
Lecture 1: Radiation Fields 1

Outline

1 Stochastic Processes
2 Autocorrelation and Autocovariance
3 Wide-Sense Stationary and Ergodic Signals
4 Power Spectra
5 Stochastic Nature of Radiation Beam
6 Bose-Einstein Statistics
7 Fermi-Dirac Statistics
8 Quantum Noise and Thermal Noise

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 1 1



Introduction

Statistics
statistics is fundamental for astronomical data analysis
radiation is inherently statistical
need clear understanding of mathematical methods to analyze
statistical aspects of data
here: brief review of statistics and application to photons
emphasis on physics and less on mathematics
excellent book: Statistical Optics by Joseph W. Goodman
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Stochastic Processes

Stochastic Variables
random experiment: cannot predict outcome in advance
probability P of outcome A must obey:

P(A) ≥ 0
if outcome must be S, then P(S) = 1
if A1, A2 are mutually exclusive outcomes:
P(A1 or A2) = P(A1) + P(A2)

assign (complex) number x(A) to every possible outcome A
stochastic or random variable X consists of all possible x(A)

stochastic process: infinite series of stochastic variables, one for
each value of time t
for specific t , stochastic variable X (t) has certain probability
density distribution
numerical value of stochastic variable X (t) at time t corresponds
to particular outcome) from probability distribution at time t
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Outcome and Stochastic Variable
x(A) describes relation between possible outcomes A and
stochastic/random variable x
dice throwing: outcome A1 is face 1 of dice, etc.
x is the gain in a game of dice:

x(A1) = 0
x(A2) = x(A3) = 10

x(A4) = x(A5) = 100
x(A6) = 1000

example from book of Lena, appendix b
astronomical: digital output of photometer of a constant source
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PSR J0437-4715 (Jenet et al. 1998, Figure 2)
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PSR J0437-4715 (Jenet et al. 1998, Figure 4)

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 1 6



Realisation and Ensemble
time series of outcomes represents a single function in time,
called a realisation of stochastic process
full set of all realisations is ensemble of time functions
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Distribution Functions
for every t , X (t) is distributed according to momentary cumulative
distribution, the first-order distribution

F (x ; t) = P{X (t) ≤ x}

indicates probability that outcome at t will not exceed x
probability density function (PDF) (or first-order density) of X (t)
defined by

f (x ; t) ≡ ∂F (x ; t)
∂x

probability function often
binomial:

(n
k

)
pk (1− p)n−k

Poisson: f (k ;λ) = λk e−λ

k!

Gaussian (normal): 1√
2π

e−
(x−µ)2

2σ2
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Poisson Cumulative Distribution

en.wikipedia.org/wiki/Poisson_distribution
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Poisson Probability Density Function

en.wikipedia.org/wiki/Poisson_distribution
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Gaussian Cumulative Distribution

en.wikipedia.org/wiki/Normal_distribution
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Gaussian Probability Density Function

en.wikipedia.org/wiki/Normal_distribution
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Mean and Variance
properties of distributions often described by a few parameters,
often moments of distribution
mean or average µ(t) of X (t) is expected value of X (t)

µ(t) = E{X (t)} =

+∞∫
−∞

x f (x ; t) dx

variance of X (t) is the expected value of the square of the
difference of X (t) and µ(t)

σ2(t) = E{(X (t)− µ(t))2} = E{X 2(t)} − µ2(t)

variance is square of standard deviation
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Autocorrelation and Autocovariance

Higher-Order Distributions
generalization to higher-order distributions
second order distribution of process X (t) is joint distribution

G(x1, x2; t1, t2) = P{X (t1) ≤ x1,X (t2) ≤ x2}

corresponding derivative is

g(x1, x2; t1, t2) ≡ ∂2G(x1, x2; t1, t2)

∂x1 ∂x2
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Autocorrelation
autocorrelation R(t1, t2) of X (t) is expected value of X (t1) · X ∗(t2)
(∗ is complex conjugate)

