Spectrograph Slit
spatial sampling
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Spectrograph

spectral smearing due to finite slit, finite grating
wavelength to position translation
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Detector – Quantum Efficiency: Photons to Electrons

www.andor.com
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Detector – Other Effects
spatial and temporal sampling
additive electronic bias
additive dark current
additive cosmic rays
bad pixels
gain: from photo-electrons to ADUs (Arbitrary Digital Units)
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Analog to Digital Conversion
readout noise
discretization noise
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Data Reduction
dark and flat correction
bad pixel and cosmic ray removal
wavelength calibration
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Astronomer
interpretation
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Astronomical Measuring Process: Information Transfer

Integral response function for astronomical measurements

response of astronomical measuring process to incoming
radiation characterised by filtering process
filtering arising from individual elements making up measurement
system
stochastic process described by monochromatic intensity I(ν, ~Ω, t)
time-dependent output of system described by

X (t) = S(t) + N(t)

S(t) outcome of filtering of signal source
N(t) sum of all (filtered) noise components
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Noise Sources in Astronomical Observations
background radiation

background sources
foreground sources
sky emission
warm optics emission

disturbances arising from operational environment
mechanical vibration
induction of electrical signals

intrinsic noise in detection system
dark current
readout noise
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Integral Response Function for Astronomical Measurements

consider measuring process of source signal S(t) as series of
consecutive convolutions
convolution kernels are angular and spectral response functions
of measurement system

S(t) =

∫
∆ν

R(ν) ∗
∫

∆~ΩFOV

[
I(~Ω, ν, t) ∗ P(~Ω, ν)

]
d~Ω

dν

P(~Ω, ν): collecting power of telescope, depends on frequency
function of telescope off-axis angle in field of view ~ΩFOV

contains point spread function (PSF) H(~Ω, ν), quantitatively
describes angular resolution (field position dependent)

∆~ΩFOV is solid angle over which convolution I(~Ω, ν, t) ∗ P(~Ω, ν) is
integrated
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Integral Response Function (continued)

from before

S(t) =

∫
∆ν

R(ν) ∗
∫

∆~ΩFOV

[
I(~Ω, ν, t) ∗ P(~Ω, ν)

]
d~Ω

dν

choice of ∆~ΩFOV depends on
number of available pixels
science goal of observation

integral over whole field of view ~ΩFOV

may cover large part of sky
may just be one pixel
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Integral Response Function (continued)

from before

S(t) =

∫
∆ν

R(ν) ∗
∫

∆~ΩFOV

[
I(~Ω, ν, t) ∗ P(~Ω, ν)

]
d~Ω

dν

integration signal after second convolution with R(ν) covers
spectral range of interest ∆ν, which is part of total bandwidth ν
from very narrow range (e.g. measuring the line profile of a single
spectral line) to a very broad range (in case of photometry)
number of frequency elements can therefore range from 1 (e.g. in
the case of a bolometric detector) to approximately 106 in a
high-resolution spectrograph
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Fourier Frequencies
term frequency covers 3 types of Fourier pairs:

1 I(~Ω)⇔ I(~ζ) refers to spatial resolution, frequency ~ζ in Fourier
domain is a spatial frequency; structures in image

2 I(ν)⇔ I(s) refers to spectral resolution, frequency s is Fourier
frequency related to spectral frequency; spectrum containing large
number of sharp features (narrow emission and absorption lines)
has much power in high spectral frequencies; featureless
continuum contains only low spectral frequencies

3 The pair I(t)⇔ I(f ) refers to time resolution, frequency f relates to
temporal frequency.

every measurement or observation implies bandwidth limitations
on each of these frequencies
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Modulation Transfer Function
normalised value of the Fourier transform of particular instrument
response function, e.g. R(s) or H(~ζ), is called the Modulation
Transfer Function (MTF) and
MTF describes frequency-dependent filtering of source signal in
Fourier domain
MTF refers either to amplitude/phase transfer function of signal or
to power transfer function
in practice this will be explicitly clear from the specific context in
which the MTF is employed.
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Time Filtering

Finite Exposure and Time Resolution
measurement or registration of a stochastic process always takes
place

over a finite period T
with a certain resolution ∆T , i.e. the minimum time bin for a data
point

limitation in measuring time T corresponds to multiplication in the
time domain of a stochastic variable X (t) with a window function
Π(t/T )

Π

(
t
T

)
≡ 1 for |t | ≤ 1

2
T

Π

(
t
T

)
≡ 0 for |t | > 1

2
T
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Time Resolution (continued)

new, time filtered, stochastic variable Y (t)

Y (t) = Π

(
t
T

)
X (t)

limitation in time resolution always arises in practice due to
frequency-limited transmission characteristic of any physical
measuring device
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Example
measurement taken at time t within measuring period T with
temporal resolution ∆T
corresponds to integration of stochastic variable Y (t) between
t −∆T/2 and t + ∆T/2, divided by ∆T (running average)
as an equation

