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@ Stochastic Processes

@ Autocorrelation and Autocovariance

@ Wide-Sense Stationary and Ergodic Signals
@ Power Spectra

@ Stochastic Nature of Radiation Beam
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Bose-Einstein Statistics
Fermi-Dirac Statistics
Quantum Noise and Thermal Noise
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Introduction

Statistics

@ statistics is fundamental for astronomical data analysis
@ radiation is inherently statistical

@ need clear understanding of mathematical methods to analyze
statistical aspects of data

@ here: brief review of statistics and application to photons
@ emphasis on physics and less on mathematics

@ excellent book: Statistical Optics by Joseph W. Goodman
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Stochastic Processes
Stochastic Variables

@ random experiment: cannot predict outcome in advance
@ probability P of outcome A must obey:

e P(A)>0

e if outcome must be S, then P(S) = 1

e if Ay, A2 are mutually exclusive outcomes:
P(A1 or A2) = P(A1) + P(Ag)

@ assign (complex) number x(A) to every possible outcome A
@ stochastic or random variable X consists of all possible x(A)

@ stochastic process: infinite series of stochastic variables, one for
each value of time t

@ for specific ¢, stochastic variable X(t) has certain probability
density distribution

@ numerical value of stochastic variable X(t) at time t corresponds
to particular outcome) from probability distribution at time t
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Outcome and Stochastic Variable

@ x(A) describes relation between possible outcomes A and
stochastic/random variable x

@ dice throwing: outcome A is face 1 of dice, etc.
@ x is the gain in a game of dice:

x(A1)=0

x(Az2) = x(A3) =10
X(A4) = x(As) = 100
x(Ag) = 1000

@ example from book of Lena, appendix b
@ astronomical: digital output of photometer of a constant source
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PSR J0437-4715 (Jenet et al. 1998, Figure 2)
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PSR J0437-4715 (Jenet et al. 1998, Figure 4)
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Realisation and Ensemble

@ time series of outcomes represents a single function in time,
called a realisation of stochastic process

o full set of all realisations is ensemble of time functions
/\/\/\/M/\/—\,\ (O
’\/—\/\/“’\/"\/"\/M\/\/xza)
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Distribution Functions

o for every t, X(t) is distributed according to momentary cumulative
distribution, the first-order distribution

F(x;t) =P{X(t) < x}

@ indicates probability that outcome at t will not exceed x
@ probability density function (PDF) (or first-order density) of X(t)

defined by
. OF(x; 1)
f(x;t) = e
@ probability function often

e binomial: (7)p*(1 — p)"*
e Poisson: f(k;\) = Ak,ffk

. . 7()(*};)
e Gaussian (normal): \/%e 2
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Poisson Cumulative Distribution
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Poisson Probability Density Function
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Gaussian Cumulative Distribution
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Gaussian Probability Density Function
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Mean and Variance

@ properties of distributions often described by a few parameters,
often moments of distribution

@ mean or average u(t) of X(t) is expected value of X(t)

—+00

u(t) = E{X(t)} = / x f(x; t) dx

—0o0

@ variance of X(t) is the expected value of the square of the
difference of X(t) and pu(t)

o?(t) = E{(X(1) — u(1)?} = E{X3(1)} — 1i%(1)

@ variance is square of standard deviation
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Autocorrelation and Autocovariance

Higher-Order Distributions

@ generalization to higher-order distributions
@ second order distribution of process X(t) is joint distribution

G(x1,x2; 1y, ) = P{X(t1) < x1, X(&) < x2}
@ corresponding derivative is

OPG(x1, %2 Yy, bo)
0Xq OXo

Q(X1,X2; t17 t2)
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Autocorrelation

@ autocorrelation R(t, t;) of X(t) is expected value of X(t1) - X*(t)
(* is complex conjugate)

“+00 400
R(ti, ) = E{X(t,) - X*(t2)} = / / X1 %5 901, X1 1, ) s e

X,Y two independent random variables
with probability distributions f, g =
probability distribution of difference Y — X
given by the cross-correlation R(f, g).
convolution f * g gives probability
distribution of sum X + Y.
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Autocorrelation Finds Hidden Sinusoidal Variation
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Power and Autocovariance

e forty =t =t, R(t, k) is average power of signal at time t:

R(t) = R(t, t) = E{X?(t)} = E{|X(1) [}

@ average of X(t) not generally zero

@ autocovariance C(t;, t2), centered around averages u(t) and
p(t):

