
Worming your way around Python!
!
Introduction
!
The aim of this problem set is to exercise your python know-how and also to get some experience
with another useful program, topcat. !!!
Getting started
!
Getting some data!
The first task is to get hold of some data to plot - the focus here will be on tabular data for now and
we will use the Exoplanet encyclopaedia at exoplanet.eu. Go to that site and download the
catalogue in VOTable format. !!
Getting topcat!
The topcat program is a super-useful utility program that everyone working with astronomical data
should be aware of. !!
The first task is to start-up Topcat. It might be installed already but if you need it for your own
computer you can find it at:!!
http://www.star.bris.ac.uk/~mbt/topcat/ !
Go there and download the topcat-full.jar file and start this. If this is presenting problems, try the
WebStart version a bit further down on the page. If it is installed, just open a terminal window and
type topcat. All ok? You should see a display like this, depending on the computer you use!

!!

http://exoplanet.eu

topcat can load most types of tables that astronomers use and it has a useful table viewer and
convenient plotting functions. These will be described a bit in a lecture but it is useful to know how
to do the basics:!

!!!!!!
Click on the table button to bring up a display that looks like this:!! !!!!!!!!

!!
you can use this interface to browse the table and when you have plotted
columns in this table you can click on a table row to highlight that object in the
plot, and vice versa. But for now, click the histogram button to create a
histogram of the mass of the exoplanets:!!
That actually looks a bit sub-optimal. You can see that there are a lot of low-
mass exo-planets but they all end up in a single bin on the left. In cases like this
it is often useful to use a logarithmic x-axis, so click on the ‘Axes’ option in the
left panel and tick the option for X log in the panel. This should give you a result
looking like this: !
!

These buttons are used to show the data in table format (left-most), see
generic information about the table (second button), see an overview of
columns (third button) and to define subsets of the data (right-most).

These buttons are used to plot the data. The first creates histograms
and the second plots scatter plots (x versus y).

!!
Moving to python!!
Topcat is very versatile and useful but a key aspect of doing science is reproducibility - that means
that when you present a result, you have to provide enough information for the interested reader to
be able to repeat your investigation. When you use an interactive program like topcat this is difficult
to ensure, thus we often use topcat to get a feel for the data and then move to python to visualise
and analyse the data properly.!
!
The first step is therefore to read the data into python. It is possible to read
a VOTable directly into python and feel free to figure that out, but in the
introduction lecture you saw how to read it in in either FITS or CSV format.
To make use of this you first need to use topcat to save the table in one of
those formats.!!
Done? (you can of course also download the table in CSV format from the exoplanet.eu web site!)!
In my examples below I have read the data from a FITS table into a single variable, t.!

Intermezzo 1: Working with ipython and friends
!
An efficient working environment is always important - most of us do not prepare dinner in our
bathroom, and so it is with python as well. There are many ways to interact with python and
integrated coding environments abound. It is not the aim of this course to guide you through these
- you need to explore on your own, but it is probably a good idea to look at ipython. !!
This is a replacement for the normal python command line - if you type python on the command
line you get a display more or less like this:!!
leukermeer [33] > python
Python 2.7.8 (default, Nov 10 2014, 08:19:18)
[GCC 4.9.2 20141101 (Red Hat 4.9.2-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> !
you can then proceed to type in commands, and it will work fine. However it is quite limited in what
it provides and ipython (ipython.org) is a powerful alternative, although it takes a bit longer to start
up. If you start ipython you get:!!
leukermeer [34] > ipython
Python 2.7.8 (default, Nov 10 2014, 08:19:18)
Type "copyright", "credits" or "license" for more information. !
IPython 1.1.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details. !
In [1]: !
which already tells you there are is more help to be had. One particularly nice aspect is that it helps
you find out what an object can do. As an example let us see what the functions are for a normal
numpy variable:!!
In [1]: import numpy as np !