Z (t) ≡ Y∆T (t) =
1

∆T

t+∆T/2∫
t−∆T/2

Y (t ′)dt ′ =
1

∆T

+∞∫
−∞

Π

(
t − t ′

∆T

)
Y (t ′)dt ′
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Example (continued)
from before

Z (t) ≡ Y∆T (t) =
1

∆T

t+∆T/2∫
t−∆T/2

Y (t ′)dt ′ =
1

∆T

+∞∫
−∞

Π

(
t − t ′

∆T

)
Y (t ′)dt ′

express in terms of convolution in time domain:

Z (t) =
1

∆T
Π

(
t

∆T

)
∗ Y (t) =

1
∆T

Π

(
t

∆T

)
∗ Π

(
t
T

)
X (t)

low-frequency (or ‘low-pass’) filtering of stochastic variable Y (t)
values µT and RT (τ) for an ergodic process obtained from finite
measuring period T will therefore slightly differ from the true
values µ and R(τ)

error introduced by measuring sample average µT rather than true
average µ
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Error Assessment in Sample Average µT

accuracy with which
approximate value µT
approaches real value µ
determining average
corresponds to convolution in
time domain with block
function

X (t)→ 1
T Π
( t

T

)
→ XT

in Fourier domain averaging
corresponds to multiplication
with sinc-function
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Sample Average (continued)

influence of measuring device on signal in Fourier domain:

Y (f ) = X (f )H(f ) , Y ∗(f ) = X ∗(f )H∗(f )

H(f ) is the transfer function
therefore |Y (f )|2 = |X (f )|2|H(f )|2

transfer function used both for H(f ) (signal transfer function) and
|H(f )|2 (power transfer function)

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Astronomical Measurement 1 28



Autocorrelation in Fourier Domain
Fourier transform of autocorrelation:

SXT (f ) = |H(f )|2SX(t)(f ) = sinc2(Tf ) · SX(t)(f )

transforming back to time domain

RXT (τ) = h(τ) ∗ h(τ) ∗ RX(t)

h ≡ (1/T )Π(t/T ) is real function
convolution of block with itself is a triangle

h(τ) ∗ h(τ) ≡ ρ(τ) ≡ 1
T

Λ
( τ

T

)
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Autocorrelation (continued)
from before

RXT (τ) = h(τ) ∗ h(τ) ∗ RX(t)

rewrite as

RXT (τ) =
1
T

Λ
( τ

T

)
∗ RX(t) ≡

1
T

+∞∫
−∞

Λ

(
τ ′

T

)
RX(t)(τ − τ ′)dτ ′

consider µ = 0, i.e. R = C

CXT (τ) =
1
T

+∞∫
−∞

Λ

(
τ ′

T

)
CX(t)(τ − τ ′)dτ ′
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Variance
variance from τ = 0

CXT (0) ≡
[
σXT

]2
=

1
T

+∞∫
−∞

Λ

(
τ ′

T

)
CX(t)(−τ ′)dτ ′ =

1
T

+∞∫
−∞

Λ

(
τ ′

T

)
CX(t)(τ ′)dτ ′

used fact that C is even
Explicitly writing Λ we finally obtain

[
σXT

]2
=

1
T

+T∫
−T

(
1− |τ

′|
T

)
CX(t)(τ ′)dτ ′

integral ranges from −T to +T , i.e. over a range with length 2T ,
but nonetheless the normalization factor is 1/T
autocovariance is always limited in frequency domain
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Example: First-Order Transfer Function

first-order transfer function:

H(f ) =
1

1 + 2πif τo

f � 1/(2πτo) ≡ fo, complete transfer, |H(f )| = 1
f � fo, transfer inversely proportional to temporal frequency,
|H(f )| = fo/f
cut-off frequency fo of transfer function H(f )

autocovariance drops exponentially with |τ | (right)
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Auto-Covariance of First-Order System
without proof: autocovariance of first-order system drops
exponentially with (the absolute value of) the time difference τ :

CX(t)(τ) = CX(t)(0)e−|τ |/τo where τo ≡
1

2πfo

at times τ � τo the correlation is virtually zero
performing the integration, we get[

σXT

]2
= 2

[
σX(t)

]2 τo

T

[
1− τo

T

(
1− e−T/τo

)]
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Auto-Covariance of First-Order System (continued)
first limiting case: duration of measurement much longer than
correlation time, T � τo

in general: [
σXT

]2
= 2

[
σX(t)

]2 τo

T

[
1− τo

T

(
1− e−T/τo

)]
becomes in this limiting case

[
σXT

]2
= 2

[
σX(t)

]2 τo

T
=

[
σX(t)

]2
πfoT

variance of measured signal proportional to variance of incoming
signal
variance approaches zero when duration of measurement goes to
infinity
variance approaches zero when number of frequencies over
which one measures goes to infinity

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Astronomical Measurement 1 34



Auto-Covariance of First-Order System (continued)
measured signal is ergodic in the mean.
limit can be understood by noting that foT is the number of cycles
during T with a frequency fo, i.e. it gives the number of
measurements
analogous to equation which gives variance of average σ2