R(t1, t2) = E{X (t1) · X ∗(t2)} =

+∞∫
−∞

+∞∫
−∞

x1 x∗2 g(x1, x∗2 ; t1, t2) dx1dx2

X ,Y two independent random variables
with probability distributions f , g ⇒
probability distribution of difference Y − X
given by the cross-correlation R(f ,g).
convolution f ∗ g gives probability
distribution of sum X + Y .
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Autocorrelation Finds Hidden Sinusoidal Variation

en.wikipedia.org/wiki/Autocorrelation
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Power and Autocovariance
for t1 = t2 = t , R(t1, t2) is average power of signal at time t :

R(t) = R(t , t) = E{X 2(t)} = E{ |X (t) |2 }

average of X (t) not generally zero
autocovariance C(t1, t2), centered around averages µ(t1) and
µ(t2):

C(t1, t2) = E{(X (t1)− µ(t1)) · (X (t2)− µ(t2))∗}

For t1 = t2 = t

C(t) = C(t , t) = R(t , t)− |µ(t) |2= σ2(t)

C(t) is average power contained in fluctuations of signal around
its mean at time t
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Wide-Sense Stationary and Ergodic signals

Wide-Sense Stationary Signals

wide-sense stationary (wss) signal:
average does not depend on time
autocorrelation only depends on time difference τ ≡ t2 − t1

following relations hold:

signal average µ(t) = µ = constant
autocorrelation R(t1, t2) = R(τ)

autocovariance C(t1, t2) = C(τ) = R(τ)− µ2

for τ = 0: R(0) = µ2 + C(0) = µ2 + σ2

total power in signal equals power in average signal plus power in
fluctuations around average
autocorrelation and autocovariance are even functions, i.e.
R(−τ) = R(τ), C(−τ) = C(τ)

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 1 18



Ergodic Signals

wss-stochastic process X (t) is considered ergodic when
momentaneous average over X (t) can be interchanged with its
time average, i.e. when

µ = lim
T→∞

1
T

+ 1
2 T∫

− 1
2 T

X (t) dt = E{X (t)}

R(τ) = lim
T→∞

1
T

+ 1
2 T∫

− 1
2 T

X ∗(t) · X (t + τ) dt = E{X ∗(t) · X (t + τ)}
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Power Spectral Density

Introduction
autocorrelation function R(τ) has Fourier transform

S(s) =

+∞∫
−∞

R(τ) · e−2πisτ dτ

R(τ) has dimension of signal power (e.g. Watt)
dimension of S(s) is [power × time] or power per unit frequency,
e.g. Watt·Hz−1.
S(s) is the power spectral density (PSD)
represents double-sided (frequency −∞→ +∞) power density of
stochastic variable X (t)
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Wiener-Khinchine Relation
Fourier pair R(τ)⇔ S(s) is Wiener-Khinchine relation
τ = 0:

R(0) = E
{
|X (t) |2

}
=

+∞∫
−∞

S(s) ds

µ = 0:

R(0) = C(0) = σ2 =

+∞∫
−∞

S(s) ds

power contained in fluctuations of signal centered around zero
mean is equivalent to integration of spectral power density over
entire frequency band
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Example

area under square of
function h(t) (a) equals
area under one-sided
power spectrum at
positive frequencies (b)
and area under
double-sided spectrum
(c)
note factor 2 in
amplitude between
one-sided and
double-sided spectrum
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One-Sided Power Spectral Density
physical frequencies run from zero (i.e. DC) to +∞, mostly use
one-sided power spectral density SOS(s) = 2S(s)

total signal power follows from integration over physical frequency
domain:

R(0) =

∞∫
0

SOS(s) ds
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Example

PSDs of light curves of Low Mass
X-Ray Binaries
GX5-1 shows “red-noise” excess, i.e.
power law dependence (s−β)
broad peak are quasi-periodic
oscillations (QPOs), indicating
temporarily coherent oscillations in
luminosity.
Sco X-1, shows QPOs without
stochastic variability
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Finite Time Series
autocorrelation function of stochastic process is a time average
replace X (t) with general function f (u):

