### Observing proposals the scientific justification

### Why do we propose for telescope time?

Long enough ago you built your own telescope when you wanted to observe something. This is not realistic today however - and you certainly could not send up a telescope in orbit!





The VLT on the Nasmyth platform of the E-ELT...

## From idea to data

- 1. What problem do you want to study?
- 2. What data do you need to tackle this problem?

Do you need spectra? Images? Radio-data? Do you need archival data?

#### 3. Can you do actually do it?

It is easy to imagine scientifically interesting data that are unrealistic, or even impossible, to get.

#### 4. What telescope should you use?

Different telescopes have different instruments, are in different hemispheres, their access rights are different and the application pressure is different.

## The cost of observing

The cost of one night on a big telescope (cost of telescope+maintenance+instruments):

ESO NTT (La Silla): 10000 €/night - 330 €/ksec ESO VLT (Paranal): 59400 €/night - 2000 €/ksec Keck: 53700 \$/night HST: >11000 €/sec XMM-Newton: 1800 €/ksec Chandra: 7700 €/ksec

With these costs it is important that we do as good science as possible with these facilities.

### Competition - the proposal pressure

Proposal pressure =

Requested time

Allocated time

### Competition - the proposal pressure



### But not all the sky is equally desirable!



**Right Ascension** 

## It is no better in space! HST



## HST oversubscription



### New instruments, new opportunities

Cycle 18: 1050 total proposals 870 GO 51 Snaps 128 Archive Research/Theory <u>74</u>7 # Submitted 727 733 Cycle 19: 1007 total proposals 798 GO ■ 556 65 Snaps 144 Archive Research/Theory WFPC2, **STIS**, WFC3, COS, ACS, ACS, STIS **COSTAR NICMOS NIMOS** 13 14 15 16 16' Cycle

Whitmore 2011 - presentation

### Archives - a transformation of science



Today archives are an essential ingredient in many research endeavours.

# Types of observations

#### Targeted

Point your telescope on particular objects/areas of the sky and study these in detail.

Call for proposals at regular times

VLT, Keck, Gemini, WHT, INT

#### Survey

Observe large parts of the sky in a systematic way.

Long time plans or even dedicated telescopes/satellites.

2dFGRS, SDSS, Euclid, KIDS

A given facility might do both!

# Operation of telescope

#### Classical

Award of a given number of nights - observations done at a specific time, usually with the observer present at the telescope

#### Queue observing

Award of a specific amount of time to be executed when the conditions meet the observer's requirement.

#### **Robotic surveys**

No specific proposals - "continuous" collection of data

# Competing for time

As the over-subscription plots show, there is fierce competition for telescope time!

Only GOOD proposals stand a chance - and in some cases only outstanding proposals make it!

Writing good proposals is a crucial skill for an astronomers.

Also true for computing time, grants, etc - even outside astronomy/research

# The call for proposals

1-2 months before the deadline a call for proposals is issued. This contains information on available instruments and other important news. You then have time to plan your observing proposal.



## After the deadline

Formal check of the proposals - are the proposers eligible? can the object be observed? is the length/request acceptable?



# The TAC - be understandable!

This is composed of researchers that will evaluate the proposals. For big facilities like HST or the VLT there are many sub-committees that consist of experts in a broad area. But in national TACs there is usually only one group.

The reviewer is unlikely to be an expert on your topic!

A proposal must be understandable for a non-expert!

## The TAC - be concise

A TAC member for a big facility might have 50-100 proposals to read. How long will they spend on each? Maybe 15 minutes?

A proposal must be concise and clear - get your point across quickly and efficiently!

# The proposal

#### Introduction Scientific justification

- ✓ Why is this topic important?
- ✓ What are the important questions?
- ✓ Why now?
- ✓ Links to other topics?
- ✓ Why are the proposed observations important?
- ✓ How will you do the analysis?

#### **Technical justification**

✓ Can you actually carry out your observations?

# The proposal

#### Some hints on writing a good proposal:

- ✓ Clear and concise arguments
- ✓ Make it clear what you want to do
- ✓ Make it clear *how* you will do it
- ✓ Write clearly and in correct English sloppy writing will not help you!
- ✓ Avoid jargon and explain acronyms the first time you use them
- ✓ Carefully follow instructions!

## Deadlines

**18/02** - Provide idea for observing proposal (by email!)

**11/03** - Scientific justification for observing proposal1 page

**25/03** - Technical justification (1 page) & abstract (max 10 lines)

Maximum 2 pages with figures & references Font: 11 pt Times Roman

# Proposal ideas

Measure distances to globular clusters: e.g. RR Lyrae

Calculate the rotation period of asteroids

Determine the orbital elements of minor planets

Map star formation in nearby galaxies

Binary stars

Stellar streams

exo-planets