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Why all this Theory?
need to understand intrinsic noise in astronomical observations
need to understand this in terms of photons (optical, X-ray) and
electromagnetic waves (radio)
noise distribution depends on measurement length and spectral
resolution
noise provides information on radiation source
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Bose-Einstein Statistics

Summary∑∞
i=1 ∆ni [ln(ni + Zi − 1)− ln ni − α− βεi ] = 0 for arbitrary

variations ∆ni if for each i

ln(ni + Zi − 1)− ln ni − α− βεi = 0

Bose-Einstein distribution ni
Zi−1 = 1

eα+βεi−1

Zi � 1: ni/(Zi − 1)⇒ ni/Zi average occupation at energy level εi
α, β depend on total number of particles, total energy
determine by substituting ni in N =

∑∞
i=1 ni and in E =

∑∞
i=1 niεi

β = 1/kT , α = −µ/kT , µ: internal energy
expected number of particles in energy state εi

ni =
Zi − 1

e(εi−µ)/kT − 1
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Planck Function
photons do not collide, but reach equilibrium via interaction with
atoms
atom can absorb one photon and then emit 2 photons
number of photons is not conserved⇒ drop α-term
Planck function:

ni

Zi − 1
=

1
eεi/kT − 1

= nνk

nνk : average occupation number at frequency νk
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Connection to Thermodynamics
connection to thermodynamics via entropy S

S ≡ k ln W ⇒ ∆S = k∆ ln W

from derivation of Bose-Einstein distribution

∆ ln W − α∆N − β∆E = 0

therefore
∆S = kα∆N + kβ∆E

for reversible processes energy change and entropy change are
linked through

∆S =
∆Q
T

T ∆S = ∆Q = −ζ∆N + ∆E ⇒ β = 1/(kT )

ζ ≡ −α/β: thermodynamical potential per particle
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Fluctuations Around Equilibrium
most likely distribution in equilibrium determined from

∆ ln W =
∞∑

i=1

∂ ln W (ni)

∂ni
∆ni = 0

ways to distribute ni + ∆ni particles (to 2nd order):

ln W (ni + ∆ni) = ln W (ni) + ∆ni
∂ ln W (ni)

∂ni
+

∆n2
i

2
∂2 ln W (ni)

∂n2
i

equilibrium⇒ term proportional to ∆ni is zero

W (ni + ∆ni) = W (ni)e−
W ′′(ni )

2 ∆n2
i where W ′′(ni) ≡ −

∂2 ln W (ni)

∂n2
i

probability of deviation ∆ni drops exponentially with square of ∆ni

probability of ∆ni is a Gaussian

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 2 6



Fluctuations Around Equilibrium (continued)

average of ∆n2
i by integrating over all possible ∆ni :

∆n2
i =

∫∞
−∞∆n2

i W (ni)e−
W ′′(ni )

2 ∆n2
i d∆ni∫∞

−∞W (ni)e−
W ′′(ni )

2 ∆n2
i d∆ni

=
1

W ′′(ni)

W (ni), W ′′(ni) do not depend on ∆ni ⇒ constants in integrations
maximum negative deviation: ∆ni = −ni

maximum positive deviation: ∆ni = N − ni

integrals to be evaluated between these values
for large ∆ni integrand drops rapidly to zero
extend integrals to full range −∞ to +∞ without changing result
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Variance
variance from second derivative of ln W (ni) and changing sign:

∆n2
i =

[
W ′′(ni)

]−1
=

ni(ni + Zi − 1)

Zi − 1
= ni

[
1 +

1
eα+βεi − 1

]
α = 0 for Planck function:

∆n2
i = ni

[
1 +

1
eβεi − 1

]
= ni(1 + nνk )

fluctuation in average occupation number

∆nνk
2 =

∆n2
i

Zi
= nνk (1 + nνk )
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Fermi-Dirac Statistics

Distribution
particles not allowed to share a box
number of ways W (ni) in which ni particles can be distributed
over Zi boxes with energies εi :

W (ni) =
Zi !

ni !(Zi − ni)!

difference in ln W (ni) between nearby numbers to first order in
∆ni :

ln W (ni + ∆ni)− ln W (ni) = −∆ni [ln ni − ln(Zi − ni)]

equilibrium⇒ Fermi Dirac distribution:

ni

Zi
=

1
eα+βεi + 1

= nk

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 2 9



Fluctuations
average value of square of deviation

∆n2
i =

ni(Zi − ni)