C(t, bo) = E{(X(t) — u(tr)) - (X(2) — p(t2))*}
@ Forty=b =t
C(t) = C(t, t) = R(t, t)— | u(t)|P= o*(t)

@ C(t) is average power contained in fluctuations of signal around
its mean at time t
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Wide-Sense Stationary and Ergodic signals

Wide-Sense Stationary Signals

@ wide-sense stationary (wss) signal:

e average does not depend on time
e autocorrelation only depends on time difference 7 = t — t

@ following relations hold:

signal average wu(t) = wp = constant
autocorrelation  R(t;,t) = R(7)
autocovariance C(t;, ) = C(r)= R(r) — 1?

e for 7 =0: R(0) = 12 + C(0) = u2 + o2
@ total power in signal equals power in average signal plus power in
fluctuations around average

@ autocorrelation and autocovariance are even functions, i.e.
R(-7) = R(7), C(—7) = C(7)
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Ergodic Signals

@ wss-stochastic process X(t) is considered ergodic when

momentaneous average over X(t) can be interchanged with its
time average, i.e. when

.
po= Jim 1 /x {) ot = E{X(1)}
-

TIEnOO— /X*(t X(t+7) dt = E{X*(t) - X(t + 7)}

_1r
2!

l\)\—‘
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Power Spectral Density

@ autocorrelation function R(7) has Fourier transform

+oo
S(s)= [ Ao ar

@ R(7) has dimension of signal power (e.g. Watt)

@ dimension of S(s) is [power x time] or power per unit frequency,
e.g. Watt-Hz~1.

@ S(s) is the power spectral density (PSD)

@ represents double-sided (frequency —oco — +oc) power density of
stochastic variable X()
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Wiener-Khinchine Relation

@ Fourier pair R(7) < S(s) is Wiener-Khinchine relation

e 7=0:
+o0
RO)=E{|X(nP)} = / S(s) ds
@ u=0:
+oo
R(0) = C(0) = o2 = / S(s) ds

@ power contained in fluctuations of signal centered around zero
mean is equivalent to integration of spectral power density over
entire frequency band
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Example

@ area under square of
function h(t) (a) equals

; area under one-sided
power spectrum at
positive frequencies (b)
and area under
double-sided spectrum
, (©)
® ’ @ note factor 2 in
amplitude between
one-sided and
double-sided spectrum

[n(ry |2

s

Py(f) (one-sided)

Pu(f)
(two-sided)
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One-Sided Power Spectral Density

@ physical frequencies run from zero (i.e. DC) to +oo, mostly use
one-sided power spectral density S95(s) = 25(s)

@ total signal power follows from integration over physical frequency
domain:

(e 9]

R(0) = / SOS(s) ds

0
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Example

25

T l.i

o GX5-1
“ @ PSDs of light curves of Low Mass
22 X-Ray Binaries
“ @ GX5-1 shows “red-noise” excess, i.e.
o power law dependence (s~%)
§ as @ broad peak are quasi-periodic
Sco X-1

oscillations (QPOs), indicating
temporarily coherent oscillations in

25 ; luminosity.
M“‘W“"f @ Sco X-1, shows QPOs without

stochastic variability

3.0

LOG(FREQUENCY (Hz))
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Finite Time Series

@ autocorrelation function of stochastic process is a time average
@ replace X(t) with general function f(u):

/f* f(u+ x) du—/f* -f(u—x) du

@ Fourier transform
+o00
o(s) = / R(x) - €275 dx = F(s)- F*(s) =| F()|?
e f(u) & F(s)
@ Wiener-Khinchin theorem for finite function f(u)
@ only non-zero over limited interval of coordinate u
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Parseval’'s Theorem

@ x=0:
+o0o +o0 +oo
R(0) = / ()2 du = /¢(s) ds — / |F(s)2 ds

@ Parseval’s theorem:
+o0 “+o00
[ 1) = [ [F()P ds

@ each integral represents amount of “energy” in system

@ one integral over all values of a coordinate (e.g. angular
coordinate, wavelength, time)

@ other over all spectral components in Fourier domain
@ ®(s) has dimension of an energy density
@ sometimes wrongly referred to as power density
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Stochastic Nature of Radiation Beam

Introduction

@ electromagnetic or particle radiation from astronomical source
fluctuates because of incoherent emission process

@ obvious for particles, less obvious for wave description of
electromagnetic radiation

@ Bose-Einstein statistics to derive magnitude of intrinsic
fluctuations of blackbody radiation source

@ photons are bosons

@ not subject to Pauli exclusion principle

@ many bosons may occupy the same quantum state
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Bose-Einstein Statistics