R(x) =

+∞∫
−∞

f ∗(u) · f (u + x) du =

+∞∫
−∞

f ∗(u) · f (u − x) du

Fourier transform

Φ(s) =

+∞∫
−∞

R(x) · e−2πisx dx = F (s) · F ∗(s) =|F (s) |2

f (u)⇔ F (s)

Wiener-Khinchin theorem for finite function f (u)

only non-zero over limited interval of coordinate u
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Parseval’s Theorem
x = 0:

R(0) =

+∞∫
−∞

| f (u) |2 du =

+∞∫
−∞

Φ(s) ds =

+∞∫
−∞

|F (s) |2 ds

Parseval’s theorem:

+∞∫
−∞

| f (u) |2 du =

+∞∫
−∞

|F (s) |2 ds

each integral represents amount of “energy” in system
one integral over all values of a coordinate (e.g. angular
coordinate, wavelength, time)
other over all spectral components in Fourier domain
Φ(s) has dimension of an energy density
sometimes wrongly referred to as power density
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Stochastic Nature of Radiation Beam

Introduction
electromagnetic or particle radiation from astronomical source
fluctuates because of incoherent emission process
obvious for particles, less obvious for wave description of
electromagnetic radiation
Bose-Einstein statistics to derive magnitude of intrinsic
fluctuations of blackbody radiation source
photons are bosons
not subject to Pauli exclusion principle
many bosons may occupy the same quantum state
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Bose-Einstein Statistics
particles in unit volume of space are distributed in
momentum-space in boxes with volumes proportional to h3 (h =
Planck’s constant)
for each energy finite number Z of boxes
Z ∝ 4πp2dp with p the particle momentum
ni particles with energies εi
number of boxes available at that energy Zi

bosons can share a box
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Bose-Einstein Statistics (continued)

number of ways W (ni) in which ni bosons can be distributed over
Zi boxes:

W (ni) =
(ni + Zi − 1)!

ni !(Zi − 1)!

equivalent to laying ni particles and Zi − 1 boundaries in a row
number of permutations is (ni + Zi − 1)!

particles and boundaries can be interchanged
put nj bosons into Zj boxes
number of ways in which N =

∑∞
i=1 ni bosons can be distributed

over boxes in momentum space: W = Π∞i=1W (ni)
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Most Likely Particle Distribution
statistical physics assumption: probability of distribution is
proportional to number of ways in which this distribution can be
obtained
collisions between particles re-distribute particles over boxes
most likely particle distribution is the one which can be reached in
most different ways
find maximum of W by determining maximum of ln W

ln W =
∞∑

i=1

ln W (ni)⇒ ∆ ln W =
∞∑

i=1

∂ ln W (ni)

∂ni
∆ni = 0

Using Stirlings approximation (ln x! ' x ln x − x) for large x :

ln W (ni) = (ni + Zi − 1) ln(ni + Zi − 1)− (ni + Zi − 1)

−ni ln ni + ni − (Zi − 1) ln(Zi − 1) + (Zi − 1)

= (ni + Zi − 1) ln(ni + Zi − 1)

−ni ln ni − (Zi − 1) ln(Zi − 1)
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Bose-Einstein Statistics
for nearby number ni + ∆ni and to first order in ∆ni :

∆ ln W (ni) ≡ ln W (ni + ∆ni)− ln W (ni) ' ∆ni
∂ ln W (ni)

∂ni
= ∆ni [ln(ni + Zi − 1)− ln ni ]

For equilibrium, i.e. the most likely particle distribution

∆ ln W =
∞∑

i=1

∆ni [ln(ni + Zi − 1)− ln ni ] = 0
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Thermodynamic Equilibrium
system in thermodynamic equilibrium:

number of particles N =
∑

ni per unit volume is constant
energy E =

∑
niεi per unit volume is constant

variations in ni must conserve N and E :

