Astronomical Data Analysis 2011: Exercises to Lecture on Radiation Fields 2 (Due on 21 February 2011 at 13:15)

C.U.Keller

February 14, 2011

1 Statistics of Unpolarized Radiation

a) Show $X(t)$ that the probability density function for the intensity of an unpolarised signal from a thermal source is given by:

$$
p(I) = \bar{I}^{-1} e^{-I/\bar{I}}, \tag{1}
$$

where $\bar{I} = 2\sigma^2$. The variance σ^2 here relates to the (uncorrelated) gaussian stochastic variables $\text{Re}(\tilde{E}_0(t))$ and Im $(\tilde{E}_0(t))$, that give a scalar description of the fluctuating behaviour of the *phasor* $\tilde{E}_0(t)$.

b) Proof that for the variance of the intensity I of an unpolarised signal:

$$
\overline{\Delta I^2} = \left(\overline{I}\right)^2 \tag{2}
$$

2 Poisson Distribution

a) If the expected value $E{X_T}$ equals μ for the average number of photons in time period T, the probability p that a photon arrives in a subinterval of T can be equated from $p = \mu/m$ if m equals the number of subintervals within T. The probability that no photon arrives is $1 - p$. The measurement can thus be considered as a series of m trials to find a photon, each having a probability of p of succeeding. The probability that in total k photons will be detected is therefore given by the binomial probability function $(k < m)$:

$$
p_B(k, m, p) = {m \choose k} p^k (1-p)^{m-k}.
$$
\n(3)

However, if the subinterval is large, there is a finite probability that more than one photon will arrive within this interval, hence the limit should be taken for the number of trials m to go to infinity while maintaining $mp = \mu$ constant. In this limit $m \to \infty$, $p \to 0$, the binomial distribution changes to the Poisson distribution:

$$
p_P(k,\mu) = \frac{\mu^k}{k!} \, e^{-\mu}.\tag{4}
$$

Derive this distribution transformation and show that the Poisson distribution is normalized.

b) Show that for a Poisson distributed stochastic process the autocorrelation of the random variable $X_{\Delta T}$ (number of particles or photons per interval of time ΔT) is given by:

$$
R_{X_{\Delta T}} = \mu^2 + \mu \quad \text{for } \tau = 0 \tag{5}
$$

$$
R_{X_{\Delta T}}(\tau) = \mu^2 + \mu \delta(\tau) \quad \text{in the general case} \tag{6}
$$