@ particles in unit volume of space are distributed in
momentum-space in boxes with volumes proportional to A% (h =
Planck’s constant)

@ for each energy finite number Z of boxes

@ Z x 4rp?dp with p the particle momentum
@ n; particles with energies ¢;

@ number of boxes available at that energy Z;

@ bosons can share a box
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Bose-Einstein Statistics (continued)

@ number of ways W(n;) in which n; bosons can be distributed over
Z; boxes:

ni+2Z—1)!
win) = 0
@ equivalent to laying n; particles and Z; — 1 boundaries in a row
@ number of permutations is (n; + Z; — 1)!
@ particles and boundaries can be interchanged
@ put n; bosons into Z; boxes

@ number of ways in which N = 372, n; bosons can be distributed
over boxes in momentum space: W = M2, W(n;)
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Most Likely Particle Distribution

@ statistical physics assumption: probability of distribution is
proportional to number of ways in which this distribution can be
obtained

@ collisions between particles re-distribute particles over boxes

@ most likely particle distribution is the one which can be reached in
most different ways

@ find maximum of W by determining maximum of In W

dln W(n,)

I

InW = ZIan, )= AlnW = Z
i=1 =1

An,:O

@ Using Stirlings approximation (In x! ~ x In x — x) for large x:
InW(n;) = (ni+Z—1)In(ni+2Z-1)—(ni+2Z-1)

—niinnj+n; —(Z—1)In(Z = 1) + (Z; - 1)
= (m+Z-1)In(n+2Z-1)

_nN.1nnN. - N . __
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Bose-Einstein Statistics

@ for nearby number n; + An; and to first order in An;:

aln W(n;)
;

AnW(n) = InW(ni+ An;) —InW(n;) ~ An o
i

= Ani[in(nj+Z —1) —Innj]

@ For equilibrium, i.e. the most likely particle distribution

AnW = > Ann(ni+Z—1)—Inn] = 0

i=1
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Thermodynamic Equilibrium

@ system in thermodynamic equilibrium:

e number of particles N = 3" n; per unit volume is constant
e energy E = > nje; per unit volume is constant

@ variations in n; must conserve N and E:

AN = iAn,- =0
i=1

AE = Ze,-An,-:O
i=1

@ Therefore
AlnW — aAN — BAE =

> Ann(nj+Z—1)—Inn—a—fe] =0

i=1
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Bose-Einstein Distribution
@ >, AniIn(ni+ Z —1) —Inn; — o — B¢;] = 0 for arbitrary
variations An; if for each i

n; 1

In(mi+ 2 =1) =i —a = fe =0 = 7= = 55—

@ this is Bose-Einstein distribution
@ Z,>1:n;/(Z —1) = nj/Z, which represents the average
occupation at energy level ¢; (occupation number).

@ values of a and 5 depend on total number of particles and total
energy

@ can be determined by substituting n; in N = >"7°, n; and in
E =371 niei
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Planck Function

@ Planck function does not require that number of photons be
conserved

@ atom can absorb one photon and then emit 2 photons
@ obtain the Planck function by dropping the « term
n 1
Z—1 ePe—1

=7,

@ n,, is average occupation number of photons at frequency v

@ photons do not collide directly with one another, but reach
equilibrium only via interaction with atoms
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Connection to Thermodynamics

@ connection to thermodynamics via

S=kinW=AS=kAInW

@ therefore we get
AS = kaAN + kBAE

@ TAS = —(AN+ AE wefind that 5 = 1/(kT)
@ ( = —«/f is thermodynamical potential per particle
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Fluctuations Around Equilibrium

@ number of ways in which n; + An; particles can be distributed as
compared to that for n; particles (to second order):

dln W(n)) N An? 9P In W(ny)

In W(n; + An;) =In W(n;) + An;

8n,- 2 8/7’2
@ in equilibrium term proportional to An; is zero
@ rewrite as
W' (m) 2In W(n;
W(n; + Anj) = W(n)e 2 2% where W(n;) = _68172(/)
i

@ probability of deviation An; drops exponentially with square of An;
@ probability of An; is a Gaussian
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Fluctuations Around Equilibrium (continued)
@ average value for An,-2 by integrating over all values of An;:

N 2. AmW(nj)e™ T dAn; _ 1
1 .
= e = et gan W)

W(n;), W"(n;) do not depend on An; = constants in integrations
maximum negative deviation has An; = —n;

maximum positive deviation An; = N — n;

integrals to be evaluated between these values

for large An; integrand drops rapidly to zero

extend integrals to full range —oo to +o00 without changing result

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 1



Variance

@ variance from second derivative of In W(n;) and changing sign:

— o mm+Z-1) 1
arf = win)] = POEEED e ]

@ drop the «a for Planck function:

An,? =n; |:1 + 76,86/ 1

] =n(1+n,,)

@ fluctuation in average occupation number

2

ns _ _
7/1 = nd(1 + nd)

An,? =
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Fermi-Dirac Statistics

@ particles not allowed to share a box

@ number of ways W(n;) in which n; particles can be distributed
over Z; boxes with energies ¢;:

Z

W(ni) - n,!(Z,- — n,-)!

e difference in In W(n;) between nearby numbers to first order in
An;:
InW(n;+ An;)) —InW(n;) = —An;[Inn; — In(Z; — n;)]
@ equilibrium = Fermi Dirac distribution:

1
Z  etBiy1 K
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Fluctuations

@ average value of square of deviation

=m0 -

2 _
Ani - ea+ﬁ6/—|—1

@ The fluctuation in the average occupation number

An?
Ank2 = Z'I :ﬁk(1 —ﬁk)
i
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Blackbody Bose Gas

@ volume density of photons in blackbody Bose gas between
frequencies v, v + dv from

N(v)dv = g(v)n,dv

@ g(vk) is volume density of quantum states per unit frequency at v,
@ stochastic variables n,, independent = Bose-fluctuations

i 1
AN*(v) = N(w) (1 T exp(hv/KT) — 1 >

@ N(v) follows from specific energy density 5(v) = p(v)eqviibrivm:

vV vV |4
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Rdiation Detection

@ detector inside blackbody radiation field at temperature T
@ incident photon flux:

A(v) = %%N( ) A

e factor } refers to one component of polarisation

@ A is effective area of detector

@ Q is solid angle subtended by detector beam viewing radiation
field

@ if radiation illuminates extended surface (A¢) with various
directions of the wave vector, i.e. an omnidirectional blackbody
radiation field, coherence theory states that spatial coherence is
limited to AeQ ~ )2, the so-called extent (etendue) of coherence.

@ same as size f = \/D of diffraction-limited beam (Q ~ 6?) for
aperture diameter D: Ae ~ D?
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Radiation Detection (continued)

@ substituting N(v), specific photon flux 7(x) (in photons s=' Hz~")
becomes:

_ 1
~ exp(hv/kT) — 1

_ ] 1
A(v) = Dy <1+exp(hu/kT)—1>

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 1



Poisson Noise

@ from before:

1
exp(hv/KT) —1

— ] 1
Ar) =y <1+exp(hy/kT)—1>

@ in extreme case hv >> kT, second term becomes much smaller
than 1:

An?(v) = n(v)
@ is Poissonian noise in a sample containing n(v) photons.

@ quantum limit of fluctuations

@ represents minimum value of intrinsic noise present in any
radiation beam

@ Obviously holds for particle radiation

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 1



Thermal Noise

@ for photon with hv < KT, noise is expressed in terms of average
radiation power P(v) (e.g. in Watt Hz™")

@ by writing P(v) = (hv)A(v) and AP2(v) = (hv)2An(v):

AP2(v) = P(v) (hu + ot hz/l;II/<T) - 1) = P(v)(hv + P(1))

AP2(y) = P?(v)
and P(v) = kT
@ expression for classical thermal noise power per unit frequency

bandwidth
@ thermal limit
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Quantum Noise and Thermal Noise
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@ transition between quantum limit to thermal limit at hv ~ kT
@ T~300K=v~6THz, A~ 50 um
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Quantum and Thermal Noise

@ radio observations always dominated by the wave character of
incoming beam =- in thermal limit

@ treatment of noise in radio observations differs drastically from
measurements at shorter wavelengths

@ submillimeter and infrared observations strive to be in the
quantum limit

e fluctuations in average power P(v) for thermal limit can be
interpreted as importance of wave packet interference =
interference will cause fluctuations to become of same magnitude
as signal

@ low frequency fluctuations can be thought of as caused by
random phase differences and beats of the wavefields
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Detector Outside of Blackbody Photon Gas

@ expression for fluctuations in blackbody photon gas applies only to
detector in interior of blackbody where \? = ¢?/1? = A.Q

@ if not, even in limit hv < kT quantum noise may dominate

@ example: blackbody star at temperature T, observed at frequency
v, Where hv <« kT, thermal noise shoudl dominate

@ star is so far away that radiation is unidirectional and AeQ < 2

@ photons will arrive well separated in time and quantum noise
dominates
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