Zi
= ni

[
1− 1

eα+βεi + 1

]
= ni(1− nk )

fluctuation in average occupation number

∆nk
2 =

∆n2
i

Zi
= nk (1− nk )
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Blackbody Bose Gas

Introduction
volume density of photons in blackbody Bose gas between ν,
ν + dν from

N̄(ν)dν = g(ν)n̄νdν

g(νk ): volume density of quantum states per unit frequency at νk

stochastic variables nνk independent⇒ Bose-fluctuations

∆N2(ν) = N̄(ν)

(
1 +

1
exp(hν/kT )− 1

)
N̄(ν) follows from specific energy density ρ̄(ν) = ρ(ν)equilibrium

using N̄(ν) = ρ̄(ν)/hν

ρ(ν)dν =
8πh
c3

ν3

exp ( hν
kT )− 1

dν
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Radiation Detection
detector inside blackbody radiation field at temperature T
incident photon flux:

n̄(ν) =
1
2

c
4π

N̄(ν)AeΩ

factor 1
2 refers to one component of polarization

Ae is effective area of detector
Ω is solid angle subtended by detector beam viewing radiation
field
if radiation illuminates extended surface (Ae) with various
directions of the wave vector, i.e. an omnidirectional blackbody
radiation field, coherence theory states that spatial coherence is
limited to AeΩ ≈ λ2, the so-called extent (etendue) of coherence.
same as size θ = λ/D of diffraction-limited beam (Ω ≈ θ2) for
aperture diameter D: Ae ≈ D2
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Radiation Detection (continued)

substituting N̄(ν), specific photon flux n̄(ν) (in photons s−1 Hz−1)
becomes:

n̄(ν) =
1

exp(hν/kT )− 1

∆n2(ν) = n̄ν

(
1 +

1
exp(hν/kT )− 1

)
hν � kT ⇒ second term becomes much smaller than 1:

∆n2(ν) = n̄(ν)

Poissonian noise in sample containing n̄(ν) photons
quantum limit of fluctuations
represents minimum value of intrinsic noise present in any
radiation beam
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Thermal Noise Limit

hν � kT noise in terms of average radiation power P̄(ν) (Watt
Hz−1)
with P̄(ν) = (hν)n̄(ν) and ∆P2(ν) = (hν)2∆n2(ν):

∆P2(ν) = P̄(ν)

(
hν +

hν
exp(hν/kT )− 1

)
= P̄(ν)(hν + P̄(ν))

hν � kT :

∆P2(ν) = P̄2(ν)

and P̄(ν) = kT

expression for classical thermal noise power per unit frequency
bandwidth
compare to Rayleigh-Jeans:

Bν(T ) = 2kTλ2
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Quantum Noise and Thermal Noise

transition between quantum limit to thermal limit at hν ≈ kT
T ≈ 300 K⇒ ν ≈ 6 THz, λ ≈ 50 µm
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Quantum and Thermal Noise in Radio Astronomy
radio observations always dominated by wave character of
incoming beam⇒ thermal limit
treatment of noise in radio observations very different from
measurements at shorter wavelengths
submillimeter and infrared observations aim at quantum limit
fluctuations in average power P̄(ν) for thermal limit: wave packet
interference⇒ fluctuations have same magnitude as signal
low frequency fluctuations due to random phase differences and
beats of wavefields
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Detector Outside of Blackbody Photon Gas
expression for fluctuations in blackbody photon gas applies only to
detector in interior of blackbody where λ2 = c2/ν2 = AeΩ

if not, even in limit hν � kT quantum noise may dominate
example: blackbody star at temperature T , observed at frequency
ν, where hν � kT , thermal noise should dominate
star is so far away that radiation is unidirectional and AeΩ� λ2

photons will arrive well separated in time
quantum noise dominates
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Radiation Field in Thermal Limit