pyfits.getdata(file, 1)

http://exoplanet.eu
http://ipython.org

In [2]: a = np.zeros(5) !
In [3]: a.<PRESS TAB HERE!>
a.T a.clip a.dot a.item a.prod a.setasflat a.swapaxes
a.all a.compress a.dtype a.itemset a.ptp a.setfield a.take
a.any a.conj a.dump a.itemsize a.put a.setflags a.tofile
a.argmax a.conjugate a.dumps a.max a.ravel a.shape a.tolist
a.argmin a.copy a.fill a.mean a.real a.size a.tostring
a.argsort a.ctypes a.flags a.min a.repeat a.sort a.trace
a.astype a.cumprod a.flat a.nbytes a.reshape a.squeeze a.transpose
a.base a.cumsum a.flatten a.ndim a.resize a.std a.var
a.byteswap a.data a.getfield a.newbyteorder a.round a.strides a.view
a.choose a.diagonal a.imag a.nonzero a.searchsorted a.sum !
so as you can see - if you press <TAB> you get a list of what functions you have. So you can now
find out what the sum of this variable is:!!
In [3]: a.sum()
Out[3]: 0.0 !
You can also write your code in some text editor and then paste it into ipython - to do that you
select the text and then type %paste in ipython to glue it in. !!
Finally, another very powerful aspect of ipython is its notebook facility. Type ipython notebook on
the command prompt and if all goes well your web browser will display a notebook interface. This
works like a python prompt but it also supports interspersed text and comments - try it out! You do
not need to use this for this course but you might find that it is a time-saver and a good way to
remember what you did!!
!

!!
! !

Task 1: How many of the planets in your list were
found by Kepler?!!
Assume that any exoplanet with a name that starts
with ‘Kepler’ was detected by Kepler and use Python
to count the occurrences.!!
I found a total of 937 - by the time you do this there
might be more.!!!
Task 2: What is the mean mass of the planets in
the exoplanet.eu catalogue?!!
Do this in two ways: !
1.Find out what the appropriate numpy function is
called and use that.!
2.Write a function in python to do the same
calculation.!!!!!!!

How can I do this if it was not in the
lectures?!!
Some of the problems here (and
when you do your projects) will
require python skills that were not
taught in the introduction lecture. !
In such cases, Google (or any other
search engine) is your friend - often
the answers come from
stackoverflow.com. Another crucial
source is the python documentation
(docs.python.org and docs.scipy.org)
- you should keep links to these
handy!

http://stackoverflow.com
http://docs.scipy.org
http://exoplanet.eu
http://stackoverflow.com
http://docs.scipy.org

Intermezzo: modularity of code
!
It is almost always best to split your code into smaller units - at the very least using functions. As
an example, here is a bad way to calculate the sum of the N first numbers from 0 to 5:!!
x = np.arange(1, 1+1)
print “Up to {0} the sum is {1}”.format(1, x.sum()) !
x = np.arange(1, 2+1)
print “Up to {0} the sum is {1}”.format(2, x.sum()) !
x = np.arange(1, 3+1)
print “Up to {0} the sum is {1}”.format(3, x.sum()) !
x = np.arange(1, 4+1)
print “Up to {0} the sum is {1}”.format(4, x.sum()) !
It works, but it is easy to make mistakes and later changes to the code are harder and for anything
but the simplest examples this is hard to maintain and understand.!!
For that reason it is best to split off tasks like this into functions. The task above can be written:!!
def sumN (N):
 x = np.arange(1, N+1)
 print "Up to {0} the sum is {1}".format(N, x.sum()) !
for i in range(1, 5):
 sumN(i) !
This is now much easier to generalise and modifications are easy as well because everything is in
one particular place.!!
The bottom line: You almost always want to use functions! And cut-and-paste of code is a bad
habit to get into! !