∆N =
∞∑

i=1

∆ni = 0

∆E =
∞∑

i=1

εi∆ni = 0

Therefore

∆ ln W − α∆N − β∆E =
∞∑

i=1

∆ni [ln(ni + Zi − 1)− ln ni − α− βεi ] = 0

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 1 32



Bose-Einstein Distribution∑∞
i=1 ∆ni [ln(ni + Zi − 1)− ln ni − α− βεi ] = 0 for arbitrary

variations ∆ni if for each i

ln(ni + Zi − 1)− ln ni − α− βεi = 0⇒ ni

Zi − 1
=

1
eα+βεi − 1

this is Bose-Einstein distribution
Zi � 1: ni/(Zi − 1)⇒ ni/Zi , which represents the average
occupation at energy level εi (occupation number).
values of α and β depend on total number of particles and total
energy
can be determined by substituting ni in N =

∑∞
i=1 ni and in

E =
∑∞

i=1 niεi
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Planck Function
Planck function does not require that number of photons be
conserved
atom can absorb one photon and then emit 2 photons
obtain the Planck function by dropping the α term

ni

Zi − 1
=

1
eβεi − 1

= nνk

nνk is average occupation number of photons at frequency νk

photons do not collide directly with one another, but reach
equilibrium only via interaction with atoms
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Connection to Thermodynamics
connection to thermodynamics via

S ≡ k ln W ⇒ ∆S = k∆ ln W

therefore we get
∆S = kα∆N + kβ∆E

T ∆S = −ζ∆N + ∆E we find that β = 1/(kT )

ζ ≡ −α/β is thermodynamical potential per particle
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Fluctuations Around Equilibrium
number of ways in which ni + ∆ni particles can be distributed as
compared to that for ni particles (to second order):

ln W (ni + ∆ni) = ln W (ni) + ∆ni
∂ ln W (ni)

∂ni
+

∆n2
i

2
∂2 ln W (ni)

∂n2
i

in equilibrium term proportional to ∆ni is zero
rewrite as

W (ni + ∆ni) = W (ni)e−
W ′′(ni )

2 ∆n2
i where W ′′(ni) ≡ −

∂2 ln W (ni)

∂n2
i

probability of deviation ∆ni drops exponentially with square of ∆ni

probability of ∆ni is a Gaussian
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Fluctuations Around Equilibrium (continued)

average value for ∆n2
i by integrating over all values of ∆ni :

∆n2
i =

∫∞
−∞∆n2

i W (ni)e−
W ′′(ni )

2 ∆n2
i d∆ni∫∞

−∞W (ni)e−
W ′′(ni )

2 ∆n2
i d∆ni

=
1

W ′′(ni)

W (ni), W ′′(ni) do not depend on ∆ni ⇒ constants in integrations
maximum negative deviation has ∆ni = −ni

maximum positive deviation ∆ni = N − ni

integrals to be evaluated between these values
for large ∆ni integrand drops rapidly to zero
extend integrals to full range −∞ to +∞ without changing result
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Variance
variance from second derivative of ln W (ni) and changing sign:

∆n2
i =

[
W ′′(ni)

]−1
=

ni(ni + Zi − 1)

Zi − 1
= ni

[
1 +

1
eα+βεi − 1

]
drop the α for Planck function:

∆n2
i = ni

[
1 +

1
eβεi − 1

]
= ni(1 + nνk )

fluctuation in average occupation number

∆nνk
2 =

∆n2
i

Zi
= nνk (1 + nνk )
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Fermi-Dirac Statistics

Distribution
particles not allowed to share a box
number of ways W (ni) in which ni particles can be distributed
over Zi boxes with energies εi :

W (ni) =
Zi !

ni !(Zi − ni)!

difference in ln W (ni) between nearby numbers to first order in
∆ni :

ln W (ni + ∆ni)− ln W (ni) = −∆ni [ln ni − ln(Zi − ni)]

equilibrium⇒ Fermi Dirac distribution:

ni

Zi
=

1
eα+βεi + 1

= nk
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Fluctuations
average value of square of deviation

∆n2
i =

ni(Zi − ni)

Zi
= ni

[
1− 1

eα+βεi + 1

]
= ni(1− nk )