µ = σ2/N
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Auto-Covariance of First-Order System (continued)
Second limiting case: duration of measurement equals correlation
time, T = τo

from before[
σXT

]2
= 2

[
σX(t)

]2 τo

T

[
1− τo

T

(
1− e−T/τo

)]
in this limiting case:

σXT
2 = 2σX(t)

2e−1 ' σX(t)
2

understandable in terms of determining average in case of single
measurement (N = 1)
duration of measurement should be much longer than correlation
time, T � τo, to avoid large errors in estimates of average and
variance
must take into account errors in average and variance when
looking for really small effects
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Nyquist Frequency

general case of signal S(x) subject to
instrument response R(x)

resulting measurement

M(x) = S(x) ∗ R(x)

finite frequency response of
instrument⇒ M(x) is always limited
in bandwidth
Fourier transform M(s)⇔ M(x) is
bandwidth-limited function
function is characterised by maximum
cut-off frequency smax , also called the
critical or Nyquist frequency (sc)
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Nyquist Frequency (continued)

gaussian response: frequencies will
never be distributed purely gaussian,
since no physical system can transmit
the tail frequencies up to∞
. Shannon (and Nyquist) established
a theorem for optimum sampling of
band limited observations.
theorem states that no information is
lost if sampling occurs at intervals
τ = 1/(2sc)
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Regular Sampling

M(x) is sampled at regular intervals, M(x)→ M(nτ) with n an
integer and τ the sampling interval
describe sampling process quantitatively with Dirac comb (series
of δ functions at regular distances equal to 1):

⊥⊥⊥(x) ≡
∞∑

n=−∞
δ(x − n)

Dirac comb function can be extended to arbitrary distances by
noting a⊥⊥⊥(ax) =

∑
n δ(x − n/a).

sampled signal Ms(x) can now be expressed as

Ms(x) =
∑

n

M(nτ)δ(x − nτ) =
1
τ
⊥⊥⊥

(x
τ

)
M(x)
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Regular Sampling (continued)

Fourier transform Ms(s)⇔ Ms(x) equals

Ms(s) = ⊥⊥⊥(τs) ∗M(s) =
1
τ

∑
n

M
(

s − n
τ

)
except for a proportionality factor 1/τ , Ms(s) represents a series
of replications of M(s) at intervals 1/τ
M(s) bandwidth-limited function with cut-off frequency s = sc ⇒
fully recover single (i.e. not repeated) function M(s) from series by
multiplication with τ and by filtering with gate function Π(s/2sc):

Π

(
s

2sc

)
τ⊥⊥⊥(τs) ∗M(s)⇔ 2scsinc2scx ∗ ⊥⊥⊥

(x
τ

)
M(x)
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Regular Sampling (continued)

M(x) can be reconstructed exactly if series of M(s) functions in
frequency domain touch without overlap
only possible if we sample at τ = 1/(2sc), which therefore is
optimum sample interval
convolution to fully reconstruct M(x):

M(x) =

+∞∫
−∞

sinc
(

x − x ′

τ

)∑
n

M(nτ)δ(x ′ − nτ)dx ′

=
∑

n

sinc
(

x − nτ
τ

)
M(nτ)

check result for one sampling point x = jτ , with sinc(j − n) = 1 for
j = n and = 0 for j 6= n:

M(x) = M(jτ)
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Aliasing

Press et al. (1992)

function h(t) shown in top
panel is undersampled
sampling interval ∆ larger
than 1

2fmax

lower panel shows that power
in frequencies above 1

2∆ is
’mirrored’ with respect to this
frequency
produces aliased transform
that deviates from true Fourier
transform
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Aliasing (continued)

calculation of intermediate points from samples does not depend
on calculating Fourier transforms
equivalent operation in x-domain is direct convolution of
2scsinc2scx with ⊥⊥⊥(x/τ)M(x)

omission of 1/τ factor ensures proper normalization in s-domain
superposition of series of sinc-functions with weight factors M(nτ),
i.e. the sample values, at intervals τ exactly reconstruct the
continuous function M(x)

sinc-functions provide proper interpolation between consecutive
sample points
sinc-function referred to as interpolation function
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Aliasing (continued)

discrete Fourier transform causes no loss of information if
sampling frequency 1

τ is twice the highest frequency in continuous
input function
maximum frequency smax for given sampling interval is 1

2τ

input signal sampled too slowly (contains frequencies higher than
1

2τ )⇒ source signal cannot be determined after sampling process
loss of fine details
must apply low-pass filter before sampling:

electronic low-pass filter for electrical signals
defocusing of telescope for imaging
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Aliasing in Fourier Domain

http://en.wikipedia.org/wiki/File:AliasingSines.svg

unresolved, high frequencies beat with measured frequencies
produce spurious components in frequency domain below Nyquist
frequency
may give rise to major problems and uncertainties in the
determination of source function
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