Wavepackets
astronomy: most sources of photons have thermal origin
observed wave is superposition of many individual wavepackets
each wavepacket generated by independent atomic transitions at
source
wavepacket duration given by time scale of atomic transition
frequency spread of wavepacket ∆ν = 1/∆t
duration of wavepacket ∆t ≡ τc = 1/∆ν is coherence time
typical time scale over which phase of the EM-wave can be
predicted
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Random Superposition of Wavepackets

stochastic signal due to random superposition of wavepackets
wave signal fluctuates in amplitude and frequency
frequency fluctuations have typical bandwidth ∆ν around average
frequency ν̄
quasi-monochromatic wave with a frequency stability ν̄/∆ν
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Quasi-Monochromatic Radiation Field
description of quasi-monochromatic radiation field from thermal
source:

complex expression for electric field Ẽ(t)
harmonic oscillation at average frequency ν̄
modulation by slowly varying envelope Ẽ0(t)

Ẽ(t) = Ẽ0(t) · ei(2πν̄t)

complex amplitude Ẽ0(t) is phasor
phasor has time-dependent magnitude | Ẽ0(t) |, phase φ(t)
ideal monochromatic plane wave: ∆ν reduces to delta function
δ(ν − ν̄)

in time domain: infinitely long wave train
resolve wave train into 2 orthogonal polarization components, must
have same frequency, be infinite in extent and therefore mutually
coherent
perfectly monochromatic plane wave is always polarized
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Polarized Light

phasor Ẽ0(t) of linearly polarized plane wave:

Ẽ0(t) =| Ẽ0(t) | eiφ(t) =| Ẽ0 | eiφ0

amplitude | Ẽ0 | and phase φ0 of phasor are constant over short
times
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Thermal Radiation
thermal radiation source: emission from extremely large number
of randomly oriented atomic emitters
each atom radiates polarized wave train for 10−8 or 10−9 (optical
light from transition with natural line width ∆ν)
time scale for molecular vibrational or rotational transitions and
forbidden lines are longer
wave propagation direction ~k ⇒ individual atomic (molecular)
emissions at same frequency along that direction will combine
into single polarized wave that only exists for coherence time τc of
wave packet (optical: 10−8 − 10−9 s)
wave trains continuously emitted⇒ magnitude, polarization
direction of electric vector ~E(t) changes in random manner on
typical time scale τc
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Unpolarized Light

change rate 108 to 109 s−1 ⇒ single polarization state not
discernable
thermal radiation also called natural or unpolarized light
consists of rapid succession of different polarization states
describe random fluctuations of ~E(t) in scalar approach
consider fluctuations in phasor Ẽ0(t): magnitude | Ẽ0(t) |, phase
φ(t)
time scales short compared to coherence time (∆ν)−1, Ẽ0(t)
almost constant in time
optical light with τc ≈ 10−8 s contains millions of harmonic
oscillations of electric vector ~E(t) (ν̄ ≈ few 1014 Hz)
on time scales τ � τc , | Ẽ0(t) | and φ(t) vary randomly
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Phasor Fluctuations

consider real, imaginary parts of Ẽ0(t), Re(Ẽ0(t)) and Im(Ẽ0(t)),
as uncorrelated Gaussian stochastic variables with equal
standard deviations
linearly polarized waves that are mutually incoherent
joint (bivariate) probability density distribution given by product of
distributions:

p
(

ReẼ0(t), ImẼ0(t)
)

dReẼ0(t)dImẼ0(t) =
1

2πσ2

e−
Re2Ẽ0(t)+Im2Ẽ0(t)

2σ2 dReẼ0(t)dImẼ0(t)

furthermore

| Ẽ0(t) |2 = Re2Ẽ0(t) + Im2Ẽ0(t)

φ(t) = arg(Ẽ0(t)) = arctan
ImẼ0(t)
ReẼ0(t)
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Phasor Fluctuations (continued)
bivariate probability density in polar coordinates

p
(
| Ẽ0(t) |, φ(t)

)
d | Ẽ0(t) | dφ(t) =

| Ẽ0(t) |
2πσ2 e−

|̃E0(t)|2

2σ2 d | Ẽ0(t) | dφ(t)

integration over | Ẽ0(t) |:

p (φ(t)) =
1

2π

all phase angles φ(t) are equally probable for unpolarized
radiation
integration over all phase angles φ(t)⇒ amplitude distribution for
an unpolarized thermal radiation beam (Rayleigh Distribution):

p
(
| Ẽ0(t) |

)
=
| Ẽ0(t) |
σ2 e−

|̃E0(t)|2

2σ2
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Rayleigh Distribution

p
(
| Ẽ0(t) |

)
and p (φ(t))

without proof: most probable value of | Ẽ0(t) | is σ, average
amplitude of unpolarized beam is σ