The fluctuation in the average occupation number

∆nk
2 =

∆n2
i

Zi
= nk (1− nk )
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Blackbody Bose Gas

Introduction
volume density of photons in blackbody Bose gas between
frequencies ν, ν + dν from

N̄(ν)dν = g(ν)n̄νdν

g(νk ) is volume density of quantum states per unit frequency at νk

stochastic variables nνk independent⇒ Bose-fluctuations

∆N2(ν) = N̄(ν)

(
1 +

1
exp(hν/kT )− 1

)
N̄(ν) follows from specific energy density ρ̄(ν) = ρ(ν)equilibrium:

ρ(ν)dν =
8πh
c3

ν3

exp ( hν
kT )− 1

dν

using N̄(ν) = ρ̄(ν)/hν
Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 1 41



Rdiation Detection
detector inside blackbody radiation field at temperature T
incident photon flux:

n̄(ν) =
1
2

c
4π

N̄(ν)AeΩ

factor 1
2 refers to one component of polarisation

Ae is effective area of detector
Ω is solid angle subtended by detector beam viewing radiation
field
if radiation illuminates extended surface (Ae) with various
directions of the wave vector, i.e. an omnidirectional blackbody
radiation field, coherence theory states that spatial coherence is
limited to AeΩ ≈ λ2, the so-called extent (etendue) of coherence.
same as size θ = λ/D of diffraction-limited beam (Ω ≈ θ2) for
aperture diameter D: Ae ≈ D2

Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Data Analysis 2011: Radiation Fields 1 42



Radiation Detection (continued)

substituting N̄(ν), specific photon flux n̄(ν) (in photons s−1 Hz−1)
becomes:

n̄(ν) =
1

exp(hν/kT )− 1

∆n2(ν) = n̄ν

(
1 +

1
exp(hν/kT )− 1

)
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Poisson Noise
from before:

n̄(ν) =
1

exp(hν/kT )− 1

∆n2(ν) = n̄ν

(
1 +

1
exp(hν/kT )− 1

)
in extreme case hν � kT , second term becomes much smaller
than 1:

∆n2(ν) = n̄(ν)

is Poissonian noise in a sample containing n̄(ν) photons.
quantum limit of fluctuations
represents minimum value of intrinsic noise present in any
radiation beam
Obviously holds for particle radiation
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Thermal Noise
for photon with hν � kT , noise is expressed in terms of average
radiation power P̄(ν) (e.g. in Watt Hz−1)

by writing P̄(ν) = (hν)n̄(ν) and ∆P2(ν) = (hν)2∆n2(ν):

∆P2(ν) = P̄(ν)

(
hν +

hν
exp(hν/kT )− 1

)
= P̄(ν)(hν + P̄(ν))

hν � kT :

∆P2(ν) = P̄2(ν)

and P̄(ν) = kT

expression for classical thermal noise power per unit frequency
bandwidth
thermal limit
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Quantum Noise and Thermal Noise

transition between quantum limit to thermal limit at hν ≈ kT
T ≈ 300 K⇒ ν ≈ 6 THz, λ ≈ 50 µm
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Quantum and Thermal Noise
radio observations always dominated by the wave character of
incoming beam⇒ in thermal limit
treatment of noise in radio observations differs drastically from
measurements at shorter wavelengths
submillimeter and infrared observations strive to be in the
quantum limit
fluctuations in average power P̄(ν) for thermal limit can be
interpreted as importance of wave packet interference⇒
interference will cause fluctuations to become of same magnitude
as signal
low frequency fluctuations can be thought of as caused by
random phase differences and beats of the wavefields
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Detector Outside of Blackbody Photon Gas
expression for fluctuations in blackbody photon gas applies only to
detector in interior of blackbody where λ2 = c2/ν2 = AeΩ

if not, even in limit hν � kT quantum noise may dominate
example: blackbody star at temperature T , observed at frequency
ν, where hν � kT , thermal noise shoudl dominate
star is so far away that radiation is unidirectional and AeΩ� λ2

photons will arrive well separated in time and quantum noise
dominates
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