!!
Task: Exoplanets in the Hertzsprung-Russel diagram!!
The Hertzsprung-Russel (HR) diagram is a convenient way to visualise stellar populations. A
typical plot of this shows the effective temperature of a star on the x-axis and the luminosity of the
star in some band on the y-axis - both typically on logarithmic scales.!!
a) Plot a HR diagram for the host stars of the

exoplanets. It is perfectly fine if the luminosity
axis is in arbitrary units - indeed it is perhaps
easiest to convert mag_v to absolute
magnitude. 
 
There are two points off at around 30,000K -
what kind of stars are those?  
 
Check: Did you add axis labels? !!

Reversing axes!
The convention in astronomy is that the x
axis has high temperatures on the left and
low on the right - the opposite of the default. !
It is easy to do this matplotlib:
import matplotlib.pyplot as plt
plt.plot(x, y)
plt.gca().invert_yaxis()

b) More challenging: That is a fairly low information plot - now let us add information to the plot by
colouring each point according to the logarithm of the mass of the exo-planet. !!

c) More challenging: Next create the plot but now scale the symbol size according to the radius of
the star. Does your diagram look anything like one of the HR diagrams you find on the net?!!
The two last points are a bit harder because you need to search a bit around and also making the
plot look good is more work. They are not intrinsically hard though.!!
d) If that was all easy, try finding all stars with >2 planets identified and create a plot illustrating all
these extra-solar systems and compare to our own solar system.!!
Final aside: Comments
!
It is very important to add comments and instructions to your code. Try to make it a habit that you
always add a comment that says what a function does when you write one. Add comments
everywhere you write an equation that is anything but extremely trivial.!!
Comments are also very useful for yourself later, for others using your code and for anyone who
you ask to help you with your code!!!
In python you add comments by placing # before and you add help text to a function using a
structure of this kind:!!
def my_func(x):
 """This function will carry out a fancy function.
x — The argument to this function
 """ !
 return x*x !
In essence it should be a string literal as the first argument after the declaration of the function.
This then becomes the help text so if you later do help(my_func) you will get:!
In [3]: help(my_func)
Help on function my_func in module __main__: !
my_func(x)
 This function will carry out a fancy function
 x -- the argument to this function !
And this is very useful, particularly for other people and for complex functions. If you want to learn
more about this see https://www.python.org/dev/peps/pep-0257/. !

!!
If you got this far you could turn the page and have a look at a simple function to make the
Hertzsprung-Russel diagram. !!!
It is also useful to know that these particular tasks are easier to do in topcat than in Python - but
now you at least have a record of what you have done and can modify it easily in the future. 

https://www.python.org/dev/peps/pep-0257/

!
An example solution of the HR plot!!
def showHR(t):
 """
 Show a Hertzsprung-Russel diagram from the data in the
 table dictionary read from a FITS table given as argument t.
 """ !
 # First get an absolute magnitude
 Vabs = t['mag_v'] - 5*np.log10(t['star_distance']/10.0)
 Teff = t['star_teff'] !
 # Not all points are acceptable - select only the good ones but
 # report what fraction was bad. !
 good, = np.where((Teff > 1500) & (Vabs < 30) & (Vabs > -5))
 n_good = len(good)
 n_all = len(Teff)
 n_bad = n_all - n_good
 frac_bad = n_bad/np.float(n_all) !
 print "I will plot {0:d} points, that is {1:.1f}% of the
total".format(n_good, 100*frac_bad)

 # Subset the variables to only use the good ones.
 Teff = Teff[good]
 Vabs = Vabs[good]

 # Set up the plot area. We use red dots for the stars
 plt.plot(Teff, Vabs, 'r.') !
 # Add an x and y label to the plot.
 plt.xlabel(r'$T_{eff} [K]$')
 plt.ylabel(r'M_{V}') !
 # Most stars have tempreature <40000K and >1500 so I put these as limits
 plt.xlim(1500, 40000) !
 # And use a logarithmic x-axis.
 plt.xscale('log') !
 # Invert the x and y-axes to follow astronomical convention
 plt.gca().invert_xaxis()
 plt.gca().invert_yaxis() !
 # Finally, show the plot.
 plt.show()