√
π
2

distribution of | Ẽ0(t) | ⇒ probability density of instantaneous
intensity (or irradiance) I(t) for thermal radiation
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Power Flux Density of Electromagnetic Wave

wave energy shared between electric and magnetic fields
energy density of electrostatic field (in Joule/m3)

ρ~E = εr ε0|~E |2/2

|~E | magnitude of electric vector (in V/m)
ε0 vacuum permittivity (8.8543 · 10−12 Asec/Vm)

energy density of a magnetic field (in Joule/m3)

ρ~B = |~B|2/(2µrµ0)

|~B| magnitude of magnetic vector (in Tesla = Vsec/m2)
µ0 vacuum permeability (4π · 10−7 Vsec/Am)
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Electromagnetic Wave

wave equation for a plane electromagnetic wave traveling along x
in vacuum:

∂2E(x , t)
∂x2 =

1
c2
∂2E(x , t)
∂t2 and

∂2B(x , t)
∂x2 =

1
c2
∂2B(x , t)
∂t2

magnetic field is perpendicular to electric field
electric field and the magnetic field directions are perpendicular to
direction of propagation (x)
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Thermal Radiation
plane wave

Ẽ(x , t) = E0ei·2π(νt−x/λ) and B̃(x , t) = B0ei·2π(νt−x/λ)

Maxwell’s equations require ρ~E = ρ~B
B0 = E0/c
flow of electromagnetic energy through space represented by
Poynting vector ~S = (1/µ0)~E x ~B
direction and magnitude of the energy transport per unit time
across a unit area (e.g. in units Watt m−2)
vector magnitude |~S| = |Ẽ ||B̃|(sinφ)/µ0 equals |Ẽ ||B̃|/µ0, since
magnetic field is perpendicular to electric field (φ = π/2)
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Poynting Vector
actual wave signal by taking real part:

|~S| = E0B0 cos2 2π(νt − x/λ)

= ε0cE2
0 cos2 2π(νt − x/λ)

= (ε0/µ0)
1
2 E2

0 cos2 2π(νt − x/λ)

average power flux density for ideal monochromatic plane wave,
I(t) equals |~S(t)|:

I(t) = (ε0/µ0)
1
2 E2

0 cos2 2π(νt − x/λ) = (ε0/µ0)
1
2

E2
0

2

ideal monochromatic plane wave represented in time domain by
infinitely long wave train, fully polarized
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Unpolarized, Quasi-Monochromatic Radiation Field
unpolarized, quasi-monochromatic, radiation field from thermal
source described by complex expression for electric field

Ẽ(t) = Ẽ0(t) · ei(2πν̄t)

average power flux density from expectation value of Ẽ(t)Ẽ∗(t):

I(t) = (ε0/µ0)
1
2 E
{

Ẽ(t)Ẽ∗(t)
}

= 2.6544 · 10−3 E
{
|Ẽ0(t)|2

}
drop constant as we observe relative power flux densities
generated by these traveling waves within the same medium and
noise can be expressed as a relative quantity
in practical computations, this constant should be applied
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Variance
following equalities hold:

I(t) = Ẽ(t) · Ẽ∗(t) = | Ẽ(t) |2 = | Ẽ0(t) |2

from before:

p
(
| Ẽ0(t) |

)
=
| Ẽ0(t) |
σ2 e−

|̃E0(t)|2

2σ2

transformation of variables

p (I) dI = (̄I)−1 e−I/̄I dI

with Ī = E
{
|Ẽ0(t)|2

}
= 2σ2.

exponential probability density distribution
without proof: variance is ∆I2 = Ī2
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Summary
bivariate Gaussian-distributed stochastic process with zero-mean
for harmonic wave components is same as fluctuation in average
monochromatic radiation power (Watt Hz−1) of blackbody
radiation field: ∆P2(ν) = P̄2(ν)

stochastic description for unpolarized thermal radiation field using
scalar treatment of complex expression for electric field:

Ẽ(t) = Ẽ0(t) ei(2πν̄t) =| Ẽ0(t) | eiφ(t) ei(2πν̄t) =| Ẽ0(t) | ei(2πν̄t+φ(t))

all values of φ(t) are equally probable
amplitude | Ẽ0(t) | distribution is Rayleigh distribution
instantaneous frequency:

ν =
1

2π
d
dt

(2πν̄t + φ(t))

bandwidth ∆ν from ν − ν̄ = d
dtφ(t)
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Polarized Thermal Radiation
radiation beam generally neither completely polarized nor
completely unpolarized
radiation should be regarded as partially polarized
describe as superposition of specific amounts of natural and
polarized light
quantitative assessment via Stokes parameters
easy in radio astronomy as receiver front-end is sensitive to a
particular direction of polarization
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Statistics of Radiation Field in Quantum Limit

Photon Generation

quantum limit: radiation field fluctuations described by photon
statistics
radiation beam (wide-sense stationary, ergodic) with average flux
of n̄b photons per second
generation of photons at random times ti described by stochastic
variable X (t)
staircase functions with discontinuities at ti

X (t) =
∑

i

U(t − ti)

with U(t) the unit-step function:

U(t) =

{
1 for t ≥ 0
0 for t < 0
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Photon Generation (continued)

derivative of stochastic variable X (t):

Y (t) =
dX (t)

dt
=
∑

i

δ(t − ti)

represents train of Dirac impulses at random time positions ti
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Photon Detection Statistics
photons detected during ∆T (part of total measurement time T ):

X∆T =

t+∆T∫
t

∑
i

δ(t − ti) dt = k

random variable X∆T distributed according to Poisson distribution
probability to detect k photons if mean value is µ(= n̄b∆T ):

pP(k , µ) =
µk

k !
e−µ

(continuous) probability density function for Poissonian statistics:

p(x , µ) =
∞∑

k=0

pP(k , µ) δ(x − k)

E{X∆T} =

+∞∫
−∞

x p(x , µ) dx = µ(= n̄b ∆T )Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 2 37



Photon Statistics (continued)

E{XT} = µ: average number of photons in time periodT
probability p that photon arrives in subinterval of T from p = µ/m
if m equals number of subintervals within T
probability that no photon arrives is 1− p
measurement is series of m trials to find a photon, each having
probability p of succeeding
probability that in total k photons will be detected given by
binomial probability function (k < m):

pB(k ,m,p) =

(
m
k

)
pk (1− p)m−k
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Thermal Radiation
if subinterval is large, finite probability that more than one photon
arrives in interval
limit of trials m to go to infinity while mp = µ

binomial distribution becomes Poisson distribution:

pP(k , µ) =
µk

k !
e−µ

exponential factor normalizes distribution

∞∑
k=0

pP(k , µ) = 1
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Autocorrelation
autocorrelation

RX∆T (τ) = E{X∆T (t + τ) · X∆T (t)}
= µ2 + µ δ(τ)

= (n̄b ∆T )2 + (n̄b ∆T )δ(τ)

RX∆T (0) = µ2 + µ

first term is square of average
second term is covariance, which is variance here since
covariance is 0 everywhere except for τ = 0
obvious since photon arrival times ti are uncorrelated
without proof: E{X∆T} = µ, RX∆T (0) = µ2 + µ
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Signal-to-Noise Ratio

signal-to-noise ratio SNR defines intrinsic limitation to accuracy of
measurement due to photon noise:

SNR =
E{X∆T}√
CX∆T (0)

=
√

n̄b ∆T

intrinsic SNR of radiation field measurement increases with
square root of mean photon flux n̄b and with square root of
measurement interval ∆T
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Photon Bunching

Introduction

en.wikipedia.org/wiki/File:Photon_bunching.png

photons distribute themselves in bunches rather than at random
(Poisson)
photons arrive more simultaneously (positive correlation)
excess correlations only for ∆T < τc
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Photon Bunching (continued)
photons should arrive according to Bose-Einstein distribution
fluctuations are larger than for Poissonian statistics (BE:
σ2 = n2 + n, Poisson: σ2 = n)
for very small, average count rates n, BE becomes Poisson
predicted by quantum mechanics
can be understood classically as a pure wave effect
intensity interferometry by Hanbury-Brown and Twiss
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Bose-Einstein vs. Poisson Statistics
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p!n" photon number distributions m!10

Poisson distribution
Bose"Einstein distribution
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Bose-Einstein vs. Poisson Statistics
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Bose-Einstein vs. Poisson Statistics
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